1
|
Yang MJ, Lee H, Kang D, Park CJ. Biophysical investigation of the molecular interaction between minichromosome maintenance protein 6 and Bloom syndrome helicase. FEBS J 2025. [PMID: 40007132 DOI: 10.1111/febs.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
The minichromosome maintenance protein (MCM) complex and Bloom syndrome helicase (BLM) are crucial components in DNA replication and cell division. MCM, a hexameric helicase that unwinds double-stranded DNA, serves as an important diagnostic and prognostic biomarker for cancer cells and a target for anticancer drug development. BLM, associated with G-quadruplex structures, is another key helicase in maintaining genomic stability. In this study, we investigate the interaction between MCM6 and BLM at the atomic level, as their expression levels are highly correlated in various cancer types, with elevated levels indicating poor prognosis. To elucidate the molecular basis of MCM6/BLM interaction, we employed fluorescence polarization anisotropy analysis, NMR chemical shifts perturbation analysis (CSP), and paramagnetic relaxation enhancement (PRE) experiments. MCM6 binding domain (MBD) C and D exhibit similar binding affinities to MCM6 winged-helix domain (WHD). However, significant CSPs with MBD-D and PRE experiments suggested that MBD-D is closer to MCM6 WHD than MBD-C. Despite both proteins containing numerous negatively charged residues, hydrophobic interactions govern the association between MCM6 WHD and BLM MBD-D. This biophysical characterization of the MCM6/BLM interaction provides new insights into their functional relationship and challenges existing models. Our findings reveal that MCM6 binds BLM at a different site than its other known partner chromatin licensing and DNA replication factor. Understanding these protein-protein interactions at the molecular level may contribute to the development of novel anticancer therapies targeting the MCM6/BLM interaction.
Collapse
Affiliation(s)
- Min June Yang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Haeun Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Donguk Kang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
2
|
Okuno Y. Quantitative Interpretation of Transverse Spin Relaxation by Translational Diffusion in Liquids. J Phys Chem B 2025. [PMID: 39977431 DOI: 10.1021/acs.jpcb.4c08225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Intermolecular spin relaxation by translational diffusion of spin pairs has been widely used to study the properties of biomolecules in liquids. Notably, solvent paramagnetic relaxation enhancement (sPRE) arising from paramagnetic cosolutes has gained significant attention for various applications in structural biology, including the structural refinement of intrinsically disordered proteins, the elucidation of the molecular mechanisms driving cosolute-induced protein denaturation, and the characterization of residue-specific effective near-surface electrostatic potentials (ENS). Furthermore, sPRE has been extensively applied in magnetic resonance imaging (MRI), where paramagnetic ions, such as Gd(III)-based ions, are used as contrast agents. Among these applications, the transverse sPRE rate (Γ2) has predominantly been interpreted empirically as being proportional to the average interspin distance ⟨r-6⟩norm. In this study, we present a rigorous theoretical interpretation of Γ2 for spherically symmetric intermolecular potentials, demonstrating that it is proportional to ⟨r-4⟩norm. We provide an explicit formula for calculating ⟨r-4⟩norm without any adjustable parameters, offering valuable insights into the interaction potential independent of the type or strength of interactions. It has broad applicability, including the precise interpretation of the relaxation properties of the MRI contrast agents and calculation of the ENS.
Collapse
Affiliation(s)
- Yusuke Okuno
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
3
|
Tarasov AS, Minnullina GA, Efimov SV, Kobchikova PP, Khodov IA, Klochkov VV. Interaction of Cyclosporin C with Dy 3+ Ions in Acetonitrile and in Complex with Dodecylphosphocholine Micelles Determined by NMR Spectroscopy. Int J Mol Sci 2024; 25:13312. [PMID: 39769076 PMCID: PMC11677049 DOI: 10.3390/ijms252413312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The spectral characteristics of cyclosporin C (CsC) with the addition of Dy3+ ions in acetonitrile (CD3CN) and CsC with Dy3+ incorporated into dodecylphosphocholine (DPC) micelle in deuterated water were investigated by high-resolution NMR spectroscopy. The study was focused on the interaction between Dy3+ ions and CsC molecules in different environments. Using a combination of one-dimensional and two-dimensional NMR techniques, we obtained information on the spatial features of the peptide molecule and the interaction between CsC and the metal ion. The non-uniform effect of the metal ion on different NMR signals of CsC was observed. The paramagnetic attenuation parameter was calculated for the amide, alpha, and beta protons of CsC upon the addition of Dy3+. The metal ion was found to interact with the polar part of the DPC micelle, and the ion also has a significant effect on the NMR signals of amino acid residues from Sar3 to d-Ala8. This pattern is reproduced in both environments studied here and also agrees with earlier investigations of the CsA-Dy3+ complex.
Collapse
Affiliation(s)
- Artyom S. Tarasov
- Institute of Physics, Kazan Federal University, 18 Kremlevskaya St., Kazan 420008, Russia; (A.S.T.); (G.A.M.); (V.V.K.)
| | - Guzel A. Minnullina
- Institute of Physics, Kazan Federal University, 18 Kremlevskaya St., Kazan 420008, Russia; (A.S.T.); (G.A.M.); (V.V.K.)
| | - Sergey V. Efimov
- Institute of Physics, Kazan Federal University, 18 Kremlevskaya St., Kazan 420008, Russia; (A.S.T.); (G.A.M.); (V.V.K.)
| | - Polina P. Kobchikova
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 6 Joliot-Curie St., Dubna 141980, Russia;
| | - Ilya A. Khodov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo 153045, Russia;
| | - Vladimir V. Klochkov
- Institute of Physics, Kazan Federal University, 18 Kremlevskaya St., Kazan 420008, Russia; (A.S.T.); (G.A.M.); (V.V.K.)
| |
Collapse
|
4
|
Mitra R, Usher ET, Dedeoğlu S, Crotteau MJ, Fraser OA, Yennawar NH, Gadkari VV, Ruotolo BT, Holehouse AS, Salmon L, Showalter SA, Bardwell JCA. Molecular insights into the interaction between a disordered protein and a folded RNA. Proc Natl Acad Sci U S A 2024; 121:e2409139121. [PMID: 39589885 PMCID: PMC11626198 DOI: 10.1073/pnas.2409139121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Intrinsically disordered protein regions (IDRs) are well established as contributors to intermolecular interactions and the formation of biomolecular condensates. In particular, RNA-binding proteins (RBPs) often harbor IDRs in addition to folded RNA-binding domains that contribute to RBP function. To understand the dynamic interactions of an IDR-RNA complex, we characterized the RNA-binding features of a small (68 residues), positively charged IDR-containing protein, Small ERDK-Rich Factor (SERF). At high concentrations, SERF and RNA undergo charge-driven associative phase separation to form a protein- and RNA-rich dense phase. A key advantage of this model system is that this threshold for demixing is sufficiently high that we could use solution-state biophysical methods to interrogate the stoichiometric complexes of SERF with RNA in the one-phase regime. Herein, we describe our comprehensive characterization of SERF alone and in complex with a small fragment of the HIV-1 Trans-Activation Response (TAR) RNA with complementary biophysical methods and molecular simulations. We find that this binding event is not accompanied by the acquisition of structure by either molecule; however, we see evidence for a modest global compaction of the SERF ensemble when bound to RNA. This behavior likely reflects attenuated charge repulsion within SERF via binding to the polyanionic RNA and provides a rationale for the higher-order assembly of SERF in the context of RNA. We envision that the SERF-RNA system will lower the barrier to accessing the details that support IDR-RNA interactions and likewise deepen our understanding of the role of IDR-RNA contacts in complex formation and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Rishav Mitra
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63110
| | - Selin Dedeoğlu
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne69100, France
| | - Matthew J. Crotteau
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Olivia A. Fraser
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA16802
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | | | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63110
| | - Loïc Salmon
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne69100, France
| | - Scott A. Showalter
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - James C. A. Bardwell
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
5
|
Ghosh S, Clore GM. Decoding chaperone complexes: Insights from NMR spectroscopy. BIOPHYSICS REVIEWS 2024; 5:041308. [PMID: 39679202 PMCID: PMC11637561 DOI: 10.1063/5.0233299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Molecular chaperones play a key role in protein homeostasis by preventing misfolding and aggregation, assisting in proper protein folding, and sometimes even disaggregating formed aggregates. Chaperones achieve this through a range of transient weak protein-protein interactions, which are difficult to study using traditional structural and biophysical techniques. Nuclear magnetic resonance (NMR) spectroscopy, however, is well-suited for studying such dynamic states and interactions. A wide range of NMR experiments have been particularly valuable in understanding the mechanisms of chaperone function, as they can characterize disordered protein structures, detect weak and nonspecific interactions involving sparsely populated states, and probe the conformational dynamics of proteins and their complexes. Recent advances in NMR have significantly enhanced our knowledge of chaperone mechanisms, especially chaperone-client interactions, despite the inherent challenges posed by the flexibility and complexity of these systems. In this review, we highlight contributions of NMR to the chaperone field, focusing on the work carried out in our laboratory, which have provided insights into how chaperones maintain function within the cellular environment and interact with various protein substrates.
Collapse
Affiliation(s)
- Shreya Ghosh
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
6
|
Gong X, Zhang Y, Chen J. Likely Overstabilization of Charge-Charge Interactions in CHARMM36m(w): A Case for a99SB-disp Water. J Phys Chem B 2024; 128:11554-11564. [PMID: 39536029 DOI: 10.1021/acs.jpcb.4c04777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Recent years have witnessed drastic improvements in general-purpose explicit solvent protein force fields, partially driven by the need to study intrinsically disordered proteins (IDPs), and yet the state-of-the-art force fields such as CHARMM36m (c36m) and a99SB-disp still provide different performances in simulating disordered protein states, where c36m has a bias toward overcompaction for large IDPs. Here, we examine the performance of c36m and a99SB-disp in describing the stabilities of a set of 46 amino acid backbone and side chain pairs in various configurations. The free energy results show that c36m systematically predicts stronger interactions compared to a99SB-disp by an average of 0.2 kcal/mol for nonpolar pairs, 0.6 kcal/mol for polar pairs, and 0.8 kcal/mol for salt bridges. The most severe overstabilization in c36m is observed for charged pairs involving the Arg and Glu side chains by up to 2.9 kcal/mol. Importantly, the systematic overstabilization of c36m is only marginally alleviated by c36mw, an ad hoc patch to c36m that increases the dispersion interactions between TIP3P hydrogens and protein atoms. Guided by free energy decomposition, we evaluated if revising the charges alone could alleviate the severe overstabilization of salt bridges of c36m(w) vs a99SB-disp. The results suggested that the direct modification of protein-water interactions is also necessary. Toward this end, we proposed a tentative modification to c36m, referred to as c36mrb-disp, which combines modified Arg side chain charges, retuned backbone hydrogen bonding strength, and the a99SB-disp water model. The modified force field successfully reproduces the secondary structures of several intrinsically disordered peptides and proteins including (AAQAA)3, GB1p, and p53 transactivation domain, while maintaining the stability of a set of folded proteins. This work provides a set of useful systems for benchmarking and optimizing protein force fields and highlights the importance of balancing protein-protein and protein-water electrostatic interactions for accurately describing both folded and disordered proteins.
