1
|
Smitienko O, Feldman T, Shelaev I, Gostev F, Aybush A, Cherepanov D, Nadtochenko V, Ostrovsky M. Reversible Photochromic Reactions of Bacteriorhodopsin from Halobacterium salinarum at Femto- and Picosecond Times. Molecules 2024; 29:4847. [PMID: 39459214 PMCID: PMC11510181 DOI: 10.3390/molecules29204847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The operation of bacteriorhodopsin (BR) from the archaeon Halobacterium salinarum is based on the photochromic reaction of isomerization of the chromophore group (the retinal protonated Schiff base, RPSB) from the all-trans to the 13-cis form. The ultrafast dynamics of the reverse 13-cis → all-trans photoreaction was studied using femtosecond transient absorption spectroscopy in comparison with the forward photoreaction. The forward photoreaction was initiated by photoexcitation of BR by pulse I (540 nm). The reverse photoreaction was initiated by photoexcitation of the product K590 at an early stage of its formation (5 ps) by pulse II (660 nm). The conversion of the excited K590 to the ground state proceeds at times of 0.19, 1.1, and 16 ps with the relative contributions of ~20/60/20, respectively. All these decay channels lead to the formation of the initial state of BR as a product with a quantum yield of ~1. This state is preceded by vibrationally excited intermediates, the relaxation of which occurs in the 16 ps time range. Likely, the heterogeneity of the excited state of K590 is determined by the heterogeneity of its chromophore center. The forward photoreaction includes two components-0.52 and 3.5 ps, with the relative contributions of 91/9, respectively. The reverse photoreaction initiated from K590 proceeds more efficiently in the conical intersection (CI) region but on the whole at a lower rate compared to the forward photoreaction, due to significant heterogeneity of the potential energy surface.
Collapse
Affiliation(s)
- Olga Smitienko
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119334, Russia; (T.F.); (M.O.)
| | - Tatyana Feldman
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119334, Russia; (T.F.); (M.O.)
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia;
| | - Ivan Shelaev
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (I.S.); (F.G.)
- N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119991, Russia
| | - Fedor Gostev
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (I.S.); (F.G.)
- N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119991, Russia
| | - Arseniy Aybush
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (I.S.); (F.G.)
- N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia
| | - Dmitry Cherepanov
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia;
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (I.S.); (F.G.)
- N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119991, Russia
| | - Victor Nadtochenko
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (I.S.); (F.G.)
- N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia
| | - Mikhail Ostrovsky
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin St., 4, Moscow 119334, Russia; (T.F.); (M.O.)
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia;
| |
Collapse
|
2
|
Tu W, Saeed H, Huang WE. Rhodopsin-based light-harvesting system for sustainable synthetic biology. Microb Biotechnol 2024; 17:e14521. [PMID: 38949508 PMCID: PMC11215838 DOI: 10.1111/1751-7915.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
Rhodopsins, a diverse class of light-sensitive proteins found in various life domains, have attracted considerable interest for their potential applications in sustainable synthetic biology. These proteins exhibit remarkable photochemical properties, undergoing conformational changes upon light absorption that drive a variety of biological processes. Exploiting rhodopsin's natural properties could pave the way for creating sustainable and energy-efficient technologies. Rhodopsin-based light-harvesting systems offer innovative solutions to a few key challenges in sustainable engineering, from bioproduction to renewable energy conversion. In this opinion article, we explore the recent advancements and future possibilities of employing rhodopsins for sustainable engineering, underscoring the transformative potential of these biomolecules.
Collapse
Affiliation(s)
- Weiming Tu
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Haris Saeed
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Wei E. Huang
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| |
Collapse
|
3
|
Wang Y, Wang D, Hu X, Zhang S. Ultrafast excited state intramolecular proton transfer and isomerization of long-chain linked Schiff bases. J Chem Phys 2024; 160:244301. [PMID: 38912672 DOI: 10.1063/5.0213557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024] Open
Abstract
The ultrafast proton transfer and the following dynamics for aromatic Schiff bases N,N'-bis(salicylidene)ethylenediamine (salen) and N,N'-bis(salicylidene)-1,4-butylenediamine (salbn) were investigated with experimental and theoretical methods. A dual emission property with a large Stokes shift in salen and salbn indicates that excited state intramolecular proton transfer occurs with photoexcitation. An efficient single proton transfer was confirmed within 200 fs for both molecules. Subsequently, a fast twisted motion of the keto moiety carries cis-keto to a relaxed stable geometry in the S1 state. Following the twisted motion, the phenol ring at keto moiety further rotates to a conical intersection with the ground state and a cis-trans isomerization occurs. The isomerization rate is high, which dominates the competition with the radiative transition, resulting in weak emission intensity. It is confirmed that the length of alkyl chain affects the direction of phenol ring twisting and rotation during the whole subsequent relaxation of excited cis-keto tautomer. Compared with polar solvent acetonitrile, the barrier of isomerization is higher and the hydrogen bond on keto moiety is stronger in nonpolar solvent toluene. It makes fluorescence radiation channels competing with isomerism more likely to occur, contributing to the observed difference of enol/keto emission ratios of salen and salbn in toluene and acetonitrile.
Collapse
Affiliation(s)
- Ye Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Dongdong Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiao Hu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Song Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
4
|
Fujimoto KJ, Tsuzuki YA, Inoue K, Yanai T. Molecular Mechanisms behind Circular Dichroism Spectral Variations between Channelrhodopsin and Heliorhodopsin Dimers. J Phys Chem Lett 2024; 15:5788-5794. [PMID: 38780133 PMCID: PMC11145647 DOI: 10.1021/acs.jpclett.4c00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Channelrhodopsin (ChR) and heliorhodopsin (HeR) are microbial rhodopsins with similar structures but different circular dichroism (CD) spectra: ChR shows biphasic negative and positive bands, whereas HeR shows a single positive band. We explored the physicochemical factors underlying these differences through computational methods. Using the exciton model based on first-principles computations, we obtained the CD spectra of ChR and HeR. The obtained spectra indicate that the protein dimer structures and the quantum mechanical treatment of the retinal chromophore and its interacting amino acids are crucial for accurately reproducing the experimental spectra. Further calculations revealed that the sign of the excitonic coupling was opposite between the ChR and HeR dimers, which was attributed to the contrasting second term of the orientation factor between the two retinal chromophores. These findings demonstrate that slight variations in the intermolecular orientation of the two chromophores can result in significant differences in the CD spectral shape.
Collapse
Affiliation(s)
- Kazuhiro J. Fujimoto
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Yuta A. Tsuzuki
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Keiichi Inoue
- The
Institute for Solid State Physics, The University
of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Takeshi Yanai
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
5
|
Li W, Chen S, Xie S, Lu X, Li Z, Lv Y, Luo D. A light-sensitive protein-based wearable pH biometer. J Mater Chem B 2024; 12:1208-1216. [PMID: 38229580 DOI: 10.1039/d3tb02466k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Bacteriorhodopsin is a biological material with excellent photosensitivity properties. It can directly convert optical signals into electrical signals and is widely used in various biosensors. Here, we present a bR-based wearable pH biometer that can be used to monitor wound infection. The mechanism of the pH-sensitive effect of the bR electrode is explained, which generates a transient photovoltage under light irradiation and a negative photovoltage when the lamp is turned off. Since the photoelectric signal of bR is affected by different pH values, the photovoltage is changed by adjusting the pH value. The ratio (Vn/Vp) of negative photovoltage (Vn) to positive photovoltage (Vp) has a good linear relationship (R2 = 0.9911) in the pH range of 4.0-10.0. In vitro experiments using rats as a model confirmed that this wearable pH biometer can monitor pH changes that occur in wound infection.
