1
|
Heim S, Teav T, Gallart-Ayala H, Ivanisevic J, Salamin N. Divergence in metabolomic profile in clownfish and damselfish skin mucus. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1050083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
IntroductionThe clownfish - sea anemone mutualism was suggested to have triggered the adaptive radiation of clownfishes, but the origin of clownfish resistance to stinging tentacles of host anemones remains unclear. The presence of specific compounds in the mucus of clownfishes conferring them the unique ability to prevent nematocyst discharge from their hosts has been the most supported hypothesis. Yet the mystery regarding the types of compounds found in clownfish skin mucus remains unsolved.MethodsWe analyzed the chemical composition of clownfish and damselfish mucus using an untargeted metabolomics (HILIC-HRMS) and lipidomics (RPLC-HRMS) approach.Results and DiscussionThe polar and lipid metabolome signatures were highly specific and allowed to discriminate between the clownfish and damselfish clades. The most discriminative part of the signature was the sphingolipid profile, displaying a broader diversity of ceramides present in significantly higher levels in clownfish mucus. Importantly, the inter-specific variability of metabolic signature was significantly higher in clownfishes, although their diversification is evolutionarily more recent, thus implying the impact of symbiosis on metabolic variability and adaptation. Furthermore, specialists and generalists clownfish species displayed distinctive metabolite signature. Two strict clownfish specialists, which are phylogenetically distant but share the same host species, clustered together based on their molecular signature, suggesting a link with their mutualistic nature. Overall, comparative analyses of metabolic signatures highlight differences in chemical composition of clownfish mucus and provide insight into biochemical pathways potentially implicated in clownfish adaptation to inhabit sea anemones and consequently diversify.
Collapse
|
2
|
Fang W, Zhong K, Cheng J, Liu X, Liu C, Wang Z, Cao H. Capture‐Release
Strategy Facilitates Rapid Enzymatic Assembly of Oligosaccharides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Wenyuan Fang
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University Qingdao Shandong 266237 China
| | - Kan Zhong
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University Qingdao Shandong 266237 China
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy Ocean University of China Qingdao Shandong 266003 China
| | - Jiansong Cheng
- College of Pharmacy Nankai University Tianjin 300071 China
| | - Xian‐Wei Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University Qingdao Shandong 266237 China
| | - Chang‐Cheng Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University Qingdao Shandong 266237 China
| | - Zhongfu Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an Shaanxi 710069 China
| | - Hongzhi Cao
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology Shandong University Qingdao Shandong 266237 China
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy Ocean University of China Qingdao Shandong 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao Shandong 266237 China
| |
Collapse
|
3
|
Ryzhov IM, Bovin NV. Synthesis of glycans functioning as antigens of the ABO blood group system. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Legros N, Pohlentz G, Steil D, Müthing J. Shiga toxin-glycosphingolipid interaction: Status quo of research with focus on primary human brain and kidney endothelial cells. Int J Med Microbiol 2018; 308:1073-1084. [PMID: 30224239 DOI: 10.1016/j.ijmm.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
Shiga toxin (Stx)-mediated injury of the kidneys and the brain represent the major extraintestinal complications in humans upon infection by enterohemorrhagic Escherichia coli (EHEC). Damage of renal and cerebral endothelial cells is the key event in the pathogenesis of the life-threatening hemolytic uremic syndrome (HUS). Stxs are AB5 toxins and the B-pentamers of the two clinically important Stx subtypes Stx1a and Stx2a preferentially bind to the glycosphingolipid globotriaosylceramide (Gb3Cer, Galα4Galβ4Glcβ1Cer) and to less extent to globotetraosylceramide (Gb4Cer, GalNAcβ3Galα4Galβ4Glcβ1), which are expected to reside in lipid rafts in the plasma membrane of the human endothelium. This review summarizes the current knowledge on the Stx glycosphingolipid receptors and their lipid membrane ensemble in primary human brain microvascular endothelial cells (pHBMECs) and primary human renal glomerular endothelial cells (pHRGECs). Increasing knowledge on the precise initial molecular mechanisms by which Stxs interact with cellular targets will help to develop specific therapeutics and/or preventive measures to combat EHEC-caused diseases.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Daniel Steil