Collapse
Affiliation(s)
- Xiping Gong
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Yumeng Zhang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
7
|
Vu DD, Bonucci A, Brenière M, Cisneros-Aguirre M, Pelupessy P, Wang Z, Carlier L, Bouvignies G, Cortes P, Aggarwal AK, Blackledge M, Gueroui Z, Belle V, Stark JM, Modesti M, Ferrage F. Multivalent interactions of the disordered regions of XLF and XRCC4 foster robust cellular NHEJ and drive the formation of ligation-boosting condensates in vitro. Nat Struct Mol Biol 2024; 31:1732-1744. [PMID: 38898102 DOI: 10.1038/s41594-024-01339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
In mammalian cells, DNA double-strand breaks are predominantly repaired by non-homologous end joining (NHEJ). During repair, the Ku70-Ku80 heterodimer (Ku), X-ray repair cross complementing 4 (XRCC4) in complex with DNA ligase 4 (X4L4) and XRCC4-like factor (XLF) form a flexible scaffold that holds the broken DNA ends together. Insights into the architectural organization of the NHEJ scaffold and its regulation by the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were recently obtained by single-particle cryo-electron microscopy analysis. However, several regions, especially the C-terminal regions (CTRs) of the XRCC4 and XLF scaffolding proteins, have largely remained unresolved in experimental structures, which hampers the understanding of their functions. Here we used magnetic resonance techniques and biochemical assays to comprehensively characterize the interactions and dynamics of the XRCC4 and XLF CTRs at residue resolution. We show that the CTRs of XRCC4 and XLF are intrinsically disordered and form a network of multivalent heterotypic and homotypic interactions that promotes robust cellular NHEJ activity. Importantly, we demonstrate that the multivalent interactions of these CTRs lead to the formation of XLF and X4L4 condensates in vitro, which can recruit relevant effectors and critically stimulate DNA end ligation. Our work highlights the role of disordered regions in the mechanism and dynamics of NHEJ and lays the groundwork for the investigation of NHEJ protein disorder and its associated condensates inside cells with implications in cancer biology, immunology and the development of genome-editing strategies.
Collapse
Affiliation(s)
- Duc-Duy Vu
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Alessio Bonucci
- Aix Marseille Univ, CNRS UMR 7281, BIP Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Manon Brenière
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Metztli Cisneros-Aguirre
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Philippe Pelupessy
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Ziqing Wang
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Ludovic Carlier
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Guillaume Bouvignies
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Patricia Cortes
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, New York, NY, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Blackledge
- Institut de Biologie Structurale (IBS), Grenoble Alpes University, CNRS, CEA, Grenoble, France
| | - Zoher Gueroui
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Valérie Belle
- Aix Marseille Univ, CNRS UMR 7281, BIP Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France.
| | - Fabien Ferrage
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France.
| |
Collapse
|
8
|
Yang Y, Murrali MG, Wang Y, Galvan S, Ajjampore N, Feigon J. HEXIM1 homodimer binds two sites on 7SK RNA to release autoinhibition for P-TEFb inactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617642. [PMID: 39416148 PMCID: PMC11482958 DOI: 10.1101/2024.10.10.617642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Hexim proteins are RNA-dependent regulators whose main target is 7SK long non-coding RNA, a major regulator of eukaryotic mRNA transcription. 7SK RNPs control available intracellular concentrations of the kinase P-TEFb (Cdk9-CyclinT1/2) by sequestering it in an inactive form. Active P-TEFb phosphorylates NELF, DSIF, and the RNA polymerase II CTD to transition it from promoter-proximal pausing to productive elongation. P-TEFb associates with 7SK RNP via Hexim, which directly binds 7SK RNA. However, free Hexim is in an autoinhibited state that cannot inactivate P-TEFb, and how Hexim autoinhibition is released by 7SK remains unknown. Here, we show that one Hexim1 homodimer binds two sites on linear 7SK RNA in a manner that exposes the Cdk9 binding sites, which are otherwise masked within the autoinhibited dimer. These results provide mechanistic insights into Hexim-RNA specificity and explain how P-TEFb can be effectively regulated to respond to changing levels of transcriptional signaling.
Collapse
|
9
|
Masoumzadeh E, Latham MP. Human CSTF2 RNA Recognition Motif Domain Binds to a U-Rich RNA Sequence through a Multistep Binding Process. Biochemistry 2024; 63:2449-2462. [PMID: 39305233 PMCID: PMC11448763 DOI: 10.1021/acs.biochem.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
The RNA recognition motif (RRM) is a conserved and ubiquitous RNA-binding domain that plays essential roles in mRNA splicing, polyadenylation, transport, and stability. RRM domains exhibit remarkable diversity in binding partners, interacting with various sequences of single- and double-stranded RNA, despite their small size and compact fold. During pre-mRNA cleavage and polyadenylation, the RRM domain from CSTF2 recognizes U- or G/U-rich RNA sequences downstream from the cleavage and polyadenylation site to regulate the process. Given the importance of alternative cleavage and polyadenylation in increasing the diversity of mRNAs, the exact mechanism of binding of RNA to the RRM of CSTF2 remains unclear, particularly in the absence of a structure of this RRM bound to a native RNA substrate. Here, we performed a series of NMR titration and spin relaxation experiments, which were complemented by paramagnetic relaxation enhancement measurements and rigid-body docking, to characterize the interactions of the CSTF2 RRM with a U-rich ligand. Our results reveal a multistep binding process involving differences in ps-ns time scale dynamics and potential structural changes, particularly in the C-terminalα-helix. These results provide insights into how the CSTF2 RRM domain binds to U-rich RNA ligands and offer a greater understanding for the molecular basis of the regulation of pre-mRNA cleavage and polyadenylation.
Collapse
Affiliation(s)
- Elahe Masoumzadeh
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Michael P. Latham
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
- Department
of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Son A, Kim W, Park J, Lee W, Lee Y, Choi S, Kim H. Utilizing Molecular Dynamics Simulations, Machine Learning, Cryo-EM, and NMR Spectroscopy to Predict and Validate Protein Dynamics. Int J Mol Sci 2024; 25:9725. [PMID: 39273672 PMCID: PMC11395565 DOI: 10.3390/ijms25179725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
Protein dynamics play a crucial role in biological function, encompassing motions ranging from atomic vibrations to large-scale conformational changes. Recent advancements in experimental techniques, computational methods, and artificial intelligence have revolutionized our understanding of protein dynamics. Nuclear magnetic resonance spectroscopy provides atomic-resolution insights, while molecular dynamics simulations offer detailed trajectories of protein motions. Computational methods applied to X-ray crystallography and cryo-electron microscopy (cryo-EM) have enabled the exploration of protein dynamics, capturing conformational ensembles that were previously unattainable. The integration of machine learning, exemplified by AlphaFold2, has accelerated structure prediction and dynamics analysis. These approaches have revealed the importance of protein dynamics in allosteric regulation, enzyme catalysis, and intrinsically disordered proteins. The shift towards ensemble representations of protein structures and the application of single-molecule techniques have further enhanced our ability to capture the dynamic nature of proteins. Understanding protein dynamics is essential for elucidating biological mechanisms, designing drugs, and developing novel biocatalysts, marking a significant paradigm shift in structural biology and drug discovery.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, San Diego, CA 92037, USA
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Wonseok Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Yerim Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Seongyun Choi
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
11
|
Yu B, Bolik-Coulon N, Rangadurai AK, Kay LE, Iwahara J. Gadolinium-Based NMR Spin Relaxation Measurements of Near-Surface Electrostatic Potentials of Biomolecules. J Am Chem Soc 2024; 146:20788-20801. [PMID: 39028837 PMCID: PMC11295196 DOI: 10.1021/jacs.4c04433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/09/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024]
Abstract
NMR spectroscopy is an important tool for the measurement of the electrostatic properties of biomolecules. To this point, paramagnetic relaxation enhancements (PREs) of 1H nuclei arising from nitroxide cosolutes in biomolecular solutions have been used to measure effective near-surface electrostatic potentials (ϕENS) of proteins and nucleic acids. Here, we present a gadolinium (Gd)-based NMR method, exploiting Gd chelates with different net charges, for measuring ϕENS values and demonstrate its utility through applications to a number of biomolecular systems. The use of Gd-based cosolutes offers several advantages over nitroxides for ϕENS measurements. First, unlike nitroxide compounds, Gd chelates enable electrostatic potential measurements on oxidation-sensitive proteins that require reducing agents. Second, the large electron spin quantum number of Gd (7/2) results in notably larger PREs for Gd chelates when used at the same concentrations as nitroxide radicals. Thus, it is possible to measure ϕENS values exclusively from + and - charged compounds even for highly charged biomolecules, avoiding the use of neutral cosolutes that, as we further establish here, limits the accuracy of the measured electrostatic potentials. In addition, the smaller concentrations of cosolutes required minimize potential binding to sites on macromolecules. Fourth, the closer proximity of the paramagnetic center and charged groups within Gd chelates, in comparison to the corresponding nitroxide compounds, enables more accurate predictions of ϕENS potentials for cross-validation of the experimental results. The Gd-based method described here, thus, broadens the applicability of studies of biomolecular electrostatics using solution NMR spectroscopy.
Collapse
Affiliation(s)
- Binhan Yu
- Department
of Biochemistry & Molecular Biology, Sealy Center for Structural
Biology & Molecular Biophysics, University
of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| | - Nicolas Bolik-Coulon
- Department
of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Atul K. Rangadurai
- Department
of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Program
in Molecular Medicine, Hospital for Sick
Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Lewis E. Kay
- Department
of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Program
in Molecular Medicine, Hospital for Sick
Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Junji Iwahara
- Department
of Biochemistry & Molecular Biology, Sealy Center for Structural
Biology & Molecular Biophysics, University
of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| |
Collapse
|
12
|
Rizuan A, Shenoy J, Mohanty P, dos Passos PMS, Mercado Ortiz JF, Bai L, Viswanathan R, Wang SH, Johnson V, Mamede LD, Ayala YM, Ghirlando R, Mittal J, Fawzi NL. Structural details of helix-mediated TDP-43 C-terminal domain multimerization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602258. [PMID: 39005345 PMCID: PMC11245101 DOI: 10.1101/2024.07.05.602258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The primarily disordered C-terminal domain (CTD) of TAR DNA binding protein-43 (TDP-43), a key nuclear protein in RNA metabolism, forms neuronal inclusions in several neurodegenerative diseases. A conserved region (CR, spanning residues 319-341) in CTD forms transient helix-helix contacts important for its higher-order oligomerization and function that are disrupted by ALS-associated mutations. However, the structural details of CR assembly and the explanation for several ALS-associated variants' impact on phase separation and function remain unclear due to challenges in analyzing the dynamic association of TDP-43 CTD using traditional structural biology approaches. By employing an integrative approach, combining biophysical experiments, biochemical assays, AlphaFold2-Multimer (AF2-Multimer), and atomistic simulations, we generated structural models of helical oligomerization of TDP-43 CR. Using NMR, we first established that the native state of TDP-43 CR under physiological conditions is α-helical. Next, alanine scanning mutagenesis revealed that while hydrophobic residues in the CR are important for CR assembly, phase separation and TDP-43 nuclear retention function, polar residues down regulate these processes. Finally, pairing AF2-Multimer modeling with AAMD simulations indicated that dynamic, oligomeric assemblies of TDP-43 that are stabilized by a methionine-rich core with specific contributions from a tryptophan/leucine pair. In conclusion, our results advance the structural understanding of the mechanisms driving TDP-43 function and provide a window into the initial stages of its conversion into pathogenic aggregates.
