1
|
Obey TJ, Singh MK, Canaj AB, Nichol GS, Brechin EK, Love JB. A Delocalized Mixed-Valence Dinuclear Ytterbium Complex That Displays Intervalence Charge Transfer. J Am Chem Soc 2024; 146:28658-28662. [PMID: 39401076 PMCID: PMC11503763 DOI: 10.1021/jacs.4c12188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
The analysis of intervalence charge transfer (IVCT) in mixed-valence compounds can help understand electron transfer processes that are important in diverse applications such as molecular electronics and artificial photosynthesis. While mixed-valence complexes of the lanthanides are more difficult to access than their transition metal analogues, they have shown IVCT phenomena derived from Robin-Day Class II localized valency or even electronic transitions due to d-d metal-metal bonding. In contrast, we report here the synthesis, characterization, and computational analysis of a rare, Robin-Day Class III, singly reduced dinuclear Yb complex, which is best viewed as having delocalized oxidation states. In this case, no metal-metal bonding occurs and, for the first time, IVCT in a Robin-Day Class III complex resulting from f-f transitions is observed.
Collapse
Affiliation(s)
- Tom J.
N. Obey
- EaStCHEM School of Chemistry, University of Edinburgh, EH9 3FJ, Edinburgh, United Kingdom
| | - Mukesh K. Singh
- EaStCHEM School of Chemistry, University of Edinburgh, EH9 3FJ, Edinburgh, United Kingdom
| | - Angelos B. Canaj
- EaStCHEM School of Chemistry, University of Edinburgh, EH9 3FJ, Edinburgh, United Kingdom
| | - Gary S. Nichol
- EaStCHEM School of Chemistry, University of Edinburgh, EH9 3FJ, Edinburgh, United Kingdom
| | - Euan K. Brechin
- EaStCHEM School of Chemistry, University of Edinburgh, EH9 3FJ, Edinburgh, United Kingdom
| | - Jason B. Love
- EaStCHEM School of Chemistry, University of Edinburgh, EH9 3FJ, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Takeyama T, Tsushima S, Takao K. Controlling mixed-valence states of pyridyldiimino-bis( o-phenolato) ligand radical in uranyl(VI) complexes. Dalton Trans 2024; 53:16671-16684. [PMID: 39330312 DOI: 10.1039/d4dt01821d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Combination of a uranyl(VI) ion (UVIO22+) with a redox-active ligand results in characteristic electronic structures that cannot be achieved by either component alone. In this study, three UVIO22+ complexes that bear symmetric or asymmetric 2,6-diiminopyridine-based ligands were synthesized and found to exhibit a first redox couple between -1.17 V and -1.31 V (vs. Fc0/+) to afford singly reduced complexes. The unique electronic transitions of the singly reduced UVIO22+ complexes observed in the NIR region allowed us to combine spectroelectrochemistry and time-dependent density functional theory (TD-DFT) calculations to determine the redox-active site in these UVIO22+ complexes, i.e., to clarify the distribution of the additional unpaired electron. By exploiting the push-pull effect of electron-donating and -withdrawing substituents, the ligand-based π-radical of the singly reduced UVIO22+ complexes, which tends to delocalize over the ligand, can be localized to specific sites.
Collapse
Affiliation(s)
- Tomoyuki Takeyama
- Department of Applied Chemistry, Sanyo-Onoda City University, 1-1-1, Daigakudori, Sanyo-Onoda, Yamaguchi 756-0884, Japan.
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan.
| | - Satoru Tsushima
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan
| | - Koichiro Takao
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan.