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
5
|
Legros N, Pohlentz G, Runde J, Dusny S, Humpf HU, Karch H, Müthing J. Colocalization of receptors for Shiga toxins with lipid rafts in primary human renal glomerular endothelial cells and influence of D-PDMP on synthesis and distribution of glycosphingolipid receptors. Glycobiology 2018; 27:947-965. [PMID: 28535204 DOI: 10.1093/glycob/cwx048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022] Open
Abstract
Damage of human renal glomerular endothelial cells (HRGECs) of the kidney represents the linchpin in the pathogenesis of the hemolytic uremic syndrome caused by Shiga toxins of enterohemorrhagic Escherichia coli (EHEC). We performed a comprehensive structural analysis of the Stx-receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα4Galβ4Glcβ1Cer) and globotetraosylceramide (Gb4Cer, GalNAcβ3Galα4Galβ4Glcβ1Cer) and their distribution in lipid raft analog detergent-resistant membranes (DRMs) and nonDRMs prepared from primary HRGECs. Predominant receptor lipoforms were Gb3Cer and Gb4Cer with Cer (d18:1, C16:0), Cer (d18:1, C22:0) and Cer (d18:1, C24:1/C24:0). Stx-receptor GSLs co-distribute with sphingomyelin (SM) and cholesterol as well as flotillin-2 in DRMs, representing the liquid-ordered membrane phase and indicating lipid raft association. Lyso-phosphatidylcholine (lyso-PC) was identified as a nonDRM marker phospholipid of the liquid-disordered membrane phase. Exposure of primary HRGECs to the ceramide analogon d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP) reduced total Gb3Cer and Gb4Cer content, roughly calculated from two biological replicates, down to half and quarter of its primordial content, respectively, but strengthened their prevalence and cholesterol preponderance in DRMs. At the same time, the distribution of PC, SM and lyso-PC to subcellular membrane fractions remained unaffected by D-PDMP treatment. Defining the GSL composition and precise microdomain structures of primary HRGECs may help to develop novel therapeutic options to combat life-threatening EHEC infections.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany
| | - Gottfried Pohlentz
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany
| | - Jana Runde
- Institute for Food Chemistry, University of Münster, D-48149 Münster, Germany
| | - Stefanie Dusny
- Institute for Food Chemistry, University of Münster, D-48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institute for Food Chemistry, University of Münster, D-48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany
| |
Collapse
|
6
|
Shiga Toxin Glycosphingolipid Receptors in Human Caco-2 and HCT-8 Colon Epithelial Cell Lines. Toxins (Basel) 2017; 9:toxins9110338. [PMID: 29068380 PMCID: PMC5705953 DOI: 10.3390/toxins9110338] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/11/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022] Open
Abstract
Shiga toxins (Stxs) released by enterohemorrhagic Escherichia coli (EHEC) into the human colon are the causative agents for fatal outcome of EHEC infections. Colon epithelial Caco-2 and HCT-8 cells are widely used for investigating Stx-mediated intestinal cytotoxicity. Only limited data are available regarding precise structures of their Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), and lipid raft association. In this study we identified Gb3Cer and Gb4Cer lipoforms of serum-free cultivated Caco-2 and HCT-8 cells, chiefly harboring ceramide moieties composed of sphingosine (d18:1) and C16:0, C22:0 or C24:0/C24:1 fatty acid. The most significant difference between the two cell lines was the prevalence of Gb3Cer with C16 fatty acid in HCT-8 and Gb4Cer with C22–C24 fatty acids in Caco-2 cells. Lipid compositional analysis of detergent-resistant membranes (DRMs), which were used as lipid raft-equivalents, indicated slightly higher relative content of Stx receptor Gb3Cer in DRMs of HCT-8 cells when compared to Caco-2 cells. Cytotoxicity assays revealed substantial sensitivity towards Stx2a for both cell lines, evidencing little higher susceptibility of Caco-2 cells versus HCT-8 cells. Collectively, Caco-2 and HCT-8 cells express a plethora of different receptor lipoforms and are susceptible towards Stx2a exhibiting somewhat lower sensitivity when compared to Vero cells.