Collapse
Affiliation(s)
- Azamat Rizuan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Jayakrishna Shenoy
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Patricia M. S. dos Passos
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - José F. Mercado Ortiz
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Leanna Bai
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Renjith Viswanathan
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Szu-Huan Wang
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Victoria Johnson
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Lohany D. Mamede
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Yuna M. Ayala
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
- Department of Chemistry, Texas A&M University, College Station, TX 77843
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX 77843
| | - Nicolas L. Fawzi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| |
Collapse
|
13
|
Sergeyev IV, Fritzsching K, Rogawski R, McDermott A. Resolution in cryogenic solid state NMR: Challenges and solutions. Protein Sci 2024; 33:e4803. [PMID: 37847566 PMCID: PMC11184935 DOI: 10.1002/pro.4803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
NMR at cryogenic temperatures has the potential to provide rich site-specific details regarding biopolymer structure, function, and mechanistic intermediates. Broad spectral lines compared with room temperature NMR can sometimes present practical challenges. A number of hypotheses regarding the origins of line broadening are explored. One frequently considered explanation is the presence of inhomogeneous conformational distributions. Possibly these arise when the facile characteristic motions that occur near room temperature become dramatically slower or "frozen out" at temperatures below the solvent phase change. Recent studies of low temperature spectra harness the distributions in properties in these low temperature spectra to uncover information regarding the conformational ensembles that drive biological function.
Collapse
Affiliation(s)
| | | | - Rivkah Rogawski
- Columbia University, Department of ChemistryNew YorkNew YorkUSA
| | - Ann McDermott
- Columbia University, Department of ChemistryNew YorkNew YorkUSA
| |
Collapse
|
14
|
Mitra R, Usher ET, Dedeoğlu S, Crotteau MJ, Fraser OA, Yennawar NH, Gadkari VV, Ruotolo BT, Holehouse AS, Salmon L, Showalter SA, Bardwell JCA. Molecular insights into the interaction between a disordered protein and a folded RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598678. [PMID: 38915483 PMCID: PMC11195163 DOI: 10.1101/2024.06.12.598678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Intrinsically disordered protein regions (IDRs) are well-established as contributors to intermolecular interactions and the formation of biomolecular condensates. In particular, RNA-binding proteins (RBPs) often harbor IDRs in addition to folded RNA-binding domains that contribute to RBP function. To understand the dynamic interactions of an IDR-RNA complex, we characterized the RNA-binding features of a small (68 residues), positively charged IDR-containing protein, SERF. At high concentrations, SERF and RNA undergo charge-driven associative phase separation to form a protein- and RNA-rich dense phase. A key advantage of this model system is that this threshold for demixing is sufficiently high that we could use solution-state biophysical methods to interrogate the stoichiometric complexes of SERF with RNA in the one-phase regime. Herein, we describe our comprehensive characterization of SERF alone and in complex with a small fragment of the HIV-1 TAR RNA (TAR) with complementary biophysical methods and molecular simulations. We find that this binding event is not accompanied by the acquisition of structure by either molecule; however, we see evidence for a modest global compaction of the SERF ensemble when bound to RNA. This behavior likely reflects attenuated charge repulsion within SERF via binding to the polyanionic RNA and provides a rationale for the higher-order assembly of SERF in the context of RNA. We envision that the SERF-RNA system will lower the barrier to accessing the details that support IDR-RNA interactions and likewise deepen our understanding of the role of IDR-RNA contacts in complex formation and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Rishav Mitra
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Selin Dedeoğlu
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, (CRMN), UMR 5082, CNRS, ENS Lyon, UCBL, Université de Lyon, 69100 Villeurbanne, France
| | - Matthew J. Crotteau
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olivia A. Fraser
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Loïc Salmon
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, (CRMN), UMR 5082, CNRS, ENS Lyon, UCBL, Université de Lyon, 69100 Villeurbanne, France
| | - Scott A. Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - James C. A. Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Dong X, Yu L, Zhang Q, Yang J, Gong Z, Niu X, Li H, Zhang X, Liu M, Jin C, Hu Y. Structural basis for the regulation of plant transcription factor WRKY33 by the VQ protein SIB1. Commun Biol 2024; 7:561. [PMID: 38734744 PMCID: PMC11088704 DOI: 10.1038/s42003-024-06258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The WRKY transcription factors play essential roles in a variety of plant signaling pathways associated with biotic and abiotic stress response. The transcriptional activity of many WRKY members are regulated by a class of intrinsically disordered VQ proteins. While it is known that VQ proteins interact with the WRKY DNA-binding domains (DBDs), also termed as the WRKY domains, structural information regarding VQ-WRKY interaction is lacking and the regulation mechanism remains unknown. Herein we report a solution NMR study of the interaction between Arabidopsis WRKY33 and its regulatory VQ protein partner SIB1. We uncover a SIB1 minimal sequence neccessary for forming a stable complex with WRKY33 DBD, which comprises not only the consensus "FxxhVQxhTG" VQ motif but also its preceding region. We demonstrate that the βN-strand and the extended βN-β1 loop of WRKY33 DBD form the SIB1 docking site, and build a structural model of the complex based on the NMR paramagnetic relaxation enhancement and mutagenesis data. Based on this model, we further identify a cluster of positively-charged residues in the N-terminal region of SIB1 to be essential for the formation of a SIB1-WRKY33-DNA ternary complex. These results provide a framework for the mechanism of SIB1-enhanced WRKY33 transcriptional activity.
Collapse
Affiliation(s)
- Xu Dong
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lulu Yu
- College of Life Sciences, Peking University, Beijing, 100871, China
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
| | - Qiang Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ju Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhou Gong
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
- College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
- College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changwen Jin
- College of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China.
- College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China.
| | - Yunfei Hu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Bashir S, Aiman A, Chaudhary AA, Khan N, Ahanger IA, Sami N, Almugri EA, Ali MA, Khan SUD, Shahid M, Basir SF, Hassan MI, Islam A. Probing protein aggregation through spectroscopic insights and multimodal approaches: A comprehensive review for counteracting neurodegenerative disorders. Heliyon 2024; 10:e27949. [PMID: 38689955 PMCID: PMC11059433 DOI: 10.1016/j.heliyon.2024.e27949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Aberrant accumulation of protein misfolding can cause aggregation and fibrillation and is one of the primary characteristic features of neurodegenerative diseases. Because they are disordered, misfolded, and aggregated proteins pose a significant setback in drug designing. The structural study of intermediate steps in these kinds of aggregated proteins will allow us to determine the conformational changes as well as the probable pathways encompassing various neurodegenerative disorders. The analysis of protein aggregates involved in neurodegenerative diseases relies on a diverse toolkit of biophysical techniques, encompassing both morphological and non-morphological methods. Additionally, Thioflavin T (ThT) assays and Circular Dichroism (CD) spectroscopy facilitate investigations into aggregation kinetics and secondary structure alterations. The collective application of these biophysical techniques empowers researchers to comprehensively unravel the intricate nature of protein aggregates associated with neurodegeneration. Furthermore, the topics covered in this review have summed up a handful of well-established techniques used for the structural analysis of protein aggregation. This multifaceted approach advances our fundamental understanding of the underlying mechanisms driving neurodegenerative diseases and informs potential therapeutic strategies.
Collapse
Affiliation(s)
- Sania Bashir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ayesha Aiman
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Nashrah Khan
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ishfaq Ahmad Ahanger
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Neha Sami
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Eman Abdullah Almugri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohamed A.M. Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic Universi-ty (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, AlKharj, 11942, Saudi Arabia
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| |
Collapse
|
17
|
Maiti S, Singh A, Maji T, Saibo NV, De S. Experimental methods to study the structure and dynamics of intrinsically disordered regions in proteins. Curr Res Struct Biol 2024; 7:100138. [PMID: 38707546 PMCID: PMC11068507 DOI: 10.1016/j.crstbi.2024.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/07/2024] Open
Abstract
Eukaryotic proteins often feature long stretches of amino acids that lack a well-defined three-dimensional structure and are referred to as intrinsically disordered proteins (IDPs) or regions (IDRs). Although these proteins challenge conventional structure-function paradigms, they play vital roles in cellular processes. Recent progress in experimental techniques, such as NMR spectroscopy, single molecule FRET, high speed AFM and SAXS, have provided valuable insights into the biophysical basis of IDP function. This review discusses the advancements made in these techniques particularly for the study of disordered regions in proteins. In NMR spectroscopy new strategies such as 13C detection, non-uniform sampling, segmental isotope labeling, and rapid data acquisition methods address the challenges posed by spectral overcrowding and low stability of IDPs. The importance of various NMR parameters, including chemical shifts, hydrogen exchange rates, and relaxation measurements, to reveal transient secondary structures within IDRs and IDPs are presented. Given the high flexibility of IDPs, the review outlines NMR methods for assessing their dynamics at both fast (ps-ns) and slow (μs-ms) timescales. IDPs exert their functions through interactions with other molecules such as proteins, DNA, or RNA. NMR-based titration experiments yield insights into the thermodynamics and kinetics of these interactions. Detailed study of IDPs requires multiple experimental techniques, and thus, several methods are described for studying disordered proteins, highlighting their respective advantages and limitations. The potential for integrating these complementary techniques, each offering unique perspectives, is explored to achieve a comprehensive understanding of IDPs.
Collapse
Affiliation(s)
| | - Aakanksha Singh
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Tanisha Maji
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Nikita V. Saibo
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| |
Collapse
|
18
|
Yu B, Iwahara J. Analyzing paramagnetic NMR data on target DNA search by proteins using a discrete-state kinetic model for translocation. Biopolymers 2024; 115:e23553. [PMID: 37254885 PMCID: PMC10687310 DOI: 10.1002/bip.23553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/24/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023]
Abstract
Before reaching their targets, sequence-specific DNA-binding proteins nonspecifically bind to DNA through electrostatic interactions and stochastically change their locations on DNA. Investigations into the dynamics of DNA-scanning by proteins are nontrivial due to the simultaneous presence of multiple translocation mechanisms and many sites for the protein to nonspecifically bind to DNA. Nuclear magnetic resonance (NMR) spectroscopy can provide information about the target DNA search processes at an atomic level. Paramagnetic relaxation enhancement (PRE) is particularly useful to study how the proteins scan DNA in the search process. Previously, relatively simple two-state or three-state exchange models were used to explain PRE data reflecting the target search process. In this work, using more realistic discrete-state stochastic kinetics models embedded into an NMR master equation, we analyzed the PRE data for the HoxD9 homeodomain interacting with DNA. The kinetic models that incorporate sliding, dissociation, association, and intersegment transfer can reproduce the PRE profiles observed at some different ionic strengths. The analysis confirms the previous interpretation of the PRE data and shows that the protein's probability distribution among nonspecific sites is nonuniform during the target DNA search process.
Collapse
Affiliation(s)
- Binhan Yu
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068
| | - Junji Iwahara
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068
| |
Collapse
|
19
|
Lee KY. Membrane-Driven Dimerization of the Peripheral Membrane Protein KRAS: Implications for Downstream Signaling. Int J Mol Sci 2024; 25:2530. [PMID: 38473778 DOI: 10.3390/ijms25052530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Transient homo-dimerization of the RAS GTPase at the plasma membrane has been shown to promote the mitogen-activated protein kinase (MAPK) signaling pathway essential for cell proliferation and oncogenesis. To date, numerous crystallographic studies have focused on the well-defined GTPase domains of RAS isoforms, which lack the disordered C-terminal membrane anchor, thus providing limited structural insight into membrane-bound RAS molecules. Recently, lipid-bilayer nanodisc platforms and paramagnetic relaxation enhancement (PRE) analyses have revealed several distinct structures of the membrane-anchored homodimers of KRAS, an isoform that is most frequently mutated in human cancers. The KRAS dimerization interface is highly plastic and altered by biologically relevant conditions, including oncogenic mutations, the nucleotide states of the protein, and the lipid composition. Notably, PRE-derived structures of KRAS homodimers on the membrane substantially differ in terms of the relative orientation of the protomers at an "α-α" dimer interface comprising two α4-α5 regions. This interface plasticity along with the altered orientations of KRAS on the membrane impact the accessibility of KRAS to downstream effectors and regulatory proteins. Further, nanodisc platforms used to drive KRAS dimerization can be used to screen potential anticancer drugs that target membrane-bound RAS dimers and probe their structural mechanism of action.