Collapse
Affiliation(s)
- Wenxue Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
| | - Siyuan Chen
- Shanghai Pinghe School, Shanghai, 201203, China
| | - Shiwang Xie
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
| | - Xianmao Lu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
| | - Yujia Lv
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
| |
Collapse
|
6
|
Wang Y, Wang D, Zhang S. Proton coupled isomerization in double-hydrogen-bonding-center salicylaldehyde azine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123294. [PMID: 37659245 DOI: 10.1016/j.saa.2023.123294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
The proton transfer dynamics of Schiff bases are of great importance due to the application potential. The excited state intramolecular proton transfer (ESIPT) of photochromic salicylaldehyde azine (SAA) in solutions was investigated by experimental and computational methods. Two distinguished spectral bands are observed in transient absorption spectra upon the photoexcitation with 400 nm. From the delayed stimulated emission signals, the ESIPT process is determined to be within <200 fs. Subsequently, the photoprotonated products undergo the vibrational relaxation with several picoseconds and the following isomerization with tens of picoseconds. These processes are significantly affected by the polarity of the solvents. The longest component with nanosecond scale can be explained to the relaxation to the enol structure. According to our observations, the SAA molecules with symmetric double-hydrogen-bonding-centers undergo single proton transfer rather than double proton transfer and subsequent intramolecular isomerization.
Collapse
Affiliation(s)
- Ye Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dongdong Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Song Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
7
|
Fukazawa H, Okada-Shudo Y. Photosynthetic Protein-Based Retinal Ganglion Cell Receptive Fields for Detecting Edges and Brightness Illusions. NANO LETTERS 2023; 23:10983-10990. [PMID: 38048176 PMCID: PMC10723062 DOI: 10.1021/acs.nanolett.3c03257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Bacteriorhodopsin, isolated from a halophilic bacterium, is a photosynthetic protein with a structure and function similar to those of the visual pigment rhodopsin. A voltaic cell with bacteriorhodopsin sandwiched between two transparent electrodes exhibits a time-differential response akin to that observed in retinal ganglion cells. It is intriguing as a means to emulate excitation and inhibition in the neural response. Here, we present a neuromorphic device emulating the retinal ganglion cell receptive field fabricated by patterning bacteriorhodopsin onto two transparent electrodes and encapsulating them with an electrolyte solution. This protein-based artificial ganglion cell receptive field is characterized as a bandpass filter that simultaneously replicates excitatory and inhibitory responses within a single element, successfully detecting image edges and phenomena of brightness illusions. The device naturally emulates the highly interacting ganglion cell receptive fields by exploiting the inherent properties of proteins without the need for electronic components, bias power supply, or an external operating circuit.
Collapse
Affiliation(s)
- Hikaru Fukazawa
- Department of Engineering Science, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Yoshiko Okada-Shudo
- Department of Engineering Science, The University of Electro-Communications, Tokyo 182-8585, Japan
| |
Collapse
|
8
|
Chen HM, Tsai YH, Hsu CY, Wang YY, Hsieh CE, Chen JH, Chang YS, Lin CY. Peptide-Coated Bacteriorhodopsin-Based Photoelectric Biosensor for Detecting Rheumatoid Arthritis. BIOSENSORS 2023; 13:929. [PMID: 37887122 PMCID: PMC10605345 DOI: 10.3390/bios13100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
An effective early diagnosis is important for rheumatoid arthritis (RA) management. This study reveals a novel RA detection method using bacteriorhodopsin as a photoelectric transducer, a light-driven proton pump in purple membranes (PMs). It was devised by covalently conjugating a PM monolayer-coated electrode with a citrullinated-inter-alpha-trypsin inhibitor heavy chain 3 (ITIH3)542-556 peptide that recognizes the serum RA-associated autoantibodies. The direct serum coating decreased the photocurrents in the biosensor, with the reduction in the photocurrent caused by coating with an RA-patient serum that is significantly larger than that with a healthy-control serum (38.1% vs. 20.2%). The difference in the reduction in the photocurrent between those two serum groups widened after the serum-coated biosensor was further labeled with gold nanoparticle (AuNP)-conjugated anti-IgA (anti-IgA-AuNP) (53.6% vs. 30.6%). Both atomic force microscopic (AFM) and Raman analyses confirmed the sequential peptide, serum, and anti-IgA-AuNP coatings on the PM-coated substrates. The reductions in the photocurrent measured in both the serum and anti-IgA-AuNPs coating steps correlated well with the results using commercial enzyme-linked immunosorbent assay kits (Spearman rho = 0.805 and 0.787, respectively), with both a sensitivity and specificity close to 100% in both steps. It was shown that an RA diagnosis can be performed in either a single- or two-step mode using the developed biosensor.
Collapse
Affiliation(s)
- Hsiu-Mei Chen
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (H.-M.C.); (Y.-Y.W.); (C.-E.H.)
| | - Yi-Hsuan Tsai
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
| | - Chien-Yi Hsu
- Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Yong-Yi Wang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (H.-M.C.); (Y.-Y.W.); (C.-E.H.)
| | - Cheng-En Hsieh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (H.-M.C.); (Y.-Y.W.); (C.-E.H.)
| | - Jin-Hua Chen
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 11031, Taiwan;
- Office of Data Science, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Yu Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
9
|
Ostrovsky MA, Smitienko OA, Bochenkova AV, Feldman TB. Similarities and Differences in Photochemistry of Type I and Type II Rhodopsins. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1528-1543. [PMID: 38105022 DOI: 10.1134/s0006297923100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/20/2023] [Accepted: 08/12/2023] [Indexed: 12/19/2023]
Abstract
The diversity of the retinal-containing proteins (rhodopsins) in nature is extremely large. Fundamental similarity of the structure and photochemical properties unites them into one family. However, there is still a debate about the origin of retinal-containing proteins: divergent or convergent evolution? In this review, based on the results of our own and literature data, a comparative analysis of the similarities and differences in the photoconversion of the rhodopsin of types I and II is carried out. The results of experimental studies of the forward and reverse photoreactions of the bacteriorhodopsin (type I) and visual rhodopsin (type II) rhodopsins in the femto- and picosecond time scale, photo-reversible reaction of the octopus rhodopsin (type II), photovoltaic reactions, as well as quantum chemical calculations of the forward photoreactions of bacteriorhodopsin and visual rhodopsin are presented. The issue of probable convergent evolution of type I and type II rhodopsins is discussed.
Collapse
Affiliation(s)
- Mikhail A Ostrovsky
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Emanuel Institute of Biochemical Physics, Moscow, 119334, Russia
| | - Olga A Smitienko
- Emanuel Institute of Biochemical Physics, Moscow, 119334, Russia
| | | | - Tatiana B Feldman
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Emanuel Institute of Biochemical Physics, Moscow, 119334, Russia
| |
Collapse
|
10
|
Chen HM, Wang WC, Chen HR. Small-Molecule Analysis Based on DNA Strand Displacement Using a Bacteriorhodopsin Photoelectric Transducer: Taking ATP as an Example. SENSORS (BASEL, SWITZERLAND) 2023; 23:7453. [PMID: 37687909 PMCID: PMC10490725 DOI: 10.3390/s23177453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
A uniformly oriented purple membrane (PM) monolayer containing photoactive bacteriorhodopsin has recently been applied as a sensitive photoelectric transducer to assay color proteins and microbes quantitatively. This study extends its application to detecting small molecules, using adenosine triphosphate (ATP) as an example. A reverse detection method is used, which employs AuNPs labeling and specific DNA strand displacement. A PM monolayer-coated electrode is first covalently conjugated with an ATP-specific nucleic acid aptamer and then hybridized with another gold nanoparticle-labeled nucleic acid strand with a sequence that is partially complementary to the ATP aptamer, in order to significantly minimize the photocurrent that is generated by the PM. The resulting ATP-sensing chip restores its photocurrent production in the presence of ATP, and the photocurrent recovers more effectively as the ATP concentration increases. Direct and single-step ATP detection is achieved in 15 min, with detection limits of 5 nM and a dynamic range of 5 nM-0.1 mM. The sensing chip exhibits high selectivity against other ATP analogs and is satisfactorily stable in storage. The ATP-sensing chip is used to assay bacterial populations and achieves a detection limit for Bacillus subtilis and Escherichia coli of 102 and 103 CFU/mL, respectively. The demonstration shows that a variety of small molecules can be simultaneously quantified using PM-based biosensors.