Collapse
|
7
|
Ting CY, Lin YW, Wu CY, Wong CH. Design of Disaccharide Modules for a Programmable One-Pot Synthesis of Building Blocks with LacNAc Repeating Units for Asymmetric N-Glycans. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cheng-Yueh Ting
- Genomics Research Center; Academia Sinica; No. 128, Academia Road, Section 2, Nankang District Taipei 11529 Taiwan
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Rd., Daan District Taipei 106 Taiwan
| | - Yu-Wei Lin
- Genomics Research Center; Academia Sinica; No. 128, Academia Road, Section 2, Nankang District Taipei 11529 Taiwan
| | - Chung-Yi Wu
- Genomics Research Center; Academia Sinica; No. 128, Academia Road, Section 2, Nankang District Taipei 11529 Taiwan
| | - Chi-Huey Wong
- Genomics Research Center; Academia Sinica; No. 128, Academia Road, Section 2, Nankang District Taipei 11529 Taiwan
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Rd., Daan District Taipei 106 Taiwan
| |
Collapse
|
8
|
Pérez-Labrada K, Brouard I, Méndez I, Pérez CS, Gavín JA, Rivera DG. Combined Ugi-4CR/CuAAC Approach to Triazole-Based Neoglycolipids. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Chien WT, Liang CF, Yu CC, Lin CH, Li SP, Primadona I, Chen YJ, Mong KKT, Lin CC. Sequential one-pot enzymatic synthesis of oligo-N-acetyllactosamine and its multi-sialylated extensions. Chem Commun (Camb) 2014; 50:5786-9. [DOI: 10.1039/c4cc01227e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A simple and efficient protocol for the preparative-scale synthesis of various lengths of oligo-N-acetyllactosamine (oligo-LacNAc) and its multi-sialylated extensions.
Collapse
Affiliation(s)
- Wei-Ting Chien
- Department of Chemistry
- National Tsing Hua University
- Hsinchu, Taiwan
| | - Chien-Fu Liang
- Department of Chemistry
- National Tsing Hua University
- Hsinchu, Taiwan
| | - Ching-Ching Yu
- Department of Chemistry
- National Tsing Hua University
- Hsinchu, Taiwan
| | - Chien-Hung Lin
- Department of Chemistry
- National Tsing Hua University
- Hsinchu, Taiwan
| | - Si-Peng Li
- Department of Chemistry
- National Tsing Hua University
- Hsinchu, Taiwan
| | - Indah Primadona
- Department of Chemistry
- National Tsing Hua University
- Hsinchu, Taiwan
- Institute of Chemistry
- Academia Sinica
| | - Yu-Ju Chen
- Institute of Chemistry
- Academia Sinica
- Taipei 11529, Taiwan
- Genomic Research Center
- Academia Sinica
| | - Kwok Kong T. Mong
- Applied Chemistry Department
- National Chiao Tung University
- Hsinchu 30010, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry
- National Tsing Hua University
- Hsinchu, Taiwan
- Genomic Research Center
- Academia Sinica
| |
Collapse
|
10
|
|
11
|
Pérez-Labrada K, Brouard I, Méndez I, Rivera DG. Multicomponent Synthesis of Ugi-Type Ceramide Analogues and Neoglycolipids from Lipidic Isocyanides. J Org Chem 2012; 77:4660-70. [DOI: 10.1021/jo300462m] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Karell Pérez-Labrada
- Institute
of Pharmacy and Food, University of Havana, San Lázaro y L, 10400,
La Habana, Cuba
- Instituto de Productos Naturales y Agrobiología-C.S.I.C., Avda. Astrofísico
Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
- Center for Natural Products Study,
Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Ignacio Brouard
- Instituto de Productos Naturales y Agrobiología-C.S.I.C., Avda. Astrofísico
Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - Inmaculada Méndez
- Instituto de Productos Naturales y Agrobiología-C.S.I.C., Avda. Astrofísico
Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - Daniel G. Rivera
- Center for Natural Products Study,
Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| |
Collapse
|
12
|
Thin-layer chromatography, overlay technique and mass spectrometry: A versatile triad advancing glycosphingolipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:875-96. [DOI: 10.1016/j.bbalip.2011.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/18/2011] [Accepted: 04/10/2011] [Indexed: 12/16/2022]
|
13
|
Moreno M, Murruzzu C, Riera A. Enantioselective Synthesis of Sphingadienines and Aromatic Ceramide Analogs. Org Lett 2011; 13:5184-7. [DOI: 10.1021/ol202064j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- María Moreno
- Unitat de Recerca en Síntesi Asimètrica (URSA-PCB), Institute for Research in Biomedicine (IRB) and Departament de Química Orgànica, Universitat de Barcelona, c/Baldiri Reixac, 10, E-08028 Barcelona, Spain
| | - Caterina Murruzzu
- Unitat de Recerca en Síntesi Asimètrica (URSA-PCB), Institute for Research in Biomedicine (IRB) and Departament de Química Orgànica, Universitat de Barcelona, c/Baldiri Reixac, 10, E-08028 Barcelona, Spain