Collapse
Affiliation(s)
- Ki-Young Lee
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si 11160, Gyeonggi-Do, Republic of Korea
| |
Collapse
|
20
|
Querci L, Grifagni D, Trindade IB, Silva JM, Louro RO, Cantini F, Piccioli M. Paramagnetic NMR to study iron sulfur proteins: 13C detected experiments illuminate the vicinity of the metal center. JOURNAL OF BIOMOLECULAR NMR 2023; 77:247-259. [PMID: 37853207 PMCID: PMC10687126 DOI: 10.1007/s10858-023-00425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
The robustness of NMR coherence transfer in proximity of a paramagnetic center depends on the relaxation properties of the nuclei involved. In the case of Iron-Sulfur Proteins, different pulse schemes or different parameter sets often provide complementary results. Tailored versions of HCACO and CACO experiments significantly increase the number of observed Cα/C' connectivities in highly paramagnetic systems, by recovering many resonances that were lost due to paramagnetic relaxation. Optimized 13C direct detected experiments can significantly extend the available assignments, improving the overall knowledge of these systems. The different relaxation properties of Cα and C' nuclei are exploited in CACO vs COCA experiments and the complementarity of the two experiments is used to obtain structural information. The two [Fe2S2]+ clusters containing NEET protein CISD3 and the one [Fe4S4]2+ cluster containing HiPIP protein PioC have been taken as model systems. We show that tailored experiments contribute to decrease the blind sphere around the cluster, to extend resonance assignment of cluster bound cysteine residues and to retrieve details on the topology of the iron-bound ligand residues.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Deborah Grifagni
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Inês B Trindade
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780-157, Oeiras, Portugal
- Division of Biology and Biological Engineering, California Institute of Technology, CA 91125, Pasadena, USA
| | - José Malanho Silva
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780-157, Oeiras, Portugal
| | - Francesca Cantini
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Mario Piccioli
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
21
|
Kashnik AS, Selyutina OY, Baranov DS, Polyakov NE, Dzuba SA. Localization of the ibuprofen molecule in model lipid membranes revealed by spin-label-enhanced NMR relaxation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184215. [PMID: 37633627 DOI: 10.1016/j.bbamem.2023.184215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) have antipyretic, anti-inflammatory and analgesic effects, and can be used in the treatment of various diseases. These drugs have also a number of side effects, which may be related to their interaction with lipid membranes. In this study, we use the spin-labeled NSAID ibuprofen (ibuprofen-SL) as a relaxation enhancer to study its interaction with model lipid membranes employing liquid-state 1H NMR at 500 MHz. The high magnetic moment of unpaired electron in the spin label made it possible to reduce the concentration of the studied drug in the membrane to tenths of a mole percent. As model membranes, unilamellar POPC liposomes and bicelles consisting of a 2:1 mixture of DHPC:DMPC or DHPC:POPC lipids were used. An increase in the rate of proton spin-lattice relaxation, T1-1, selectively detected for protons at different positions in the lipid molecule, showed that ibuprofen-SL is localized in the hydrophobic part of the lipid bilayer. As the concentration of ibuprofen-SL increases to 0.5 mol%, the distribution of positions of ibuprofen-SL across the bilayer becomes wider. In the presence of 20 mol% of cholesterol, ibuprofen-SL is displaced from the core of the membrane to a region closer to the head group of the bilayer. This displacement was also confirmed by the NMR NOESY experiment conducted with unlabeled ibuprofen. For bilayers containing unsaturated POPC lipids, the distribution of ibuprofen positions across the bilayer becomes narrower compared to the presence of saturated DMPC lipids.
Collapse
Affiliation(s)
- Anna S Kashnik
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga Yu Selyutina
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Denis S Baranov
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nikolay E Polyakov
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
22
|
Cucuzza S, Sitnik M, Jurt S, Michel E, Dai W, Müntener T, Ernst P, Häussinger D, Plückthun A, Zerbe O. Unexpected dynamics in femtomolar complexes of binding proteins with peptides. Nat Commun 2023; 14:7823. [PMID: 38016954 PMCID: PMC10684580 DOI: 10.1038/s41467-023-43596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
Ultra-tight binding is usually observed for proteins associating with rigidified molecules. Previously, we demonstrated that femtomolar binders derived from the Armadillo repeat proteins (ArmRPs) can be designed to interact very tightly with fully flexible peptides. Here we show for ArmRPs with four and seven sequence-identical internal repeats that the peptide-ArmRP complexes display conformational dynamics. These dynamics stem from transient breakages of individual protein-residue contacts that are unrelated to overall unbinding. The labile contacts involve electrostatic interactions. We speculate that these dynamics allow attaining very high binding affinities, since they reduce entropic losses. Importantly, only NMR techniques can pick up these local events by directly detecting conformational exchange processes without complications from changes in solvent entropy. Furthermore, we demonstrate that the interaction surface of the repeat protein regularizes upon peptide binding to become more compatible with the peptide geometry. These results provide novel design principles for ultra-tight binders.
Collapse
Affiliation(s)
- Stefano Cucuzza
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Malgorzata Sitnik
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Simon Jurt
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Erich Michel
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
- Department of Biochemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Wenzhao Dai
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Thomas Müntener
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Patrick Ernst
- Department of Biochemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland.
| | - Oliver Zerbe
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland.
| |
Collapse
|
23
|
Morris DL, Nyenhuis DA, Dean DN, Strub MP, Tjandra N. Observation of pH-Dependent Residual Structure in the Pmel17 Repeat Domain and the Implication for Its Amyloid Formation. Biochemistry 2023; 62:3222-3233. [PMID: 37917797 DOI: 10.1021/acs.biochem.3c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The varying conformational states of amyloid-forming protein monomers can determine their fibrillation outcome. In this study, we utilize solution NMR and the paramagnetic relaxation enhancement (PRE) effect to observe monomer properties of the repeat domain (RPT) from a human functional amyloid, premelanosomal protein, Pmel17. After excision from the full-length protein, RPT can self-assemble into amyloid fibrils, functioning as a scaffold for melanin deposition. Here, we report possible conformational states of the short RPT (sRPT) isoform, which has been demonstrated to be a fibrillation nucleator. NMR experiments were performed to determine conformational differences in sRPT by comparing aggregation-prone vs nonaggregating solution conditions. We observed significant chemical shift perturbations localized to residues near the C-terminus, demonstrating that the local chemical environment of the amyloid core region is highly sensitive to changes in pH. Next, we introduced cysteine point mutations for the covalent attachment of PRE ligands to sRPT to facilitate the observation of intramolecular interactions. We also utilized solvent PRE molecules with opposing charges to measure changes in the electrostatic potential of sRPT in different pH environments. These observed PRE effects offer insight into initial molecular events that might promote intermolecular interactions, which can trigger fibrillation. Taken together, our results show that sRPT monomers adopt a conformation inconsistent with a fully random coil at neutral pH and undergo conformational changes at lower pH values. These observations highlight regulatory mechanisms via organelle-associated pH conditions that can affect the fibrillation activity of proteins like RPT.
Collapse
Affiliation(s)
- Daniel L Morris
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - David A Nyenhuis
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Dexter N Dean
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Marie-Paule Strub
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20814, United States
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20814, United States
| |
Collapse
|
24
|
Mali A, Verbeelen M, White PB, Staal AHJ, van Riessen NK, Cadiou C, Chuburu F, Koshkina O, Srinivas M. The internal structure of gadolinium and perfluorocarbon-loaded polymer nanoparticles affects 19F MRI relaxation times. NANOSCALE 2023; 15:18068-18079. [PMID: 37916411 DOI: 10.1039/d3nr04577c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
19F magnetic resonance imaging (19F MRI) is an emerging technique for quantitative imaging in novel therapies, such as cellular therapies and theranostic nanocarriers. Nanocarriers loaded with liquid perfluorocarbon (PFC) typically have a (single) core-shell structure with PFC in the core due to the poor miscibility of PFC with organic and inorganic solvents. Paramagnetic relaxation enhancement acts only at a distance of a few angstroms. Thus, efficient modulation of the 19F signal is possible only with fluorophilic PFC-soluble chelates. However, these chelates cannot interact with the surrounding environment and they might result in image artifacts. Conversely, chelates bound to the nanoparticle shell typically have a minimal effect on the 19F signal and a strong impact on the aqueous environment. We show that the confinement of PFC in biodegradable polymeric nanoparticles (NPs) with a multicore structure enables the modulation of longitudinal (T1) and transverse (T2) 19F relaxation, as well as proton (1H) signals, using non-fluorophilic paramagnetic chelates. We compared multicore NPs versus a conventional single core structure, where the PFC is encapsulated in the core(s) and the chelate in the surrounding polymeric matrix. This modulated relaxation also makes multicore NPs sensitive to various acidic pH environments, while preserving their stability. This effect was not observed with single core nanocapsules (NCs). Importantly, paramagnetic chelates affected both T1 and T219F relaxation in multicore NPs, but not in single core NCs. Both relaxation times of the 19F nucleus were enhanced with an increasing concentration of the paramagnetic chelate. Moreover, as the polymeric matrix remained water permeable, proton enhancement additionally was observed in MRI.
Collapse
Affiliation(s)
- Alvja Mali
- Department of Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands.
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Margot Verbeelen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul B White
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Alexander H J Staal
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N Koen van Riessen
- Department of Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands.
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cyril Cadiou
- Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, Reims, France
| | - Françoise Chuburu
- Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, Reims, France
| | - Olga Koshkina
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, Mesa+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Mangala Srinivas
- Department of Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands.
- Cenya Imaging B.V., Amsterdam, The Netherlands
| |
Collapse
|
25
|
Dulchavsky M, Mitra R, Wu K, Li J, Boer K, Liu X, Zhang Z, Vasquez C, Clark CT, Funckes K, Shankar K, Bonnet-Zahedi S, Siddiq M, Sepulveda Y, Suhandynata RT, Momper JD, Calabrese AN, George O, Stull F, Bardwell JCA. Directed evolution unlocks oxygen reactivity for a nicotine-degrading flavoenzyme. Nat Chem Biol 2023; 19:1406-1414. [PMID: 37770699 PMCID: PMC10611581 DOI: 10.1038/s41589-023-01426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
The flavoenzyme nicotine oxidoreductase (NicA2) is a promising injectable treatment to aid in the cessation of smoking, a behavior responsible for one in ten deaths worldwide. NicA2 acts by degrading nicotine in the bloodstream before it reaches the brain. Clinical use of NicA2 is limited by its poor catalytic activity in the absence of its natural electron acceptor CycN. Without CycN, NicA2 is instead oxidized slowly by dioxygen (O2), necessitating unfeasibly large doses in a therapeutic setting. Here, we report a genetic selection strategy that directly links CycN-independent activity of NicA2 to growth of Pseudomonas putida S16. This selection enabled us to evolve NicA2 variants with substantial improvement in their rate of oxidation by O2. The encoded mutations cluster around a putative O2 tunnel, increasing flexibility and accessibility to O2 in this region. These mutations further confer desirable clinical properties. A variant form of NicA2 is tenfold more effective than the wild type at degrading nicotine in the bloodstream of rats.