Collapse
Affiliation(s)
- Hsiu-Mei Chen
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wen-Chang Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hong-Ren Chen
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
11
|
Chiu UT, Lee BF, Ko LN, Yang CS, Chao L. Non-Electroneutrality Generated by Bacteriorhodopsin-Incorporated Membranes Enhances the Conductivity of a Gelatin Memory Device. Gels 2023; 9:635. [PMID: 37623090 PMCID: PMC10453721 DOI: 10.3390/gels9080635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023] Open
Abstract
We have previously demonstrated the potential of gelatin films as a memory device, offering a novel approach for writing, reading, and erasing through the manipulation of gelatin structure and bound water content. Here, we discovered that incorporating a bacteriorhodopsin (BR)-lipid membrane into the gelatin devices can further increase the electron conductivity of the polypeptide-bound water network and the ON/OFF ratio of the device by two folds. Our photocurrent measurements show that the BR incorporated in the membrane sandwiched in a gelatin device can generate a net proton flow from the counter side to the deposited side of the membrane. This leads to the establishment of non-electroneutrality on the gelatin films adjacent to the BR-incorporated membrane. Our Raman spectroscopy results show that BR proton pumping in the ON state gelatin device increases the bound water presence and promotes polypeptide unwinding compared to devices without BR. These findings suggest that the non-electroneutrality induced by BR proton pumping can increase the extent of polypeptide unwinding within the gelatin matrix, consequently trapping more bound water within the gelatin-bound water network. The resulting rise in hydrogen bonds could expand electron transfer routes, thereby enhancing the electron conductivity of the memory device in the ON state.
Collapse
Affiliation(s)
- U-Ting Chiu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Bo-Fan Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ling-Ning Ko
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Ling Chao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
12
|
Fujimoto KJ, Minowa F, Nishina M, Nakamura S, Ohashi S, Katayama K, Kandori H, Yanai T. Molecular Mechanism of Spectral Tuning by Chloride Binding in Monkey Green Sensitive Visual Pigment. J Phys Chem Lett 2023; 14:1784-1793. [PMID: 36762971 DOI: 10.1021/acs.jpclett.2c03619] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The visual pigments of the cones perceive red, green, and blue colors. The monkey green (MG) pigment possesses a unique Cl- binding site; however, its relationship to the spectral tuning in green pigments remains elusive. Recently, FTIR spectroscopy revealed the characteristic structural modifications of the retinal binding site by Cl- binding. Herein, we report the computational structural modeling of MG pigments and quantum-chemical simulation to investigate its spectral redshift and physicochemical relevance when Cl- is present. Our protein structures reflect the previously suggested structural changes. AlphaFold2 failed to predict these structural changes. Excited-state calculations successfully reproduced the experimental red-shifted absorption energies, corroborating our protein structures. Electrostatic energy decomposition revealed that the redshift results from the His197 protonation state and conformations of Glu129, Ser202, and Ala308; however, Cl- itself contributes to the blueshift. Site-directed mutagenesis supported our analysis. These modeled structures may provide a valuable foundation for studying cone pigments.
Collapse
Affiliation(s)
- Kazuhiro J Fujimoto
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Fumika Minowa
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Michiya Nishina
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Shunta Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Sayaka Ohashi
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya, 466-8555, Japan
| | - Takeshi Yanai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
13
|
Khadem Sadigh M, Shamkhali A, Teimuri-Mofrad R, Mozaffarnia S, Rahimpour K. Polarity effects on the optical responses of some biologically active molecules with different substituents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Månsson LK, Pitenis AA, Wilson MZ. Extracellular Optogenetics at the Interface of Synthetic Biology and Materials Science. Front Bioeng Biotechnol 2022; 10:903982. [PMID: 35774061 PMCID: PMC9237228 DOI: 10.3389/fbioe.2022.903982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/20/2022] [Indexed: 11/15/2022] Open
Abstract
We review fundamental mechanisms and applications of OptoGels: hydrogels with light-programmable properties endowed by photoswitchable proteins (“optoproteins”) found in nature. Light, as the primary source of energy on earth, has driven evolution to develop highly-tuned functionalities, such as phototropism and circadian entrainment. These functions are mediated through a growing family of optoproteins that respond to the entire visible spectrum ranging from ultraviolet to infrared by changing their structure to transmit signals inside of cells. In a recent series of articles, engineers and biochemists have incorporated optoproteins into a variety of extracellular systems, endowing them with photocontrollability. While other routes exist for dynamically controlling material properties, light-sensitive proteins have several distinct advantages, including precise spatiotemporal control, reversibility, substrate selectivity, as well as biodegradability and biocompatibility. Available conjugation chemistries endow OptoGels with a combinatorially large design space determined by the set of optoproteins and polymer networks. These combinations result in a variety of tunable material properties. Despite their potential, relatively little of the OptoGel design space has been explored. Here, we aim to summarize innovations in this emerging field and highlight potential future applications of these next generation materials. OptoGels show great promise in applications ranging from mechanobiology, to 3D cell and organoid engineering, and programmable cell eluting materials.
Collapse
Affiliation(s)
- Lisa K. Månsson
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Angela A. Pitenis
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, United States
- Center for BioEngineering, University of California, Santa Barbara, Santa Barbara, CA, United States
- *Correspondence: Angela A. Pitenis, ; Maxwell Z. Wilson,
| | - Maxwell Z. Wilson
- Center for BioEngineering, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- *Correspondence: Angela A. Pitenis, ; Maxwell Z. Wilson,
| |
Collapse
|
15
|
Wang D, Wang Y, Li H, Han Y, Hu P, Ma K, Sheves M, Jin Y. Photoactivated Bacteriorhodopsin/SiN x Nanopore-Based Biological Nanofluidic Generator with Single-Protein Sensitivity. ACS NANO 2022; 16:1589-1599. [PMID: 34989239 DOI: 10.1021/acsnano.1c10255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanofluidics is an emerging hot field that explores the unusual behaviors of ions/molecules transporting through nanoscale channels, which possesses a broad application prospect. However, in situ probing bioactivity of functional proteins on a single-molecule level by a nanofluidic device has not been reported, and it is still a big challenge in the field. Herein, we reported a biological nanofluidic device with a single-protein sensitivity, based on natural proton-pumping protein, bacteriorhodopsin (bR), and a single SiNx nanopore. Nanofluidic single-molecule probing of bR proton-pumping activity and its light response were achieved under applied voltage of 0 V, by biologically self-powered steady-state ionic current nanopore sensing. Green-light irradiation of the device led to the monitoring of a steady-state proton current of ∼3.51 pA/per bR trimer, corresponding to charge density of 815 μC/cm2 generated by each bR monomer, which far exceeded the previously reported value of 1.4 μC/cm2. This finding and method would promote the development of artificial biological and hybrid nanofluidic devices in biosensing and energy conversion applications.
Collapse
Affiliation(s)
- Dandan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yong Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yanchao Han
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ping Hu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kongshuo Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mordechai Sheves
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
16
|
Greco JA, Wagner NL, Jensen RJ, Lawrence DB, Ranaghan MJ, Sandberg MN, Sandberg DJ, Birge RR. Activation of retinal ganglion cells using a biomimetic artificial retina. J Neural Eng 2021; 18. [PMID: 34768254 DOI: 10.1088/1741-2552/ac395c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/12/2021] [Indexed: 11/12/2022]
Abstract
Objective.Biomimetic protein-based artificial retinas offer a new paradigm for restoring vision for patients blinded by retinal degeneration. Artificial retinas, comprised of an ion-permeable membrane and alternating layers of bacteriorhodopsin (BR) and a polycation binder, are assembled using layer-by-layer electrostatic adsorption. Upon light absorption, the oriented BR layers generate a unidirectional proton gradient. The main objective of this investigation is to demonstrate the ability of the ion-mediated subretinal artificial retina to activate retinal ganglion cells (RGCs) of degenerated retinal tissue.Approach. Ex vivoextracellular recording experiments with P23H line 1 rats are used to measure the response of RGCs following selective stimulation of our artificial retina using a pulsed light source. Single-unit recording is used to evaluate the efficiency and latency of activation, while a multielectrode array (MEA) is used to assess the spatial sensitivity of the artificial retina films.Main results.The activation efficiency of the artificial retina increases with increased incident light intensity and demonstrates an activation latency of ∼150 ms. The results suggest that the implant is most efficient with 200 BR layers and can stimulate the retina using light intensities comparable to indoor ambient light. Results from using an MEA show that activation is limited to the targeted receptive field.Significance.The results of this study establish potential effectiveness of using an ion-mediated artificial retina to restore vision for those with degenerative retinal diseases, including retinitis pigmentosa.