| | - Antoni Riera
- Unitat de Recerca en Síntesi Asimètrica (URSA-PCB), Institute for Research in Biomedicine (IRB) and Departament de Química Orgànica, Universitat de Barcelona, c/Baldiri Reixac, 10, E-08028 Barcelona, Spain
| |
Collapse
|
14
|
Müthing J, Distler U. Advances on the compositional analysis of glycosphingolipids combining thin-layer chromatography with mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:425-479. [PMID: 19609886 DOI: 10.1002/mas.20253] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Glycosphingolipids (GSLs), composed of a hydrophilic carbohydrate chain and a lipophilic ceramide anchor, play pivotal roles in countless biological processes, including infectious diseases and the development of cancer. Knowledge of the number and sequence of monosaccharides and their anomeric configuration and linkage type, which make up the principal items of the glyco code of biologically active carbohydrate chains, is essential for exploring the function of GSLs. As part of the investigation of the vertebrate glycome, GSL analysis is undergoing rapid expansion owing to the application of novel biochemical and biophysical technologies. Mass spectrometry (MS) takes part in the network of collaborations to further unravel structural and functional aspects within the fascinating world of GSLs with the ultimate aim to better define their role in human health and disease. However, a single-method analytical MS technique without supporting tools is limited yielding only partial structural information. Because of its superior resolving power, robustness, and easy handling, high-performance thin-layer chromatography (TLC) is widely used as an invaluable tool in GSL analysis. The intention of this review is to give an insight into current advances obtained by coupling supplementary techniques such as TLC and mass spectrometry. A retrospective view of the development of this concept and the recent improvements by merging (1) TLC separation of GSLs, (2) their detection with oligosaccharide-specific proteins, and (3) in situ MS analysis of protein-detected GSLs directly on the TLC plate, are provided. The procedure works on a nanogram scale and was successfully applied to the identification of cancer-associated GSLs in several types of human tumors. The combination of these two supplementary techniques opens new doors by delivering specific structural information of trace quantities of GSLs with only limited investment in sample preparation.
Collapse
Affiliation(s)
- Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany.
| | | |
Collapse
|
15
|
Morales-Serna JA, Díaz Y, Matheu MI, Castillón S. Efficient Synthesis of β-Glycosphingolipids by Reaction of Stannylceramides with Glycosyl Iodides Promoted by TBAI/AW 300 Molecular Sieves. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900424] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Shioiri Y, Kurimoto A, Ako T, Daikoku S, Ohtake A, Ishida H, Kiso M, Suzuki K, Kanie O. Energy-Resolved Structural Details Obtained from Gangliosides. Anal Chem 2008; 81:139-45. [DOI: 10.1021/ac801611z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuki Shioiri
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4529 Nagatsuta-cho, Midori-ku, Yokohama 226-0018, Japan, Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 minami-oya, Machida-shi, Tokyo 194-8511, Japan, and Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Ayako Kurimoto
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4529 Nagatsuta-cho, Midori-ku, Yokohama 226-0018, Japan, Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 minami-oya, Machida-shi, Tokyo 194-8511, Japan, and Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Takuro Ako
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4529 Nagatsuta-cho, Midori-ku, Yokohama 226-0018, Japan, Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 minami-oya, Machida-shi, Tokyo 194-8511, Japan, and Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shusaku Daikoku
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4529 Nagatsuta-cho, Midori-ku, Yokohama 226-0018, Japan, Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 minami-oya, Machida-shi, Tokyo 194-8511, Japan, and Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Atsuko Ohtake
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4529 Nagatsuta-cho, Midori-ku, Yokohama 226-0018, Japan, Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 minami-oya, Machida-shi, Tokyo 194-8511, Japan, and Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hideharu Ishida