Collapse
Affiliation(s)
- Mark Dulchavsky
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Rishav Mitra
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Kevin Wu
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua Li
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Karli Boer
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - Xiaomeng Liu
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zhiyao Zhang
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - Cristian Vasquez
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | | | - Kaitrin Funckes
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - Kokila Shankar
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Selene Bonnet-Zahedi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Mohammad Siddiq
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yadira Sepulveda
- School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA, USA
| | - Raymond T Suhandynata
- School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA, USA
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Jeremiah D Momper
- School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA, USA
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, S chool of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Olivier George
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Frederick Stull
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - James C A Bardwell
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Chen R, Song Y, Wang Z, Ji H, Du Z, Ma Q, Yang Y, Liu X, Li N, Sun Y. Developments in small-angle X-ray scattering (SAXS) for characterizing the structure of surfactant-macromolecule interactions and their complex. Int J Biol Macromol 2023; 251:126288. [PMID: 37582436 DOI: 10.1016/j.ijbiomac.2023.126288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
The surfactant-macromolecule interactions (SMI) are one of the most critical topics for scientific research and industrial application. Small-angle X-ray scattering (SAXS) is a powerful tool for comprehensively studying the structural and conformational features of macromolecules at a size ranging from Angstroms to hundreds of nanometers with a time-resolve in milliseconds scale. The SAXS integrative techniques have emerged for comprehensively analyzing the SMI and the structure of their complex in solution. Here, the various types of emerging interactions of surfactant with macromolecules, such as protein, lipid, nuclear acid, polysaccharide and virus, etc. have been systematically reviewed. Additionally, the principle of SAXS and theoretical models of SAXS for describing the structure of SMI as well as their complex has been summarized. Moreover, the recent developments in the applications of SAXS for charactering the structure of SMI have been also highlighted. Prospectively, the capacity to complement artificial intelligence (AI) in the structure prediction of biological macromolecules and the high-throughput bioinformatics sequencing data make SAXS integrative structural techniques expected to be the primary methodology for illuminating the self-assembling dynamics and nanoscale structure of SMI. As advances in the field continue, we look forward to proliferating uses of SAXS based upon its abilities to robustly produce mechanistic insights for biology and medicine.
Collapse
Affiliation(s)
- Ruixin Chen
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Yang Song
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Zhichun Wang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Hang Ji
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Zhongyao Du
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Qingwen Ma
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Ying Yang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Xingxun Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Na Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, CAS, Shanghai, China.
| | - Yang Sun
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, Yunnan, China.
| |
Collapse
|
27
|
Vedel IM, Papagiannoula A, Naudi-Fabra S, Milles S. Nuclear magnetic resonance/single molecule fluorescence combinations to study dynamic protein systems. Curr Opin Struct Biol 2023; 82:102659. [PMID: 37499445 PMCID: PMC10565672 DOI: 10.1016/j.sbi.2023.102659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/04/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Many proteins require different structural states or conformations for function, and intrinsically disordered proteins, i.e. proteins without stable three-dimensional structure, are certainly an extreme. Single molecule fluorescence and nuclear magnetic resonance (NMR) spectroscopy are both exceptionally well suited to decipher and describe these states and their interconversion. Different time scales, from picoseconds to several milliseconds, can be addressed by both techniques. The length scales probed and the sample requirements (e.g. concentration, molecular weight, sample complexity) are, however, vastly different, making NMR and single molecule fluorescence an excellent combination for integrated studies. Here, we review recently undertaken approaches for the combined use of NMR and single molecule fluorescence to study protein dynamics.
Collapse
Affiliation(s)
- Ida Marie Vedel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Andromachi Papagiannoula
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Samuel Naudi-Fabra
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Sigrid Milles
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
28
|
Iwahara J, Pettitt BM, Yu B. Direct measurements of biomolecular electrostatics through experiments. Curr Opin Struct Biol 2023; 82:102680. [PMID: 37573815 PMCID: PMC10947535 DOI: 10.1016/j.sbi.2023.102680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
Biomolecular electrostatics has been a subject of computational investigations based on 3D structures. This situation is changing because emerging experimental tools allow us to quantitatively investigate biomolecular electrostatics without any use of structure information. Now, electrostatic potentials around biomolecules can directly be measured for many residues simultaneously by nuclear magnetic resonance (NMR) spectroscopy. This NMR method can be used to study electrostatic aspects of various processes, including macromolecular association and liquid-liquid phase separation. Applications to structurally flexible biomolecules such as intrinsically disordered proteins are particularly useful. The new tools also facilitate examination of theoretical models and methods for biomolecular electrostatics.
Collapse
Affiliation(s)
- Junji Iwahara
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - B Montgomery Pettitt
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Binhan Yu
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
29
|
Asanbaeva NB, Novopashina DS, Rogozhnikova OY, Tormyshev VM, Kehl A, Sukhanov AA, Shernyukov AV, Genaev AM, Lomzov AA, Bennati M, Meyer A, Bagryanskaya EG. 19F electron nuclear double resonance (ENDOR) spectroscopy for distance measurements using trityl spin labels in DNA duplexes. Phys Chem Chem Phys 2023; 25:23454-23466. [PMID: 37609874 DOI: 10.1039/d3cp02969g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The combination of fluorine labeling and pulsed electron-nuclear double resonance (ENDOR) is emerging as a powerful technique for obtaining structural information about proteins and nucleic acids. In this work, we explored the capability of Mims 19F ENDOR experiments on reporting intermolecular distances in trityl- and 19F-labeled DNA duplexes at three electron paramagnetic resonance (EPR) frequencies (34, 94, and 263 GHz). For spin labeling, we used the hydrophobic Finland trityl radical and hydrophilic OX063 trityl radical. Fluorine labels were introduced into two positions of a DNA oligonucleotide. The results indicated that hyperfine splittings visible in the ENDOR spectra are consistent with the most populated interspin distances between 19F and the trityl radical predicted from molecular dynamic (MD) simulations. Moreover, for some cases, ENDOR spectral simulations based on MD results were able to reproduce the conformational distribution reflected in the experimental ENDOR line broadening. Additionally, MD simulations provided more detailed information about the melting of terminal base pairs of the oligonucleotides and about the configuration of the trityls relative to a DNA end.
Collapse
Affiliation(s)
- N B Asanbaeva
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| | - D S Novopashina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia
| | - O Yu Rogozhnikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| | - V M Tormyshev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| | - A Kehl
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - A A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, 10/7 Sibirsky Tract, Kazan 420029, Russia
| | - A V Shernyukov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| | - A M Genaev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| | - A A Lomzov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia
| | - M Bennati
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Institute of Physical Chemistry, Department of Chemistry, Georg August University of Göttingen, Tammannstr.6, Göttingen, Germany
| | - A Meyer
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Institute of Physical Chemistry, Department of Chemistry, Georg August University of Göttingen, Tammannstr.6, Göttingen, Germany
| | - E G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| |
Collapse
|
30
|
Warden M, DeRose E, Tamayo J, Mueller G, Gavis E, Hall T. The translational repressor Glorund uses interchangeable RNA recognition domains to recognize Drosophila nanos. Nucleic Acids Res 2023; 51:8836-8849. [PMID: 37427795 PMCID: PMC10484662 DOI: 10.1093/nar/gkad586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023] Open
Abstract
The Drosophila melanogaster protein Glorund (Glo) represses nanos (nos) translation and uses its quasi-RNA recognition motifs (qRRMs) to recognize both G-tract and structured UA-rich motifs within the nos translational control element (TCE). We showed previously that each of the three qRRMs is multifunctional, capable of binding to G-tract and UA-rich motifs, yet if and how the qRRMs combine to recognize the nos TCE remained unclear. Here we determined solution structures of a nos TCEI_III RNA containing the G-tract and UA-rich motifs. The RNA structure demonstrated that a single qRRM is physically incapable of recognizing both RNA elements simultaneously. In vivo experiments further indicated that any two qRRMs are sufficient to repress nos translation. We probed interactions of Glo qRRMs with TCEI_III RNA using NMR paramagnetic relaxation experiments. Our in vitro and in vivo data support a model whereby tandem Glo qRRMs are indeed multifunctional and interchangeable for recognition of TCE G-tract or UA-rich motifs. This study illustrates how multiple RNA recognition modules within an RNA-binding protein may combine to diversify the RNAs that are recognized and regulated.
Collapse
Affiliation(s)
- Meghan S Warden
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Eugene F DeRose
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Joel V Tamayo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
31
|
Zhang Y, Ghosh U, Xie L, Holmes D, Severin KG, Weliky DP. Lipid acyl chain protrusion induced by the influenza virus hemagglutinin fusion peptide detected by NMR paramagnetic relaxation enhancement. Biophys Chem 2023; 299:107028. [PMID: 37247572 PMCID: PMC10330521 DOI: 10.1016/j.bpc.2023.107028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/29/2023] [Accepted: 04/29/2023] [Indexed: 05/31/2023]
Abstract
The glycoprotein spikes of membrane-enveloped viruses include a subunit that catalyzes fusion (joining) of the viral and target cell membranes. For influenza virus, this is subunit 2 of hemagglutinin which has a ∼ 20-residue N-terminal fusion peptide (Fp) region that binds target membrane. An outstanding question is whether there are associated membrane changes important for fusion. Several computational studies have found increased "protrusion" of lipid acyl chains near Fp, i.e. one or more chain carbons are closer to the aqueous region than the headgroup phosphorus. Protrusion may accelerate initial joining of outer leaflets of the two membranes into a stalk intermediate. In this study, higher protrusion probability in membrane with vs. without Fp is convincingly detected by larger Mn2+-associated increases in chain 13C NMR transverse relaxation rates (Γ2's). Data analysis provides a ratio Γ2,neighbor/Γ2,distant for lipids neighboring vs. more distant from the Fp. The calculated ratio depends on the number of Fp-neighboring lipids and the experimentally-derived range of 4 to 24 matches the range of increased protrusion probabilities from different simulations. For samples either with or without Fp, the Γ2 values are well-fitted by an exponential decay as the 13C site moves closer to the chain terminus. The decays correlate with free-energy of protrusion proportional to the number of protruded -CH2 groups, with free energy per -CH2 of ∼0.25 kBT. The NMR data support one major fusion role of the Fp to be much greater protrusion of lipid chains, with highest protrusion probability for chain regions closest to the headgroups.
Collapse
Affiliation(s)
- Yijin Zhang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Ujjayini Ghosh
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Li Xie
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel Holmes
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Kathryn G Severin
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - David P Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
32
|
Heel S, Bartosik K, Juen F, Kreutz C, Micura R, Breuker K. Native Top-Down Mass Spectrometry Uncovers Two Distinct Binding Motifs of a Functional Neomycin-Sensing Riboswitch Aptamer. J Am Chem Soc 2023; 145:15284-15294. [PMID: 37420313 PMCID: PMC10360057 DOI: 10.1021/jacs.3c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 07/09/2023]
Abstract
Understanding how ligands bind to ribonucleic acids (RNA) is important for understanding RNA recognition in biological processes and drug development. Here, we have studied neomycin B binding to neomycin-sensing riboswitch aptamer constructs by native top-down mass spectrometry (MS) using electrospray ionization (ESI) and collisionally activated dissociation (CAD). Our MS data for a 27 nt aptamer construct reveal the binding site and ligand interactions, in excellent agreement with the structure derived from nuclear magnetic resonance (NMR) studies. Strikingly, for an extended 40 nt aptamer construct, which represents the sequence with the highest regulatory factor for riboswitch function, we identified two binding motifs for neomycin B binding, one corresponding to the bulge-loop motif of the 27 nt construct and the other one in the minor groove of the lower stem, which according to the MS data are equally populated. By replacing a noncanonical with a canonical base pair in the lower stem of the 40 nt aptamer, we can reduce binding to the minor groove motif from ∼50 to ∼30%. Conversely, the introduction of a CUG/CUG motif in the lower stem shifts the binding equilibrium in favor of minor groove binding. The MS data reveal site-specific and stoichiometry-resolved information on aminoglycoside binding to RNA that is not directly accessible by other methods and underscore the role of noncanonical base pairs in RNA recognition by aminoglycosides.