Collapse
Affiliation(s)
- Jordan A Greco
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, United States of America
| | - Nicole L Wagner
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, United States of America.,Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, United States of America
| | - Ralph J Jensen
- VA Boston Healthcare System, 150 South Huntington Avenue, Boston, MA 02130, United States of America
| | - Daniel B Lawrence
- University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06032, United States of America
| | - Matthew J Ranaghan
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, United States of America
| | - Megan N Sandberg
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, United States of America
| | - Daniel J Sandberg
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, United States of America
| | - Robert R Birge
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, United States of America.,Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, United States of America
| |
Collapse
|
17
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
18
|
Fujimoto KJ. Electronic Couplings and Electrostatic Interactions Behind the Light Absorption of Retinal Proteins. Front Mol Biosci 2021; 8:752700. [PMID: 34604313 PMCID: PMC8480471 DOI: 10.3389/fmolb.2021.752700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
The photo-functional chromophore retinal exhibits a wide variety of optical absorption properties depending on its intermolecular interactions with surrounding proteins and other chromophores. By utilizing these properties, microbial and animal rhodopsins express biological functions such as ion-transport and signal transduction. In this review, we present the molecular mechanisms underlying light absorption in rhodopsins, as revealed by quantum chemical calculations. Here, symmetry-adapted cluster-configuration interaction (SAC-CI), combined quantum mechanical and molecular mechanical (QM/MM), and transition-density-fragment interaction (TDFI) methods are used to describe the electronic structure of the retinal, the surrounding protein environment, and the electronic coupling between chromophores, respectively. These computational approaches provide successful reproductions of experimentally observed absorption and circular dichroism (CD) spectra, as well as insights into the mechanisms of unique optical properties in terms of chromophore-protein electrostatic interactions and chromophore-chromophore electronic couplings. On the basis of the molecular mechanisms revealed in these studies, we also discuss strategies for artificial design of the optical absorption properties of rhodopsins.
Collapse
Affiliation(s)
- Kazuhiro J Fujimoto
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
19
|
Zhang S, Chen J, Liu J, Pyles H, Baker D, Chen CL, De Yoreo JJ. Engineering Biomolecular Self-Assembly at Solid-Liquid Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e1905784. [PMID: 32627885 DOI: 10.1002/adma.201905784] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/02/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Biomolecular self-assembly is a key process used by life to build functional materials from the "bottom up." In the last few decades, bioengineering and bionanotechnology have borrowed this strategy to design and synthesize numerous biomolecular and hybrid materials with diverse architectures and properties. However, engineering biomolecular self-assembly at solid-liquid interfaces into predesigned architectures lags the progress made in bulk solution both in practice and theory. Here, recent achievements in programming self-assembly of peptides, proteins, and peptoids at solid-liquid interfaces are summarized and corresponding applications are described. Recent advances in the physical understandings of self-assembly pathways obtained using in situ atomic force microscopy are also discussed. These advances will lead to novel strategies for designing biomaterials organized at and interfaced with inorganic surfaces.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jiajun Chen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jianli Liu
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523830, China
| | - Harley Pyles
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Chun-Long Chen
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - James J De Yoreo
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
20
|
Soto MA, Kandel R, MacLachlan MJ. Chromic Platinum Complexes Containing Multidentate Ligands. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Miguel A. Soto
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver BC, V6T 1Z1 Canada
| | - Raksha Kandel
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver BC, V6T 1Z1 Canada
| | - Mark J. MacLachlan
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver BC, V6T 1Z1 Canada
- Stewart Blusson Quantum Matter Institute University of British Columbia 2355 East Mall Vancouver BC, V6T 1Z4 Canada
- WPI Nano Life Science Institute Kanazawa University Kanazawa 920-1192 Japan
| |
Collapse
|
21
|
Direct and Label-Free Determination of Human Glycated Hemoglobin Levels Using Bacteriorhodopsin as the Biosensor Transducer. SENSORS 2020; 20:s20247274. [PMID: 33353006 PMCID: PMC7765918 DOI: 10.3390/s20247274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023]
Abstract
Glycated hemoglobin (HbA1c) levels are an important index for the diagnosis and long-term control of diabetes. This study is the first to use a direct and label-free photoelectric biosensor to determine HbA1c using bacteriorhodopsin-embedded purple membranes (PM) as a transducer. A biotinylated PM (b-PM) coated electrode that is layered with protein A-oriented antibodies against hemoglobin (Hb) readily captures non-glycated Hb (HbA0) and generates less photocurrent. The spectra of bacteriorhodopsin and Hb overlap so the photocurrent is reduced because of the partial absorption of the incident light by the captured Hb molecules. Two HbA0 and HbA1c aptasensors that are prepared by conjugating specific aptamers on b-PM coated electrodes single-step detect HbA0 and HbA1c in 15 min, without cross reactivity, with detection limits of ≤0.1 μg/mL and a dynamic range of 0.1–100 μg/mL. Both aptasensors exhibit high selectivity and long-term stability. For the clinical samples, HbA0 concentrations and HbA1c levels that are measured with aptasensors correlate well with total Hb concentrations and the HbA1c levels that are determined using standard methods (correlation gradient = 0.915 ± 0.004 and 0.981 ± 0.001, respectively). The use of these aptasensors for diabetes care is demonstrated.
Collapse
|
22
|
Bakaraju V, Prasad ES, Meena B, Chaturvedi H. An Electronic and Optically Controlled Bifunctional Transistor Based on a Bio-Nano Hybrid Complex. ACS OMEGA 2020; 5:9702-9706. [PMID: 32391456 PMCID: PMC7203707 DOI: 10.1021/acsomega.9b03904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
We report an electronically and optically controlled bioelectronic field-effect transistor (FET) based on the hybrid film of photoactive bacteriorhodopsin and electronically conducting single-walled carbon nanotubes (SWNTs). Two-dimensional (2D) crystals of bacteriorhodopsin form the photoactive center of the bio-nano complex, whereas one-dimensional (1D) pure SWNTs provide the required electronic support. The redshift in the Raman spectra indicates the electronic doping with an estimated charge density of 3 × 106 cm-2. The hybrid structure shows a conductivity of 19 μS/m and semiconducting characteristics due to preferential binding with selective diameters of semiconducting SWNTs. The bioelectronic transistor fabricated using direct laser lithography shows both optical and electronic gating with a significant on/off switch ratio of 8.5 and a photoconductivity of 13.15 μS/m. An n-type FET shows complementary p-type characteristics under light due to optically controlled, electronic doping by the "proton-pumping" bacteriorhodopsin. The fabricated bioelectronic transistor exhibits both electronically and optically well-controlled bifunctionality based on the functionalized hybrid electronic material.
Collapse
Affiliation(s)
- Vikram Bakaraju
- Department
of Physics, University of Antwerp, Antwerp 2000, Belgium
- G
Lab Innovations Pvt. Ltd., Kolkata West Bengal 700001 India
| | | | - Brijesh Meena
- Center
for Energy, Indian Institute of Technology
(IIT), Guwahati Assam 781039, India
- G
Lab Innovations Pvt. Ltd., Kolkata West Bengal 700001 India
| | - Harsh Chaturvedi
- Center
for Energy, Indian Institute of Technology
(IIT), Guwahati Assam 781039, India
| |
Collapse
|
23
|
Tong J, Zhang P, Zhang L, Zhang D, Beratan DN, Song H, Wang Y, Li T. A Robust Bioderived Wavelength-Specific Photosensor Based on BLUF Proteins. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 310:127838. [PMID: 32296265 PMCID: PMC7157799 DOI: 10.1016/j.snb.2020.127838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photosensitive proteins are naturally evolved photosensors that often respond to light signals of specific wavelengths. However, their poor stability under ambient conditions hinders their applications in non-biological settings. In this proof-of-principle study, we grafted the blue light using flavin (BLUF) protein reconstructed with flavin adenine dinucleotide (FAD) or roseoflavin (RoF) onto pristine graphene, and achieved selective sensitivity at 450 nm or 500 nm, respectively. We improved the thermal and operational stability substantially via structure-guided cross-linking, achieving 6-month stability under ambient condition and normal operation at temperatures up to 200 °C. Furthermore, the device exhibited rare negative photoconductivity behavior. The origins of this negative photoconductivity behavior were elucidated via a combination of experimental and theoretical analysis. In the photoelectric conversion studies, holes from photoexcited flavin migrated to graphene and recombined with electrons. The device allows facile modulation and detection of charge transfer, and provides a versatile platform for future studies of photoinduced charge transfer in biosensors as well as the development of stable wavelength-selective biophotosensors.