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4529 Nagatsuta-cho, Midori-ku, Yokohama 226-0018, Japan, Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 minami-oya, Machida-shi, Tokyo 194-8511, Japan, and Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Makoto Kiso
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4529 Nagatsuta-cho, Midori-ku, Yokohama 226-0018, Japan, Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 minami-oya, Machida-shi, Tokyo 194-8511, Japan, and Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Katsuhiko Suzuki
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4529 Nagatsuta-cho, Midori-ku, Yokohama 226-0018, Japan, Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 minami-oya, Machida-shi, Tokyo 194-8511, Japan, and Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Osamu Kanie
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4529 Nagatsuta-cho, Midori-ku, Yokohama 226-0018, Japan, Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 minami-oya, Machida-shi, Tokyo 194-8511, Japan, and Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
17
|
Morales-Serna JA, Díaz Y, Matheu MI, Castillón S. Stannyl ceramides as efficient acceptors for synthesising β-galactosyl ceramides. Org Biomol Chem 2008; 6:3831-6. [DOI: 10.1039/b809570a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Morales-Serna JA, Boutureira O, Díaz Y, Matheu MI, Castillón S. Recent advances in the glycosylation of sphingosines and ceramides. Carbohydr Res 2007; 342:1595-612. [PMID: 17482586 DOI: 10.1016/j.carres.2007.03.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 03/27/2007] [Accepted: 03/31/2007] [Indexed: 12/31/2022]
Abstract
Glycosphingolipids (GSLs) are ubiquitous components of eukaryotic cell membranes. They are highly bioactive and are involved in many aspects of cell signalling like cell-cell interaction, cell-substratum interaction and cell-pathogen interaction. GSLs also are involved in the modulation of signal transduction, resulting in regulation of cell proliferation and differentiation. The biological importance and complexity of these compounds afford many opportunities to prepare synthetic analogues for studies of their metabolism in intra- and intercellular processes. This review focuses on recent contributions in the synthesis of GSLs, highlighting improvements in glycosylation reactions leading to alpha and beta glycosyl sphingosines and ceramides and related compounds. Literature from 2000 to the present is covered. The glycosylation reactions leading to the synthesis of GSLs are classified in function of the configuration of the created glycosidic bond (alpha or beta) and of the acceptor used, either azido-sphingosine or ceramide.
Collapse
Affiliation(s)
- José Antonio Morales-Serna
- Departament de Química Analítica i Química Orgànica, Facultat de Química, Universitat Rovira i Virgili, C/Marcelí Domingo s/n, 43005 Tarragona, Spain
| | | | | | | | | |
Collapse
|
19
|
Svensson L, Rydberg L, Hellberg A, Gilliver LG, Olsson ML, Henry SM. Novel glycolipid variations revealed by monoclonal antibody immunochemical analysis of weak ABO subgroups of A. Vox Sang 2005; 89:27-38. [PMID: 15938737 DOI: 10.1111/j.1423-0410.2005.00642.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES The chemical basis of the subgroups of A is largely unknown. We used thin-layer chromatography immunochemical staining techniques together with a range of characterized monoclonal reagents to analyse glycolipids isolated from a variety of weak subgroups. MATERIALS AND METHODS Glycolipids isolated from red cells collected from nine genetically defined individuals of the rare subgroups of A, including a novel A(3) allele (A(2) 539G>A) not described previously, were subjected to a highly sensitive thin-layer chromatographic immunochemical analysis. RESULTS Semicharacterized monoclonal antibodies revealed that, in addition to the expected quantitative differences between common phenotypes and the weak subgroups, qualitative glycolipid differences (or at least an apparent qualitative basis), caused by major changes in the ratios of different structures exist. Specifically it was found that the weakest A-expressing samples (A(el) phenotype) appeared to express an unusual A structure in the 8-12 sugar region. Variable expression of several structures in one of the A weak samples were suggestive of novel blood group A structures. CONCLUSIONS Although no structural characterization could be undertaken, the results are clearly indicative that the variant glycosyltransferases of the rare ABO subgroups are not only inefficient, but they may potentially synthesize novel ABO structures.