Collapse
Affiliation(s)
- Sarah
Viola Heel
- Institute of Organic Chemistry
and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Karolina Bartosik
- Institute of Organic Chemistry
and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Fabian Juen
- Institute of Organic Chemistry
and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry
and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry
and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry
and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
33
|
Vu DD, Bonucci A, Brenière M, Cisneros-Aguirre M, Pelupessy P, Wang Z, Carlier L, Bouvignies G, Cortes P, Aggarwal AK, Blackledge M, Gueroui Z, Belle V, Stark JM, Modesti M, Ferrage F. Multivalent interactions of the disordered regions of XLF and XRCC4 foster robust cellular NHEJ and drive the formation of ligation-boosting condensates in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548668. [PMID: 37503201 PMCID: PMC10369993 DOI: 10.1101/2023.07.12.548668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In mammalian cells, DNA double-strand breaks are predominantly repaired by non-homologous end joining (NHEJ). During repair, the Ku70/80 heterodimer (Ku), XRCC4 in complex with DNA Ligase 4 (X4L4), and XLF form a flexible scaffold that holds the broken DNA ends together. Insights into the architectural organization of the NHEJ scaffold and its regulation by the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) have recently been obtained by single-particle cryo-electron microscopy analysis. However, several regions, especially the C-terminal regions (CTRs) of the XRCC4 and XLF scaffolding proteins, have largely remained unresolved in experimental structures, which hampers the understanding of their functions. Here, we used magnetic resonance techniques and biochemical assays to comprehensively characterize the interactions and dynamics of the XRCC4 and XLF CTRs at atomic resolution. We show that the CTRs of XRCC4 and XLF are intrinsically disordered and form a network of multivalent heterotypic and homotypic interactions that promotes robust cellular NHEJ activity. Importantly, we demonstrate that the multivalent interactions of these CTRs led to the formation of XLF and X4L4 condensates in vitro which can recruit relevant effectors and critically stimulate DNA end ligation. Our work highlights the role of disordered regions in the mechanism and dynamics of NHEJ and lays the groundwork for the investigation of NHEJ protein disorder and its associated condensates inside cells with implications in cancer biology, immunology and the development of genome editing strategies.
Collapse
Affiliation(s)
- Duc-Duy Vu
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Alessio Bonucci
- Aix Marseille Univ, CNRS UMR 7281, BIP Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Manon Brenière
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, Marseille, France
| | - Metztli Cisneros-Aguirre
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010 USA
| | - Philippe Pelupessy
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Ziqing Wang
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Ludovic Carlier
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Guillaume Bouvignies
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Patricia Cortes
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, 160 Convent Avenue, New York, NY 10029, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Martin Blackledge
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Zoher Gueroui
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Valérie Belle
- Aix Marseille Univ, CNRS UMR 7281, BIP Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010 USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, Marseille, France
| | - Fabien Ferrage
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| |
Collapse
|
34
|
Wang H, Hu W, Xu T, Yuan Y, Liu D, Wüthrich K. Selective polypeptide ligand binding to the extracellular surface of the transmembrane domains of the class B GPCRs GLP-1R and GCGR. iScience 2023; 26:106918. [PMID: 37332600 PMCID: PMC10276138 DOI: 10.1016/j.isci.2023.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/27/2023] [Accepted: 05/14/2023] [Indexed: 06/20/2023] Open
Abstract
Crystal and cryo-EM structures of the glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR) bound with their peptide ligands have been obtained with full-length constructs, indicating that the extracellular domain (ECD) is indispensable for specific ligand binding. This article complements these data with studies of ligand recognition of the two receptors in solution. Paramagnetic NMR relaxation enhancement measurements using dual labeling with fluorine-19 probes on the receptor and nitroxide spin labels on the peptide ligands provided new insights. The glucagon-like peptide-1 (GLP-1) was found to interact with GLP-1R by selective binding to the extracellular surface. The ligand selectivity toward the extracellular surface of the receptor was preserved in the transmembrane domain (TMD) devoid of the ECD. The dual labeling approach further provided evidence of cross-reactivity of GLP-1R and GCGR with glucagon and GLP-1, respectively, which is of interest in the context of medical treatments using combinations of the two polypeptides.
Collapse
Affiliation(s)
- Huixia Wang
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wanhui Hu
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Tiandan Xu
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ya Yuan
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Dongsheng Liu
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Kurt Wüthrich
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
35
|
Sowiński MP, Gahlawat S, Lund BA, Warnke AL, Hopmann KH, Lovett JE, Haugland MM. Conformational tuning improves the stability of spirocyclic nitroxides with long paramagnetic relaxation times. Commun Chem 2023; 6:111. [PMID: 37277501 DOI: 10.1038/s42004-023-00912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023] Open
Abstract
Nitroxides are widely used as probes and polarization transfer agents in spectroscopy and imaging. These applications require high stability towards reducing biological environments, as well as beneficial relaxation properties. While the latter is provided by spirocyclic groups on the nitroxide scaffold, such systems are not in themselves robust under reducing conditions. In this work, we introduce a strategy for stability enhancement through conformational tuning, where incorporating additional substituents on the nitroxide ring effects a shift towards highly stable closed spirocyclic conformations, as indicated by X-ray crystallography and density functional theory (DFT) calculations. Closed spirocyclohexyl nitroxides exhibit dramatically improved stability towards reduction by ascorbate, while maintaining long relaxation times in electron paramagnetic resonance (EPR) spectroscopy. These findings have important implications for the future design of new nitroxide-based spin labels and imaging agents.
Collapse
Affiliation(s)
- Mateusz P Sowiński
- Department of Chemistry, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Sahil Gahlawat
- Department of Chemistry, UiT The Arctic University of Norway, 9037, Tromsø, Norway
- Hylleraas Center for Quantum Molecular Sciences, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Bjarte A Lund
- Department of Chemistry, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Anna-Luisa Warnke
- Department of Chemistry, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Kathrin H Hopmann
- Department of Chemistry, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Janet E Lovett
- SUPA, School of Physics and Astronomy and BSRC, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK
| | - Marius M Haugland
- Department of Chemistry, UiT The Arctic University of Norway, 9037, Tromsø, Norway.
| |
Collapse
|
36
|
Gu X, Liu D, Yu Y, Wang H, Long D. Quantitative Paramagnetic NMR-Based Analysis of Protein Orientational Dynamics on Membranes: Dissecting the KRas4B-Membrane Interactions. J Am Chem Soc 2023; 145:10295-10303. [PMID: 37116086 DOI: 10.1021/jacs.3c01597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Peripheral membrane proteins can adopt distinct orientations on the surfaces of lipid bilayers that are often short-lived and challenging to characterize by conventional experimental methods. Here we describe a robust approach for mapping protein orientational landscapes through quantitative interpretation of paramagnetic relaxation enhancement (PRE) data arising from membrane mimetics with spin-labeled lipids. Theoretical analysis, followed by experimental verification, reveals insights into the distinct properties of the PRE observables that are generally distorted in the case of stably membrane-anchored proteins. To suppress the artifacts, we demonstrate that undistorted Γ2 values can be obtained via transient membrane anchoring, based on which a computational framework is established for deriving accurate orientational ensembles obeying Boltzmann statistics. Application of the approach to KRas4B, a classical peripheral membrane protein whose orientations are critical for its functions and drug design, reveals four distinct orientational states that are close but not identical to those reported previously. Similar orientations are also found for a truncated KRas4B without the hypervariable region (HVR) that can sample a broader range of orientations, suggesting a confinement role of the HVR geometrically prohibiting severe tilting. Comparison of the KRas4B Γ2 rates measured using nanodiscs containing different types of anionic lipids reveals identical Γ2 patterns for the G-domain but different ones for the HVR, indicating only the latter is able to selectively interact with anionic lipids.
Collapse
Affiliation(s)
- Xue Gu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dan Liu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yongkui Yu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hui Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dong Long
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
37
|
Koehler Leman J, Künze G. Recent Advances in NMR Protein Structure Prediction with ROSETTA. Int J Mol Sci 2023; 24:ijms24097835. [PMID: 37175539 PMCID: PMC10178863 DOI: 10.3390/ijms24097835] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful method for studying the structure and dynamics of proteins in their native state. For high-resolution NMR structure determination, the collection of a rich restraint dataset is necessary. This can be difficult to achieve for proteins with high molecular weight or a complex architecture. Computational modeling techniques can complement sparse NMR datasets (<1 restraint per residue) with additional structural information to elucidate protein structures in these difficult cases. The Rosetta software for protein structure modeling and design is used by structural biologists for structure determination tasks in which limited experimental data is available. This review gives an overview of the computational protocols available in the Rosetta framework for modeling protein structures from NMR data. We explain the computational algorithms used for the integration of different NMR data types in Rosetta. We also highlight new developments, including modeling tools for data from paramagnetic NMR and hydrogen-deuterium exchange, as well as chemical shifts in CS-Rosetta. Furthermore, strategies are discussed to complement and improve structure predictions made by the current state-of-the-art AlphaFold2 program using NMR-guided Rosetta modeling.
Collapse
Affiliation(s)
- Julia Koehler Leman
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Georg Künze
- Institute for Drug Discovery, Medical Faculty, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| |
Collapse
|
38
|
Heng J, Hu Y, Pérez-Hernández G, Inoue A, Zhao J, Ma X, Sun X, Kawakami K, Ikuta T, Ding J, Yang Y, Zhang L, Peng S, Niu X, Li H, Guixà-González R, Jin C, Hildebrand PW, Chen C, Kobilka BK. Function and dynamics of the intrinsically disordered carboxyl terminus of β2 adrenergic receptor. Nat Commun 2023; 14:2005. [PMID: 37037825 PMCID: PMC10085991 DOI: 10.1038/s41467-023-37233-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023] Open
Abstract
Advances in structural biology have provided important mechanistic insights into signaling by the transmembrane core of G-protein coupled receptors (GPCRs); however, much less is known about intrinsically disordered regions such as the carboxyl terminus (CT), which is highly flexible and not visible in GPCR structures. The β2 adrenergic receptor's (β2AR) 71 amino acid CT is a substrate for GPCR kinases and binds β-arrestins to regulate signaling. Here we show that the β2AR CT directly inhibits basal and agonist-stimulated signaling in cell lines lacking β-arrestins. Combining single-molecule fluorescence resonance energy transfer (FRET), NMR spectroscopy, and molecular dynamics simulations, we reveal that the negatively charged β2AR-CT serves as an autoinhibitory factor via interacting with the positively charged cytoplasmic surface of the receptor to limit access to G-proteins. The stability of this interaction is influenced by agonists and allosteric modulators, emphasizing that the CT plays important role in allosterically regulating GPCR activation.