Collapse
Affiliation(s)
- Jing Tong
- Science and Technology on Microsytem Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Lei Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- National engineering research center for protein drugs (NERCPD), Beijing 102206, China
| | - Dongwei Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- National engineering research center for protein drugs (NERCPD), Beijing 102206, China
| | - David N. Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Haifeng Song
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- National engineering research center for protein drugs (NERCPD), Beijing 102206, China
| | - Yi Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- National engineering research center for protein drugs (NERCPD), Beijing 102206, China
| | - Tie Li
- Science and Technology on Microsytem Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
24
|
McManus TJ, Wells SA, Walker AB. Salt bridge impact on global rigidity and thermostability in thermophilic citrate synthase. Phys Biol 2019; 17:016002. [PMID: 31220825 DOI: 10.1088/1478-3975/ab2b5c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It has been suggested that structural rigidity is connected to thermostability, e.g. in enzymes from thermophilic microorganisms. We examine the importance of correctly handling salt bridges, and interactions which we term 'strong polars', when constructing the constraint network for global rigidity analysis in these systems. Through a comparison of rigidity in citrate synthases, we clarify the relationship between rigidity and thermostability. In particular, with our corrected handling of strong polar interactions, the difference in rigidity between mesophilic and thermophilic structures is detected more clearly than in previous studies. The increase in rigidity did not detract from the functional flexibility of the active site in all systems once their respective temperature range had been reached. We then examine the distribution of salt bridges in thermophiles that were previously unaccounted for in flexibility studies. We show that in hyperthermophiles these have stabilising roles in the active site; occuring in close proximity to key residues involved in catalysis and binding of the protein.
Collapse
Affiliation(s)
- T J McManus
- Department of Physics, University of Bath, Bath, BA2 7AY, United Kingdom
| | | | | |
Collapse
|
25
|
Investigation of spectral and kinetic properties of polymer films based on some analogs of bacteriorhodopsin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:749-756. [PMID: 31642958 DOI: 10.1007/s00249-019-01401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
Abstract
We investigated the characteristics of modified forms of bacteriorhodopsin in which the native retinal chromophore is replaced by a chemical analog ("bacteriorhodopsin analogs"), embedded in a polymer film. We found they displayed differential absorption spectra and kinetic curves for the most long-lived intermediates of the BR photocycle. We also studied the influence of chemical reagents on the functioning of bacteriorhodopsin analogs in polymeric films. We found that the immobilization of BR analogs in polymer leads, as in the case of native BR, to a slowing down of their photocycles. Kinetic analysis showed that M-like state intermediates of all the BR analogs have a longer dark relaxation time than native BR. The retention and retardation of the photocycle in these films suggest that films based on BR analogs can be used as photochromic materials. Moreover, 4-keto BR seems to be more promising for this application as compared not only with native BR, but also with other analogs of BR studied in this work.
Collapse
|
26
|
Chen Z, Zhang H, Guo P, Zhang J, Tira G, Kim YJ, Wu YA, Liu Y, Wen J, Rajh T, Niklas J, Poluektov OG, Laible PD, Rozhkova EA. Semi-artificial Photosynthetic CO2 Reduction through Purple Membrane Re-engineering with Semiconductor. J Am Chem Soc 2019; 141:11811-11815. [DOI: 10.1021/jacs.9b05564] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zhaowei Chen
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - He Zhang
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Peijun Guo
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jingjing Zhang
- Joint Center for Energy Storage Research, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Gregory Tira
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Yu Jin Kim
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Yimin A. Wu
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Tijana Rajh
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Oleg G. Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Philip D. Laible
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Elena A. Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
27
|
Krivenkov V, Samokhvalov P, Nabiev I. Remarkably enhanced photoelectrical efficiency of bacteriorhodopsin in quantum dot – Purple membrane complexes under two-photon excitation. Biosens Bioelectron 2019; 137:117-122. [DOI: 10.1016/j.bios.2019.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/14/2019] [Accepted: 05/03/2019] [Indexed: 01/16/2023]
|
28
|
Chen Z, De Queiros Silveira G, Ma X, Xie Y, Wu YA, Barry E, Rajh T, Fry HC, Laible PD, Rozhkova EA. Light‐Gated Synthetic Protocells for Plasmon‐Enhanced Chemiosmotic Gradient Generation and ATP Synthesis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Zhaowei Chen
- Center for Nanoscale Materials Argonne National Laboratory Argonne IL 60439 USA
| | | | - Xuedan Ma
- Center for Nanoscale Materials Argonne National Laboratory Argonne IL 60439 USA
| | - Yunsong Xie
- Applied Materials Division Argonne National Laboratory Argonne IL 60439 USA
| | - Yimin A. Wu
- Center for Nanoscale Materials Argonne National Laboratory Argonne IL 60439 USA
| | - Edward Barry
- Applied Materials Division Argonne National Laboratory Argonne IL 60439 USA
| | - Tijana Rajh
- Center for Nanoscale Materials Argonne National Laboratory Argonne IL 60439 USA
| | - H. Christopher Fry
- Center for Nanoscale Materials Argonne National Laboratory Argonne IL 60439 USA
| | - Philip D. Laible
- Biosciences Division Argonne National Laboratory Argonne IL 60439 USA
| | - Elena A. Rozhkova
- Center for Nanoscale Materials Argonne National Laboratory Argonne IL 60439 USA
| |
Collapse
|
29
|
Chen Z, De Queiros Silveira G, Ma X, Xie Y, Wu YA, Barry E, Rajh T, Fry HC, Laible PD, Rozhkova EA. Light-Gated Synthetic Protocells for Plasmon-Enhanced Chemiosmotic Gradient Generation and ATP Synthesis. Angew Chem Int Ed Engl 2019; 58:4896-4900. [PMID: 30701643 DOI: 10.1002/anie.201813963] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/17/2019] [Indexed: 11/08/2022]
Abstract
Herein, we present a light-gated protocell model made of plasmonic colloidal capsules (CCs) assembled with bacteriorhodopsin for converting solar energy into electrochemical gradients to drive the synthesis of energy-storage molecules. This synthetic protocell incorporated an important intrinsic property of noble metal colloidal particles, namely, plasmonic resonance. In particular, the near-field coupling between adjacent metal nanoparticles gave rise to strongly localized electric fields and resulted in a broad absorption in the whole visible spectra, which in turn promoted the flux of photons to bacteriorhodopsin and accelerated the proton pumping kinetics. The cell-like potential of this design was further demonstrated by leveraging the outward pumped protons as "chemical signals" for triggering ATP biosynthesis in a coexistent synthetic protocell population. Hereby, we lay the ground work for the engineering of colloidal supraparticle-based synthetic protocells with higher-order functionalities.
Collapse
Affiliation(s)
- Zhaowei Chen
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
| | | | - Xuedan Ma
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Yunsong Xie
- Applied Materials Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Yimin A Wu
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Edward Barry
- Applied Materials Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Tijana Rajh
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Philip D Laible
- Biosciences Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Elena A Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
| |
Collapse
|
30
|
Versatile Protein-A Coated Photoelectric Immunosensors with a Purple-Membrane Monolayer Transducer Fabricated by Affinity-Immobilization on a Graphene-Oxide Complexed Linker and by Shear Flow. SENSORS 2018; 18:s18124493. [PMID: 30567418 PMCID: PMC6308460 DOI: 10.3390/s18124493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/06/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023]
Abstract
Bacteriorhodopsin-embedded purple membranes (PM) have been demonstrated to be a sensitive photoelectric transducer for microbial detection. To efficiently prepare versatile BR-based immunosensors with protein A as antibody captures, a large, high-coverage, and uniformly oriented PM monolayer was fabricated on an electrode as an effective foundation for protein A conjugation through bis-NHS esters, by first affinity-coating biotinylated PM on an aminated surface using a complex of oxidized avidin and graphene oxide as the planar linker and then washing the coating with a shear flow. Three different polyclonal antibodies, each against Escherichia coli, Lactobacillus acidophilus, and Streptococcus mutans, respectively, were individually, effectively and readily adsorbed on the protein A coated electrodes, leading to selective and sensitive quantitative detection of their respective target cells in a single step without any labeling. A single-cell detection limit was achieved for the former two cells. AFM, photocurrent, and Raman analyses all displayed each fabricated layer as well as the captured bacteria, with AFM particularly revealing the formation of a massive continuous PM monolayer on aminated mica. The facile cell-membrane monolayer fabrication and membrane surface conjugation techniques disclosed in this study may be widely applied to the preparation of different biomembrane-based biosensors.