Collapse
Affiliation(s)
- L Svensson
- Blood Centre, Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Sphingosines, or sphingoids, are a family of naturally occurring long-chain hydrocarbon derivatives sharing a common 1,3-dihydroxy-2-amino-backbone motif. The majority of sphingolipids, as their derivatives are collectively known, can be found in cell membranes in the form of amphiphilic conjugates, each composed of a polar head group attached to an N-acylated sphingoid, or ceramide. Glycosphingolipids (GSLs), which are the glycosides of either ceramide or myo-inositol-(1-O)-phosphoryl-(O-1)-ceramide, are a structurally and functionally diverse sphingolipid subclass; GSLs are ubiquitously distributed among all eukaryotic species and are found in some bacteria. Since GSLs are secondary metabolites, direct and comprehensive analysis (metabolomics) must be considered an essential complement to genomic and proteomic approaches for establishing the structural repertoire within an organism and deducing its possible functional roles. The glycosphingolipidome clearly comprises an important and extensive subset of both the glycome and the lipidome, but the complexities of GSL structure, biosynthesis, and function form the outlines of a considerable analytical problem, especially since their structural diversity confers by extension an enormous variability with respect to physicochemical properties. This chapter covers selected developments and applications of techniques in mass spectrometric (MS) that have contributed to GSL structural analysis and glycosphingolipidomics since 1990. Sections are included on basic characteristics of ionization and fragmentation of permethylated GSLs and of lithium-adducted nonderivatized GSLs under positive-ion electrospray ionization mass spectrometry (ESI-MS) and collision-induced mass spectrometry (CID-MS) conditions; on the analysis of sulfatides, mainly using negative-ion techniques; and on selected applications of ESI-MS and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to emerging GSL structural, functional, and analytical issues. The latter section includes a particular focus on evolving techniques for analysis of gangliosides, GSLs containing sialic acid, as well as on characterizations of GSLs from selected nonmammalian eukaryotes, such as dipterans, nematodes, cestodes, and fungi. Additional sections focus on the issue of whether it is better to leave GSLs intact or remove the ceramide; on development and uses of thin-layer chromatography (TLC) blotting and TLC-MS techniques; and on emerging issues of high-throughput analysis, including the use of flow injection, liquid chromatography mass spectrometry (LC-MS), and capillary electrophoresis mass spectrometry (CE-MS).
Collapse
Affiliation(s)
- Steven B Levery
- Department of Chemistry, University of New Hamphsire, Durham, USA
| |
Collapse
|
21
|
Lehtilä RL, Lehtilä JO, Roslund MU, Leino R. Selectively protected galactose derivatives for the synthesis of branched oligosaccharides. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.02.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Leonardsson I, Miller-Podraza H, Teneberg S, Breimer ME. Isolation and partial characterization of Galalpha-containing polyglycosylceramides from porcine tissues. Xenotransplantation 2004; 11:97-100. [PMID: 14962298 DOI: 10.1111/j.1399-3089.2004.00076.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mammalian cell surface carbohydrate antigens are present both as glycoproteins and glycolipids. Of the glycolipids, polyglycosylceramides (PGC) have very long carbohydrate chains extending out from the cell surface. Hereto, Gal alpha-terminating xenoantigens in pig tissues have been identified in glycoproteins and short chain glycolipids but no studies of the complex PGC have been performed. In this communication, we describe the isolation and partial characterization of PGC from pig erythrocytes, small intestinal mucosa, kidney and liver. The mucosa, kidney and liver PGC fractions contained a complex pattern of Gal alpha antigens as shown by immunostaining using the Griffonia Simplicifolia isolectin B(4) while no reactivity was found with the erythrocyte PGC fractions. The mucosa PGC fractions stained strongly for blood group A antigens while the erythrocyte PGC fractions were negative. The presence of Gal alpha-terminating PGC compounds in porcine tissue adds further complexity to the distribution of this xenoantigen. Due to the long carbohydrate chains, PGC will be important targets for the Gal alpha xenoantibodies in pig to human xenotransplantation.
Collapse
|