Collapse
Affiliation(s)
- Jie Heng
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yunfei Hu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan, 430071, China
| | - Guillermo Pérez-Hernández
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117, Berlin, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jiawei Zhao
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiuyan Ma
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xiaoou Sun
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Tatsuya Ikuta
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jienv Ding
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yujie Yang
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lujia Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sijia Peng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ramon Guixà-González
- Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232, Villigen, PSI, Switzerland
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peter W Hildebrand
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Medical Physics and Biophysics, University Leipzig, 04107, Leipzig, Germany
- Berlin Institute of Health, 10178, Berlin, Germany
| | - Chunlai Chen
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
39
|
Wohl S, Zheng W. Interpreting Transient Interactions of Intrinsically Disordered Proteins. J Phys Chem B 2023; 127:2395-2406. [PMID: 36917561 PMCID: PMC10038935 DOI: 10.1021/acs.jpcb.3c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The flexible nature of intrinsically disordered proteins (IDPs) gives rise to a conformational ensemble with a diverse set of conformations. The simplest way to describe this ensemble is through a homopolymer model without any specific interactions. However, there has been growing evidence that the conformational properties of IDPs and their relevant functions can be affected by transient interactions between specific and even nonlocal pairs of amino acids. Interpreting these interactions from experimental methods, each of which is most sensitive to a different distance regime referred to as probing length, remains a challenging and unsolved problem. Here, we first show that transient interactions can be realized between short fragments of charged amino acids by generating conformational ensembles using model disordered peptides and coarse-grained simulations. Using these ensembles, we investigate how sensitive different types of experimental measurements are to the presence of transient interactions. We find methods with shorter probing lengths to be more appropriate for detecting these transient interactions, but one experimental method is not sufficient due to the existence of other weak interactions typically seen in IDPs. Finally, we develop an adjusted polymer model with an additional short-distance peak which can robustly reproduce the distance distribution function from two experimental measurements with complementary short and long probing lengths. This new model can suggest whether a homopolymer model is insufficient for describing a specific IDP and meets the challenge of quantitatively identifying specific, transient interactions from a background of nonspecific, weak interactions.
Collapse
Affiliation(s)
- Samuel Wohl
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Wenwei Zheng
- College of Integrative Sciences and Arts, Arizona State University, Mesa, Arizona 85212, United States
| |
Collapse
|
40
|
Fargason T, De Silva NIU, Powell E, Zhang Z, Paul T, Shariq J, Zaharias S, Zhang J. Peptides that Mimic RS repeats modulate phase separation of SRSF1, revealing a reliance on combined stacking and electrostatic interactions. eLife 2023; 12:e84412. [PMID: 36862748 PMCID: PMC10023157 DOI: 10.7554/elife.84412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/01/2023] [Indexed: 03/03/2023] Open
Abstract
Phase separation plays crucial roles in both sustaining cellular function and perpetuating disease states. Despite extensive studies, our understanding of this process is hindered by low solubility of phase-separating proteins. One example of this is found in SR and SR-related proteins. These proteins are characterized by domains rich in arginine and serine (RS domains), which are essential to alternative splicing and in vivo phase separation. However, they are also responsible for a low solubility that has made these proteins difficult to study for decades. Here, we solubilize the founding member of the SR family, SRSF1, by introducing a peptide mimicking RS repeats as a co-solute. We find that this RS-mimic peptide forms interactions similar to those of the protein's RS domain. Both interact with a combination of surface-exposed aromatic residues and acidic residues on SRSF1's RNA Recognition Motifs (RRMs) through electrostatic and cation-pi interactions. Analysis of RRM domains from human SR proteins indicates that these sites are conserved across the protein family. In addition to opening an avenue to previously unavailable proteins, our work provides insight into how SR proteins phase separate and participate in nuclear speckles.
Collapse
Affiliation(s)
- Talia Fargason
- Department of Chemistry, University of Alabama at BirminghamBirminghamUnited States
| | | | - Erin Powell
- Department of Chemistry, University of Alabama at BirminghamBirminghamUnited States
| | - Zihan Zhang
- Department of Chemistry, University of Alabama at BirminghamBirminghamUnited States
| | - Trenton Paul
- Department of Chemistry, University of Alabama at BirminghamBirminghamUnited States
| | - Jamal Shariq
- Department of Chemistry, University of Alabama at BirminghamBirminghamUnited States
| | - Steve Zaharias
- Department of Chemistry, University of Alabama at BirminghamBirminghamUnited States
| | - Jun Zhang
- Department of Chemistry, University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
41
|
Kretsch AM, Gadgil MG, DiCaprio AJ, Barrett SE, Kille BL, Si Y, Zhu L, Mitchell DA. Peptidase Activation by a Leader Peptide-Bound RiPP Recognition Element. Biochemistry 2023; 62:956-967. [PMID: 36734655 PMCID: PMC10126823 DOI: 10.1021/acs.biochem.2c00700] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The RiPP precursor recognition element (RRE) is a conserved domain found in many prokaryotic ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic gene clusters (BGCs). RREs bind with high specificity and affinity to a recognition sequence within the N-terminal leader region of RiPP precursor peptides. Lasso peptide biosynthesis involves an RRE-dependent leader peptidase, which is discretely encoded or fused to the RRE as a di-domain protein. Here we leveraged thousands of predicted BGCs to define the RRE:leader peptidase interaction through evolutionary covariance analysis. Each interacting domain contributes a three-stranded β-sheet to form a hydrophobic β-sandwich-like interface. The bioinformatics-guided predictions were experimentally confirmed using proteins from discrete and fused lasso peptide BGC architectures. Support for the domain-domain interface derived from chemical shift perturbation, paramagnetic relaxation enhancement experiments, and rapid variant activity screening using cell-free biosynthesis. Further validation of selected variants was performed with purified proteins. We developed a p-nitroanilide-based leader peptidase assay to illuminate the role of RRE domains. Our data show that RRE domains play a dual function. RRE domains deliver the precursor peptide to the leader peptidase, and the rate is saturable as expected for a substrate. RRE domains also partially compose the elusive S2 proteolytic pocket that binds the penultimate threonine of lasso leader peptides. Because the RRE domain is required to form the active site, leader peptidase activity is greatly diminished when the RRE domain is supplied at substoichiometric levels. Full proteolytic activation requires RRE engagement with the recognition sequence-containing portion of the leader peptide. Together, our observations define a new mechanism for protease activity regulation.
Collapse
Affiliation(s)
- Ashley M. Kretsch
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Mayuresh G. Gadgil
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Adam J. DiCaprio
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Susanna E. Barrett
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Bryce L. Kille
- Department of Computer Science, Rice University, Houston, Texas, United States of America
| | - Yuanyuan Si
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Lingyang Zhu
- School of Chemical Sciences, NMR Laboratory, University of Illinois, Urbana, Illinois, United States of America
| | - Douglas A. Mitchell
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois, Urbana, Illinois, United States of America
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
42
|
Cai M, Tugarinov V, Chaitanya Chiliveri S, Huang Y, Schwieters CD, Mizuuchi K, Clore GM. Interaction of the bacterial division regulator MinE with lipid bicelles studied by NMR spectroscopy. J Biol Chem 2023; 299:103037. [PMID: 36806683 PMCID: PMC10031476 DOI: 10.1016/j.jbc.2023.103037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
The bacterial MinE and MinD division regulatory proteins form a standing wave enabling MinC, which binds MinD, to inhibit FtsZ polymerization everywhere except at the midcell, thereby assuring correct positioning of the cytokinetic septum and even distribution of contents to daughter cells. The MinE dimer undergoes major structural rearrangements between a resting six-stranded state present in the cytoplasm, a membrane-bound state, and a four-stranded active state bound to MinD on the membrane, but it is unclear which MinE motifs interact with the membrane in these different states. Using NMR, we probe the structure and global dynamics of MinE bound to disc-shaped lipid bicelles. In the bicelle-bound state, helix α1 no longer sits on top of the six-stranded β-sheet, losing any contact with the protein core, but interacts directly with the bicelle surface; the structure of the protein core remains unperturbed and also interacts with the bicelle surface via helix α2. Binding may involve a previously identified excited state of free MinE in which helix α1 is disordered, thereby allowing it to target the membrane surface. Helix α1 and the protein core undergo nanosecond rigid body motions of differing amplitudes in the plane of the bicelle surface. Global dynamics on the sub-millisecond time scale between a ground state and a sparsely populated excited state are also observed and may represent a very early intermediate on the transition path between the resting six-stranded and active four-stranded conformations. In summary, our results provide insights into MinE structural rearrangements important during bacterial cell division.
Collapse
Affiliation(s)
- Mengli Cai
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sai Chaitanya Chiliveri
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ying Huang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles D Schwieters
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kyoshi Mizuuchi
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
43
|
Du G, Zhao L, Zheng Y, Belfetmi A, Cai T, Xu B, Heyninck K, Van Den Heede K, Buyse MA, Fontana P, Bowman M, Lin LL, Wu H, Chou JJ. Autoinhibitory structure of preligand association state implicates a new strategy to attain effective DR5 receptor activation. Cell Res 2023; 33:131-146. [PMID: 36604598 PMCID: PMC9892523 DOI: 10.1038/s41422-022-00755-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/15/2022] [Indexed: 01/07/2023] Open
Abstract
Members of the tumor necrosis factor receptor superfamily (TNFRSF) are important therapeutic targets that can be activated to induce death of cancer cells or stimulate proliferation of immune cells. Although it has long been implicated that these receptors assemble preligand associated states that are required for dominant interference in human disease, such states have so far eluded structural characterization. Here, we find that the ectodomain of death receptor 5 (DR5-ECD), a representative member of TNFRSF, can specifically self-associate when anchored to lipid bilayer, and we report this self-association structure determined by nuclear magnetic resonance (NMR). Unexpectedly, two non-overlapping interaction interfaces are identified that could propagate to higher-order clusters. Structure-guided mutagenesis indicates that the observed preligand association structure is represented on DR5-expressing cells. The DR5 preligand association serves an autoinhibitory role as single-domain antibodies (sdAbs) that partially dissociate the preligand cluster can sensitize the receptor to its ligand TRAIL and even induce substantial receptor signaling in the absence of TRAIL. Unlike most agonistic antibodies that require multivalent binding to aggregate receptors for activation, these agonistic sdAbs are monovalent and act specifically on an oligomeric, autoinhibitory configuration of the receptor. Our data indicate that receptors such as DR5 can form structurally defined preclusters incompatible with signaling and that true agonists should disrupt the preligand cluster while converting it to signaling-productive cluster. This mechanism enhances our understanding of a long-standing question in TNFRSF signaling and suggests a new opportunity for developing agonistic molecules by targeting receptor preligand clustering.
Collapse
Affiliation(s)
- Gang Du
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Linlin Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yumei Zheng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Anissa Belfetmi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Tiantian Cai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Boying Xu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | | | | | | | - Pietro Fontana
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Michael Bowman
- Checkpoint Immunology, Immunology & Inflammation, Sanofi, Cambridge, MA, USA
| | - Lih-Ling Lin
- Checkpoint Immunology, Immunology & Inflammation, Sanofi, Cambridge, MA, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| | - James Jeiwen Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Wernersson S, Birgersson S, Akke M. Cosolvent Dimethyl Sulfoxide Influences Protein-Ligand Binding Kinetics via Solvent Viscosity Effects: Revealing the Success Rate of Complex Formation Following Diffusive Protein-Ligand Encounter. Biochemistry 2023; 62:44-52. [PMID: 36542811 DOI: 10.1021/acs.biochem.2c00507] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein-ligand-exchange kinetics determines the duration of biochemical signals and consequently plays an important role in drug design. Binding studies commonly require solubilization of designed ligands in solvents such as dimethyl sulfoxide (DMSO), resulting in residual amounts of DMSO following titration of solubilized ligands into aqueous protein samples. Therefore, it is critical to establish whether DMSO influences protein-ligand binding. Here, we address the general and indirect effect of DMSO on protein-ligand binding caused by solvent viscosity, which is strongly dependent on the relative concentrations of DMSO and water. As a model system, we studied the binding of a drug-like ligand to the carbohydrate recognition domain of galectin-3 in the presence of variable amounts of DMSO. We used isothermal titration calorimetry to characterize binding thermodynamics and 15N NMR relaxation to monitor kinetics. The binding enthalpy is not affected, but we observe a subtle trend of increasingly unfavorable entropy of binding, and consequently decreased affinity, with increasing DMSO concentration. The increasing concentration of DMSO results in a reduced association rate of binding, while the dissociation rate is less affected. The observed association rate is inversely proportional to the viscosity of the DMSO-water mixture, as expected from theory, but significantly reduced from the diffusion-controlled limit. By comparing the viscosity dependence of the observed association rate with that of the theoretical diffusion-controlled association rate, we estimate the success rate of productive complex formation following an initial encounter of proteins and ligands, showing that only one out of several hundred binding "attempts" are successful.