Collapse
|
31
|
X-ray structure analysis of bacteriorhodopsin at 1.3 Å resolution. Sci Rep 2018; 8:13123. [PMID: 30177765 PMCID: PMC6120890 DOI: 10.1038/s41598-018-31370-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/13/2018] [Indexed: 11/12/2022] Open
Abstract
Bacteriorhodopsin (bR) of Halobacterium salinarum is a membrane protein that acts as a light-driven proton pump. bR and its homologues have recently been utilized in optogenetics and other applications. Although the structures of those have been reported so far, the resolutions are not sufficient for elucidation of the intrinsic structural features critical to the color tuning and ion pumping properties. Here we report the accurate crystallographic analysis of bR in the ground state. The influence of X-rays was suppressed by collecting the data under a low irradiation dose at 15 K. Consequently, individual atoms could be separately observed in the electron density map at better than 1.3 Å resolution. Residues from Thr5 to Ala233 were continuously constructed in the model. The twist of the retinal polyene was determined to be different from those in the previous models. Two conformations were observed for the proton release region. We discuss the meaning of these fine structural features.
Collapse
|
32
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
33
|
Matsumoto H, Masai H, Nishimura Y, Arai T. The Switching from Cis-to- trans One-way Photoisomerization to Mutual Photoisomerization of a Stilbene–Urea Compound Triggered by Proton Transfer Reaction. CHEM LETT 2018. [DOI: 10.1246/cl.171222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hisato Matsumoto
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Haruki Masai
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yoshinobu Nishimura
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Tatsuo Arai
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
34
|
Jahnke JP, Idso MN, Hussain S, Junk MJ, Fisher JM, Phan DD, Han S, Chmelka BF. Functionally Active Membrane Proteins Incorporated in Mesostructured Silica Films. J Am Chem Soc 2018; 140:3892-3906. [PMID: 29533066 PMCID: PMC6040920 DOI: 10.1021/jacs.7b06863] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A versatile synthetic protocol is reported that allows high concentrations of functionally active membrane proteins to be incorporated in mesostructured silica materials. Judicious selections of solvent, surfactant, silica precursor species, and synthesis conditions enable membrane proteins to be stabilized in solution and during subsequent coassembly into silica-surfactant composites with nano- and mesoscale order. This was demonstrated by using a combination of nonionic ( n-dodecyl-β-d-maltoside or Pluronic P123), lipid-like (1,2-diheptanoyl- s n-glycero-3-phosphocholine), and perfluoro-octanoate surfactants under mild acidic conditions to coassemble the light-responsive transmembrane protein proteorhodopsin at concentrations up to 15 wt % into the hydrophobic regions of worm-like mesostructured silica materials in films. Small-angle X-ray scattering, electron paramagnetic resonance spectroscopy, and transient UV-visible spectroscopy analyses established that proteorhodopsin molecules in mesostructured silica films exhibited native-like function, as well as enhanced thermal stability compared to surfactant or lipid environments. The light absorbance properties and light-activated conformational changes of proteorhodopsin guests in mesostructured silica films are consistent with those associated with the native H+-pumping mechanism of these biomolecules. The synthetic protocol is expected to be general, as demonstrated also for the incorporation of functionally active cytochrome c, a peripheral membrane protein enzyme involved in electron transport, into mesostructured silica-cationic surfactant films.
Collapse
Affiliation(s)
- Justin P. Jahnke
- Department of Chemical Engineering, University of California, Santa Barbara, California, 93106 U.S.A
| | - Matthew N. Idso
- Department of Chemical Engineering, University of California, Santa Barbara, California, 93106 U.S.A
| | - Sunyia Hussain
- Department of Chemical Engineering, University of California, Santa Barbara, California, 93106 U.S.A
| | - Matthias J.N. Junk
- Department of Chemical Engineering, University of California, Santa Barbara, California, 93106 U.S.A
| | - Julia M. Fisher
- Department of Chemical Engineering, University of California, Santa Barbara, California, 93106 U.S.A
| | - David D. Phan
- Department of Chemical Engineering, University of California, Santa Barbara, California, 93106 U.S.A
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California, 93106 U.S.A
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, 93106 U.S.A
| | - Bradley F. Chmelka
- Department of Chemical Engineering, University of California, Santa Barbara, California, 93106 U.S.A
| |
Collapse
|
35
|
Panda SS, Katz HE, Tovar JD. Solid-state electrical applications of protein and peptide based nanomaterials. Chem Soc Rev 2018; 47:3640-3658. [DOI: 10.1039/c7cs00817a] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes recent advancements in electrical properties and applications of natural proteins and mutated variants, synthetic oligopeptides and peptide–π conjugates.
Collapse
Affiliation(s)
- Sayak Subhra Panda
- Department of Chemistry
- Krieger School of Arts and Sciences
- Johns Hopkins University
- Baltimore
- USA
| | - Howard E. Katz
- Department of Chemistry
- Krieger School of Arts and Sciences
- Johns Hopkins University
- Baltimore
- USA
| | - John D. Tovar
- Department of Chemistry
- Krieger School of Arts and Sciences
- Johns Hopkins University
- Baltimore
- USA
| |
Collapse
|
36
|
Singh A, Singh AK. Haloarchaea: worth exploring for their biotechnological potential. Biotechnol Lett 2017; 39:1793-1800. [PMID: 28900776 DOI: 10.1007/s10529-017-2434-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022]
Abstract
Halophilic archaea are unique microorganisms adapted to survive under high salt conditions and biomolecules produced by them may possess unusual properties. Haloarchaeal metabolites are stable at high salt and temperature conditions that are useful for industrial applications. Proteins and enzymes of this group of archaea are functional under salt concentrations at which bacterial counterparts fail to be active. Such properties makes haloarchaeal enzymes suitable for salt-based applications and their use under dehydrating conditions. For example, bacteriorhodopsin or the purple membrane protein present in halophilic archaea has the most recognizable applications in photoelectric devices, artificial retinas, holograms etc. Haloarchaea are also useful for bioremediation of polluted hypersaline areas. Polyhydroxyalkanoates and exopolysccharides produced by these microorganisms are biodegradable and have the potential to replace commercial non-degradable plastics and polymers. Moreover, halophilic archaea have excellent potential to be used as drug delivery systems and for nanobiotechnology by virtue of their gas vesicles and S-layer glycoproteins. Despite of possible applications of halophilic archaea, laboratory-to-industrial transition of these potential candidates is yet to be established.
Collapse
Affiliation(s)
- Aparna Singh
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India.
| | - Anil K Singh
- Department of Biotechnology, Shree M & N. Virani Science College, Rajkot, 360005, Gujarat, India
| |
Collapse
|
37
|
Wang P, Chang AY, Novosad V, Chupin VV, Schaller RD, Rozhkova EA. Cell-Free Synthetic Biology Chassis for Nanocatalytic Photon-to-Hydrogen Conversion. ACS NANO 2017; 11:6739-6745. [PMID: 28602073 DOI: 10.1021/acsnano.7b01142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report on an entirely man-made nano-bio architecture fabricated through noncovalent assembly of a cell-free expressed transmembrane proton pump and TiO2 semiconductor nanoparticles as an efficient nanophotocatalyst for H2 evolution. The system produces hydrogen at a turnover of about 240 μmol of H2 (μmol protein)-1 h-1 and 17.74 mmol of H2 (μmol protein)-1 h-1 under monochromatic green and white light, respectively, at ambient conditions, in water at neutral pH and room temperature, with methanol as a sacrificial electron donor. Robustness and flexibility of this approach allow for systemic manipulation at the nanoparticle-bio interface toward directed evolution of energy transformation materials and artificial systems.
Collapse
Affiliation(s)
- Peng Wang
- Center for Nanoscale Materials, Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439-4855, United States
- State Key Laboratory of Crystal Materials, Shandong University , Jinan, Shandong 250100, People's Republic of China
| | - Angela Y Chang
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Valentyn Novosad
- Materials Science Division, Argonne National Laboratory , Argonne, Illinois 60439-4855, United States
| | - Vladimir V Chupin
- Laboratory Chemistry and Physics of Lipids, Department of General and Applied Physics, Moscow Institute of Physics and Technology , Dolgoprudny, Moscow Region 141701, Russia
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439-4855, United States
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Elena A Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439-4855, United States
| |
Collapse
|
38
|
Photonic Potential of Haloarchaeal Pigment Bacteriorhodopsin for Future Electronics: A Review. Curr Microbiol 2017; 74:996-1002. [DOI: 10.1007/s00284-017-1271-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
|
39
|
Mahmood T, Kosar N, Ayub K. DFT study of acceleration of electrocyclization in photochromes under radical cationic conditions: Comparison with recent experimental data. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Nakamaru S, Scholz F, Ford WE, Goto Y, von Wrochem F. Photoswitchable Sn-Cyt c Solid-State Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605924. [PMID: 28401734 DOI: 10.1002/adma.201605924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/16/2017] [Indexed: 06/07/2023]
Abstract
Electron transfer across proteins plays an important role in many biological processes, including those relevant for the conversion of solar photons to chemical energy. Previous studies demonstrated the generation of photocurrents upon light irradiation in a number of photoactive proteins, such as photosystem I or bacteriorhodopsin. Here, it is shown that Sn-cytochrome c layers act as reversible and efficient photoelectrochemical switches upon integration into large-area solid-state junctions. Photocurrents are observed both in the Soret band (λ = 405 nm) and in the Q band (λ = 535 nm), with current on/off ratios reaching values of up to 25. The underlying modulation in charge-transfer rate is attributed to a hole-transport channel created by the photoexcitation of the Sn-porphyrin.
Collapse
Affiliation(s)
- Satoshi Nakamaru
- Advanced Materials Laboratories, Sony Corporation, Atsugi Technology Center No. 2, 4-16-1 Okata, Atsugi, Kanagawa, 243-0021, Japan
| | - Frank Scholz
- Sony Europe Ltd., Materials Science Laboratory, Hedelfinger Strasse 61, 70327, Stuttgart, Germany
| | - William E Ford
- Sony Europe Ltd., Materials Science Laboratory, Hedelfinger Strasse 61, 70327, Stuttgart, Germany
| | - Yoshio Goto
- Advanced Materials Laboratories, Sony Corporation, Atsugi Technology Center No. 2, 4-16-1 Okata, Atsugi, Kanagawa, 243-0021, Japan
| | - Florian von Wrochem
- Sony Europe Ltd., Materials Science Laboratory, Hedelfinger Strasse 61, 70327, Stuttgart, Germany
| |
Collapse
|
41
|
Chen HM, Jheng KR, Yu AD. Direct, label-free, selective, and sensitive microbial detection using a bacteriorhodopsin-based photoelectric immunosensor. Biosens Bioelectron 2017; 91:24-31. [PMID: 27987407 DOI: 10.1016/j.bios.2016.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/30/2016] [Accepted: 12/12/2016] [Indexed: 11/19/2022]
Abstract
A photoelectric immunosensor using purple membranes (PM) as the transducer, which contains photoactive bacteriorhodopsin, is here first demonstrated for direct and label-free microbial detection. Biotinylated polyclonal antibodies against Escherichia coli were immobilized on a PM-coated electrode through further surface biotinylation and bridging avidin or NeutrAvidin. The photocurrent generated by the antibody-coated sensor was reduced after incubation with E. coli K-12 cultures, with the reduction level increased with the culture populations. The immunosensor prepared via NeutrAvidin exhibited much better selectivity than the one prepared via avidin, recognizing almost none of the tested Gram-positive bacteria. Cultures with populations ranging from 1 to 107CFU/10mL were detected in a single step without any preprocessing. Both AFM and Raman analysis confirmed the layer-by-layer fabrication of the antibody-coated substrates as well as the binding of microorganisms. By investigating the effect of illumination orientation and simulating the photocurrent responses with an equivalent circuit model containing a chemical capacitance, we suggest that the photocurrent reduction was primarily caused by the light-shielding effect of the captured bacteria. Using the current fabrication technique, versatile bacteriorhodopsin-based photoelectric immunosensors can be readily prepared to detect a wide variety of biological cells.
Collapse
Affiliation(s)
- Hsiu-Mei Chen
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Kai-Ru Jheng
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - An-Dih Yu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
42
|
Druzhko AB, Dyukova TV, Pirutin SK. Some factors affecting the process of photoinduced hydroxylaminolysis in different bacteriorhodopsin-based media. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2017; 46:509-515. [PMID: 28474199 DOI: 10.1007/s00249-017-1211-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/22/2017] [Accepted: 04/13/2017] [Indexed: 11/25/2022]
Abstract
This review presents the results of studies concerning some factors that affect the process of photoinduced hydroxylaminolysis (PHA) in bacteriorhodopsin (BR) and different BR-based media. We consider the peculiar properties of the PHA reaction in water suspensions of BR and BR-based media depending on variation in PHA ingredients, and in particular the use of O-substituted hydroxylamines instead of hydroxylamine hydrochloride. In addition, we discuss how such factors as preliminary ultra-sonication affect the reaction of PHA in the course of BR bleaching and following the reconstitution of bacterioopsin. All the results are considered from the viewpoint of improving the performance of BR-based media as photosensitive materials for the processing and storage of optical information.
Collapse
Affiliation(s)
- Anna B Druzhko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya ul. 3, Pushchino, Moscow region, 142290, Russia.
| | - Tatyana V Dyukova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya ul. 3, Pushchino, Moscow region, 142290, Russia
| | - Sergey K Pirutin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya ul. 3, Pushchino, Moscow region, 142290, Russia.,Biophysical Department, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
43
|
Prasad M, Sharma V, Mayabadi A, Rokade A, Pawbake A, Rondiya S, Waykar R, Jadhavar A, Pathan H, Jadkar S. Chlorophyll-a/ZnO Nanorod Based Hybrid Photoanodes for Enhanced Photoelectrochemical Splitting of Water. ChemistrySelect 2017. [DOI: 10.1002/slct.201601814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mohit Prasad
- Department of Physics; Savitribai Phule Pune University; Pune 411007 India
| | - Vidhika Sharma
- Department of Physics; Savitribai Phule Pune University; Pune 411007 India
| | - Azam Mayabadi
- Department of Energy Engineering and Physics; Amirkabir University of Technology; Tehran Iran
| | - Avinash Rokade
- Department of Physics; Savitribai Phule Pune University; Pune 411007 India
| | - Amit Pawbake
- Department of Physics; Savitribai Phule Pune University; Pune 411007 India
| | - Sachin Rondiya
- Department of Physics; Savitribai Phule Pune University; Pune 411007 India
| | - Ravindra Waykar
- Department of Physics; Savitribai Phule Pune University; Pune 411007 India
| | - Ashok Jadhavar
- Department of Physics; Savitribai Phule Pune University; Pune 411007 India
| | - Habib Pathan
- Department of Physics; Savitribai Phule Pune University; Pune 411007 India
| | - Sandesh Jadkar
- Department of Physics; Savitribai Phule Pune University; Pune 411007 India
| |
Collapse
|
44
|
Wang YT, Gao YJ, Wang Q, Cui G. Photochromic Mechanism of a Bridged Diarylethene: Combined Electronic Structure Calculations and Nonadiabatic Dynamics Simulations. J Phys Chem A 2017; 121:793-802. [PMID: 28051866 DOI: 10.1021/acs.jpca.6b11682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intramolecularly bridged diarylethenes exhibit improved photocyclization quantum yields because the anti-syn isomerization that originally suppresses photocyclization in classical diarylethenes is blocked. Experimentally, three possible channels have been proposed to interpret experimental observation, but many details of photochromic mechanism remain ambiguous. In this work we have employed a series of electronic structure methods (OM2/MRCI, DFT, TDDFT, RI-CC2, DFT/MRCI, and CASPT2) to comprehensively study excited state properties, photocyclization, and photoreversion dynamics of 1,2-dicyano[2,2]metacyclophan-1-ene. On the basis of optimized stationary points and minimum-energy conical intersections, we have refined experimentally proposed photochromic mechanism. Only an S1/S0 minimum-energy conical intersection is located; thus, we can exclude the third channel experimentally proposed. In addition, we find that both photocyclization and photoreversion processes use the same S1/S0 conical intersection to decay the S1 system to the S0 state, so we can unify the remaining two channels into one. These new insights are verified by our OM2/MRCI nonadiabatic dynamics simulations. The S1 excited-state lifetimes of photocyclization and photoreversion are estimated to be 349 and 453 fs, respectively, which are close to experimentally measured values: 240 ± 60 and 250 fs in acetonitrile solution. The present study not only interprets experimental observations and refines previously proposed mechanism but also provides new physical insights that are valuable for future experiments.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Yuan-Jun Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Qian Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| |
Collapse
|
45
|
Lu Z, Wang J, Li R, Qiao Y, Zhou M, Li CM. Controllable stationary photocurrents generated from a bacteriorhodopsin/upconversion nanoparticle-based bionanosystem under NIR illumination. NANOSCALE 2016; 8:18524-18530. [PMID: 27782261 DOI: 10.1039/c6nr06930d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the past few decades, tremendous effort has been dedicated to develop bacteriorhodopsin (bR)-based photo-electronic devices for generating a stationary photocurrent and further for use as a component of artificial retinas in constant illumination sensing. However, an IR-triggered stationary photocurrent with controllable amplitudes has never been realized to date. Herein, NaYF4:Yb,Er and NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) with green and blue emissions, respectively, were synthesized and further incorporated with bR to build a bionanosystem. Under 980 nm NIR irradiation the UCNPs function as internal green and blue light sources to initiate the photocycle and speed up the transition of bR from M410 to the ground state, consequently accelerating the bR photocycle for the generation of a stationary photocurrent. Moreover, the photocurrent profile could be tailored by changing the blue/green emission intensity ratio. The mechanism is analysed to explore the scientific insights. The system consisting of controllable blue and green light sources may not only hold great promise to construct new types of bR-based optical devices, but also offers a useful setup to investigate the fundamental science underlying the bR photoresponse.