Collapse
Affiliation(s)
- Sven Wernersson
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00Lund, Sweden
| | - Simon Birgersson
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00Lund, Sweden
| | - Mikael Akke
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00Lund, Sweden
| |
Collapse
|
45
|
Jaczynska K, Esquivies L, Pfuetzner RA, Alten B, Brewer KD, Zhou Q, Kavalali ET, Brunger AT, Rizo J. Analysis of tripartite Synaptotagmin-1-SNARE-complexin-1 complexes in solution. FEBS Open Bio 2023; 13:26-50. [PMID: 36305864 PMCID: PMC9811660 DOI: 10.1002/2211-5463.13503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 01/07/2023] Open
Abstract
Characterizing interactions of Synaptotagmin-1 with the SNARE complex is crucial to understand the mechanism of neurotransmitter release. X-ray crystallography revealed how the Synaptotagmin-1 C2 B domain binds to the SNARE complex through a so-called primary interface and to a complexin-1-SNARE complex through a so-called tripartite interface. Mutagenesis and electrophysiology supported the functional relevance of both interfaces, and extensive additional data validated the primary interface. However, ITC evidence suggesting that binding via the tripartite interface occurs in solution was called into question by subsequent NMR data. Here, we describe joint efforts to address this apparent contradiction. Using the same ITC approach with the same C2 B domain mutant used previously (C2 BKA-Q ) but including ion exchange chromatography to purify it, which is crucial to remove polyacidic contaminants, we were unable to observe the substantial endothermic ITC signal that was previously attributed to binding of this mutant to the complexin-1-SNARE complex through the tripartite interface. We were also unable to detect substantial populations of the tripartite interface in NMR analyses of the ITC samples or in measurements of paramagnetic relaxation effects, despite the high sensitivity of this method to detect weak protein complexes. However, these experiments do not rule out the possibility of very low affinity (KD > 1 mm) binding through this interface. These results emphasize the need to develop methods to characterize the structure of synaptotagmin-1-SNARE complexes between two membranes and to perform further structure-function analyses to establish the physiological relevance of the tripartite interface.
Collapse
Affiliation(s)
- Klaudia Jaczynska
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Luis Esquivies
- Department of Molecular and Cellular PhysiologyStanford UniversityCAUSA
- Department of Neurology and Neurological SciencesStanford UniversityCAUSA
- Department of Structural BiologyStanford UniversityCAUSA
- Department of Photon ScienceStanford UniversityCAUSA
- Howard Hughes Medical InstituteStanford UniversityCAUSA
| | - Richard A. Pfuetzner
- Department of Molecular and Cellular PhysiologyStanford UniversityCAUSA
- Department of Neurology and Neurological SciencesStanford UniversityCAUSA
- Department of Structural BiologyStanford UniversityCAUSA
- Department of Photon ScienceStanford UniversityCAUSA
- Howard Hughes Medical InstituteStanford UniversityCAUSA
| | - Baris Alten
- Department of PharmacologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTNUSA
- Present address:
Department of NeurologyMassachusetts General HospitalBostonMAUSA
- Present address:
Department of NeurologyBrigham and Women's HospitalBostonMAUSA
- Present address:
Harvard Medical SchoolBostonMAUSA
| | - Kyle D. Brewer
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Present address:
ETTA BiotechnologyPalo AltoCAUSA
| | - Qiangjun Zhou
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
| | - Ege T. Kavalali
- Department of PharmacologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTNUSA
| | - Axel T. Brunger
- Department of Molecular and Cellular PhysiologyStanford UniversityCAUSA
- Department of Neurology and Neurological SciencesStanford UniversityCAUSA
- Department of Structural BiologyStanford UniversityCAUSA
- Department of Photon ScienceStanford UniversityCAUSA
- Howard Hughes Medical InstituteStanford UniversityCAUSA
| | - Josep Rizo
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
46
|
Tibble RW, Gross JD. A call to order: Examining structured domains in biomolecular condensates. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 346:107318. [PMID: 36657879 PMCID: PMC10878105 DOI: 10.1016/j.jmr.2022.107318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/20/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
Diverse cellular processes have been observed or predicted to occur in biomolecular condensates, which are comprised of proteins and nucleic acids that undergo liquid-liquid phase separation (LLPS). Protein-driven LLPS often involves weak, multivalent interactions between intrinsically disordered regions (IDRs). Due to their inherent lack of defined tertiary structures, NMR has been a powerful resource for studying the behavior and interactions of IDRs in condensates. While IDRs in proteins are necessary for phase separation, core proteins enriched in condensates often contain structured domains that are essential for their function and contribute to phase separation. How phase separation can affect the structure and conformational dynamics of structured domains is critical for understanding how biochemical reactions can be effectively regulated in cellular condensates. In this perspective, we discuss the consequences phase separation can have on structured domains and outline NMR observables we believe are useful for assessing protein structure and dynamics in condensates.
Collapse
Affiliation(s)
- Ryan W Tibble
- Program in Chemistry and Chemical Biology, University of California, San Francisco, United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, United States
| | - John D Gross
- Program in Chemistry and Chemical Biology, University of California, San Francisco, United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, United States.
| |
Collapse
|
47
|
Viennet T, Rodriguez Ospina S, Lu Y, Cui A, Arthanari H, Dempsey DR. Chemical and structural approaches to investigate PTEN function and regulation. Methods Enzymol 2022; 682:289-318. [PMID: 36948705 PMCID: PMC10037535 DOI: 10.1016/bs.mie.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Phosphatase and tensin homolog is a lipid phosphatase that serves as the major negative regulator of the PI3K/AKT pathway. It catalyzes the 3'-specific dephosphorylation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) to generate PIP2. PTEN's lipid phosphatase function depends on several domains, including an N-terminal segment spanning the first 24 amino acids, which results in a catalytically impaired enzyme when mutated. Furthermore, PTEN is regulated by a cluster of phosphorylation sites located on its C-terminal tail at Ser380, Thr382, Thr383, and Ser385, which drives its conformation from an open to a closed autoinhibited but stable state. Herein, we discuss the protein chemical strategies we used to reveal the structure and mechanism of how PTEN's terminal regions govern its function.
Collapse
Affiliation(s)
- Thibault Viennet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Santiago Rodriguez Ospina
- Department of Dermatology, Boston University School of Medicine, Boston, MA, United States; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Yunqi Lu
- Department of Dermatology, Boston University School of Medicine, Boston, MA, United States; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Anna Cui
- Department of Dermatology, Boston University School of Medicine, Boston, MA, United States; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Daniel R Dempsey
- Department of Dermatology, Boston University School of Medicine, Boston, MA, United States; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States.
| |
Collapse
|
48
|
Studying Peptide-Metal Ion Complex Structures by Solution-State NMR. Int J Mol Sci 2022; 23:ijms232415957. [PMID: 36555599 PMCID: PMC9782655 DOI: 10.3390/ijms232415957] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Metal chelation can provide structural stability and form reactive centers in metalloproteins. Approximately one third of known protein structures are metalloproteins, and metal binding, or the lack thereof, is often implicated in disease, making it necessary to be able to study these systems in detail. Peptide-metal complexes are both present in nature and can provide a means to focus on the binding region of a protein and control experimental variables to a high degree. Structural studies of peptide complexes with metal ions by nuclear magnetic resonance (NMR) were surveyed for all the essential metal complexes and many non-essential metal complexes. The various methods used to study each metal ion are presented together with examples of recent research. Many of these metal systems have been individually reviewed and this current overview of NMR studies of metallopeptide complexes aims to provide a basis for inspiration from structural studies and methodology applied in the field.
Collapse
|
49
|
Treviño MÁ, López-Sánchez R, Moya MR, Pantoja-Uceda D, Mompeán M, Laurents DV. Insight into polyproline II helical bundle stability in an antifreeze protein denatured state. Biophys J 2022; 121:4560-4568. [PMID: 36815707 PMCID: PMC9748357 DOI: 10.1016/j.bpj.2022.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022] Open
Abstract
The use of polyproline II (PPII) helices in protein design is currently hindered by limitations in our understanding of their conformational stability and folding. Recent studies of the snow flea antifreeze protein (sfAFP), a useful model system composed of six PPII helices, suggested that a low denatured state entropy contributes to folding thermodynamics. Here, circular dichroism spectroscopy revealed minor populations of PPII like conformers at low temperature. To get atomic level information on the conformational ensemble and entropy of the reduced, denatured state of sfAFP, we have analyzed its chemical shifts and {1H}-15N relaxation parameters by NMR spectroscopy at four experimental conditions. No significant populations of stable secondary structure were detected. The stiffening of certain N-terminal residues at neutral versus acidic pH and shifted pKa values leads us to suggest that favorable charge-charge interactions could bias the conformational ensemble to favor the formation the C1-C28 disulfide bond during nascent folding, although no evidence for preferred contacts between these positions was detected by paramagnetic relaxation enhancement under denaturing conditions. Despite a high content of flexible glycine residues, the mobility of the sfAFP denatured ensemble is similar for denatured α/β proteins both on fast ps/ns as well as slower μs/ms timescales. These results are in line with a conformational entropy in the denatured ensemble resembling that of typical proteins and suggest that new structures based on PPII helical bundles should be amenable to protein design.
Collapse
|
50
|
The Role of Membrane Affinity and Binding Modes in Alpha-Synuclein Regulation of Vesicle Release and Trafficking. Biomolecules 2022; 12:biom12121816. [PMID: 36551244 PMCID: PMC9775087 DOI: 10.3390/biom12121816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
Alpha-synuclein is a presynaptic protein linked to Parkinson's disease with a poorly characterized physiological role in regulating the synaptic vesicle cycle. Using RBL-2H3 cells as a model system, we earlier reported that wild-type alpha-synuclein can act as both an inhibitor and a potentiator of stimulated exocytosis in a concentration-dependent manner. The inhibitory function is constitutive and depends on membrane binding by the helix-2 region of the lipid-binding domain, while potentiation becomes apparent only at high concentrations. Using structural and functional characterization of conformationally selective mutants via a combination of spectroscopic and cellular assays, we show here that binding affinity for isolated vesicles similar in size to synaptic vesicles is a primary determinant of alpha-synuclein-mediated potentiation of vesicle release. Inhibition of release is sensitive to changes in the region linking the helix-1 and helix-2 regions of the N-terminal lipid-binding domain and may require some degree of coupling between these regions. Potentiation of release likely occurs as a result of alpha-synuclein interactions with undocked vesicles isolated away from the active zone in internal pools. Consistent with this, we observe that alpha-synuclein can disperse vesicles from in vitro clusters organized by condensates of the presynaptic protein synapsin-1.
Collapse
|