Collapse
Affiliation(s)
- Zhisong Lu
- Institute for Clean Energy & Advance Materials, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China and Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China.
| | - Jing Wang
- Institute for Clean Energy & Advance Materials, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China and Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China.
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan Qiao
- Institute for Clean Energy & Advance Materials, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China and Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China.
| | - Mengyao Zhou
- Institute for Clean Energy & Advance Materials, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China and Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China.
| | - Chang Ming Li
- Institute for Clean Energy & Advance Materials, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China and Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China. and Institute for Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215011, P.R. China
| |
Collapse
|
46
|
Li D, Wang Y, Du H, Xu S, Li Z, Yang Y, Wang C. Nanoscale Electric Characteristics and Oriented Assembly of Halobacterium salinarum Membrane Revealed by Electric Force Microscopy. NANOMATERIALS 2016; 6:nano6110197. [PMID: 28335325 PMCID: PMC5245739 DOI: 10.3390/nano6110197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/28/2016] [Accepted: 10/08/2016] [Indexed: 11/25/2022]
Abstract
Purple membranes (PM) of the bacteria Halobacterium salinarum are a unique natural membrane where bacteriorhodopsin (BR) can convert photon energy and pump protons. Elucidating the electronic properties of biomembranes is critical for revealing biological mechanisms and developing new devices. We report here the electric properties of PMs studied by using multi-functional electric force microscopy (EFM) at the nanoscale. The topography, surface potential, and dielectric capacity of PMs were imaged and quantitatively measured in parallel. Two orientations of PMs were identified by EFM because of its high resolution in differentiating electrical characteristics. The extracellular (EC) sides were more negative than the cytoplasmic (CP) side by 8 mV. The direction of potential difference may facilitate movement of protons across the membrane and thus play important roles in proton pumping. Unlike the side-dependent surface potentials observed in PM, the EFM capacitive response was independent of the side and was measured to be at a dC/dz value of ~5.25 nF/m. Furthermore, by modification of PM with de novo peptides based on peptide-protein interaction, directional oriented PM assembly on silicon substrate was obtained for technical devices. This work develops a new method for studying membrane nanoelectronics and exploring the bioelectric application at the nanoscale.
Collapse
Affiliation(s)
- Denghua Li
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Information Service Technology of Ministry of Agriculture, Beijing 100081, China.
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Yibing Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Huiwen Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Shiwei Xu
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Information Service Technology of Ministry of Agriculture, Beijing 100081, China.
| | - Zhemin Li
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Information Service Technology of Ministry of Agriculture, Beijing 100081, China.
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
47
|
Blaya S, González A, Acebal P, Carretero L. Spatio-temporal study of non-degenerate two-wave mixing in bacteriorhodopsin films. OPTICS EXPRESS 2016; 24:25565-25581. [PMID: 27828494 DOI: 10.1364/oe.24.025565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A spatio-temporal analysis of non-degenerate two-wave mixing in a saturable absorber, such as bacteriorhodopsin (bR) film, is performed. To do this, a theoretical model describing the temporal variation of the intensities is developed by taking into account the dielectric constant as a function of bR population. A good agreement between theory and experimental measurements is obtained. Thus, the dependence of the optical gain and the main dielectric constant parameters are studied at different intensities and frequencies. As a result, the best intensity-frequency zones where higher coupling is reached are proposed, and it is also demonstrated that non-uniform patterns, which evolve over time as a function of frequency difference, can be observed.
Collapse
|
48
|
Chen HM, Jheng KR, Yu AD, Hsu CC, Lin JH. Intercalating purple membranes into 2D β-alanine crystals to enhance photoelectric and nonlinear optical properties. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.03.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Suzuki Y, Cardone G, Restrepo D, Zavattieri PD, Baker TS, Tezcan FA. Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals. Nature 2016; 533:369-73. [PMID: 27135928 PMCID: PMC4991361 DOI: 10.1038/nature17633] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/01/2016] [Indexed: 12/25/2022]
Abstract
Two-dimensional (2D) crystalline materials possess unique structural, mechanical and electronic properties that make them highly attractive in many applications. Although there have been advances in preparing 2D materials that consist of one or a few atomic or molecular layers, bottom-up assembly of 2D crystalline materials remains a challenge and an active area of development. More challenging is the design of dynamic 2D lattices that can undergo large-scale motions without loss of crystallinity. Dynamic behaviour in porous three-dimensional (3D) crystalline solids has been exploited for stimuli-responsive functions and adaptive behaviour. As in such 3D materials, integrating flexibility and adaptiveness into crystalline 2D lattices would greatly broaden the functional scope of 2D materials. Here we report the self-assembly of unsupported, 2D protein lattices with precise spatial arrangements and patterns using a readily accessible design strategy. Three single- or double-point mutants of the C4-symmetric protein RhuA were designed to assemble via different modes of intermolecular interactions (single-disulfide, double-disulfide and metal-coordination) into crystalline 2D arrays. Owing to the flexibility of the single-disulfide interactions, the lattices of one of the variants ((C98)RhuA) are essentially defect-free and undergo substantial, but fully correlated, changes in molecular arrangement, yielding coherently dynamic 2D molecular lattices. (C98)RhuA lattices display a Poisson's ratio of -1-the lowest thermodynamically possible value for an isotropic material-making them auxetic.
Collapse
Affiliation(s)
- Yuta Suzuki
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Giovanni Cardone
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - David Restrepo
- School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907-2051, USA
| | - Pablo D. Zavattieri
- School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907-2051, USA
| | - Timothy S. Baker
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
50
|
Svechtarova MI, Buzzacchera I, Toebes BJ, Lauko J, Anton N, Wilson CJ. Sensor Devices Inspired by the Five Senses: A Review. ELECTROANAL 2016. [DOI: 10.1002/elan.201600047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | - B. Jelle Toebes
- NovioSense BV; Transistorweg 5 6534 AT Nijmegen The Netherlands
| | - Jan Lauko
- NovioSense BV; Transistorweg 5 6534 AT Nijmegen The Netherlands
| | - Nicoleta Anton
- Universitatea de Medicina si Farmacie Grigore T.; Popa, Str. Universitatii nr. 16 700115 Iasi Romania
| | | |
Collapse
|