| |
Collapse
|
3
|
Tahara K, Morino T, Morimoto Y, Nakamura Y, Sugimoto K, Ozawa Y, Abe M. Synthetic, Electrochemical, DFT, and Synchrotron X-ray Charge-Density Studies on Oxo-centered Triruthenium Clusters Supported by Electron-Withdrawing Carboxylates. Inorg Chem 2024; 63:19087-19097. [PMID: 39330546 DOI: 10.1021/acs.inorgchem.4c02381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
We herein report the synthesis, characterizations, and synchrotron X-ray charge-density studies of oxo-centered triruthenium(II,III,III) clusters [Ru3O(CHCl2COO)6(py)3] (1) and [Ru3O(CHCl2COO)6(CO)(py)2] (2) (py = pyridine). Dichloroacetate was chosen for its large scattering factor of the Cl atom, and its electron-withdrawing nature results in significant stabilization of the targeted lower-valent Ru3II,III,III state in the cluster framework. Multipole analysis revealed that the difference in electron populations between two crystallographically independent Ru centers is small for 1 (Δ = 0.30 e) but large for 2 (Δ = 1.46 e). Remarkable differences between 1 and 2 are also found in their static deformation density maps; substantial local charge depletion was found around the central μ3O atom for 1, which is less pronounced for 2. According to the topological characterization of Ru-μ3O bonds associated with the bond critical point, bcp, the electron density, ρbcp, is in the range of 0.79-0.89 e Å-3, and the total energy density, Hbcp, is in the range of -0.21 to -0.05 hartree Å-3. These findings represent the first charge-density distribution analysis of mixed-valence multinuclear Ru complexes including comparison between 3d and 4d transition-metal systems.
Collapse
Affiliation(s)
- Keishiro Tahara
- Graduate School of Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun 678-1297, Hyogo, Japan
| | - Takashi Morino
- Graduate School of Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun 678-1297, Hyogo, Japan
| | - Yuto Morimoto
- Faculty of Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun 678-1297, Hyogo, Japan
| | - Yuiga Nakamura
- Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Koto, Sayo-cho, Sayo-gun 679-5198, Hyogo, Japan
| | - Kunihisa Sugimoto
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Koto, Sayo-cho, Sayo-gun 679-5198, Hyogo, Japan
- Department of Chemistry, Faculty of Science and Technology, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Yoshiki Ozawa
- Graduate School of Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun 678-1297, Hyogo, Japan
| | - Masaaki Abe
- Graduate School of Science, University of Hyogo, 3-2-1, Koto, Kamigori-cho, Ako-gun 678-1297, Hyogo, Japan
| |
Collapse
|
4
|
Stoian C, Al Hussein F, Browne WR, Hupf E, Beckmann J. Electronic Coupling in Triferrocenylpnictogens. ACS ORGANIC & INORGANIC AU 2024; 4:545-556. [PMID: 39371325 PMCID: PMC11450725 DOI: 10.1021/acsorginorgau.4c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 10/08/2024]
Abstract
From a fundamental perspective, studies of novel mixed-valent complexes containing ferrocenyl units are motivated by the prospect of improving and extending electron transfer models and theories. Here, the series of triferrocenylpnictogens Fc3E was extended to the heavier analogues (E = As, Sb, and Bi), and the influence of the bridging atom was investigated with Fc3P as a reference. Electrochemical studies elucidate the effect of electrostatic contribution on the large redox splitting (ΔE 1) exhibited by the compounds and solvent stabilization in the case of Fc3As. Structural characterization of the triferrocenylpnictogens combined with spectroelectrochemical studies indicates weak electronic couplings in the related cations [Fc3E]+, suggesting a through-space mechanism.
Collapse
Affiliation(s)
- Corina Stoian
- Institute
for Inorganic Chemistry and Crystallography, Faculty of Biology and
Chemistry, University of Bremen, Leobener Straße 7, Bremen 28359, Germany
| | - Fawaz Al Hussein
- Institute
for Inorganic Chemistry and Crystallography, Faculty of Biology and
Chemistry, University of Bremen, Leobener Straße 7, Bremen 28359, Germany
| | - Wesley R. Browne
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747, AG, The Netherlands
| | - Emanuel Hupf
- Institute
for Inorganic Chemistry and Crystallography, Faculty of Biology and
Chemistry, University of Bremen, Leobener Straße 7, Bremen 28359, Germany
| | - Jens Beckmann
- Institute
for Inorganic Chemistry and Crystallography, Faculty of Biology and
Chemistry, University of Bremen, Leobener Straße 7, Bremen 28359, Germany
| |
Collapse
|
5
|
Murai M, Ono M, Tanaka Y, Akita M. Controlling Redox and Wirelike Charge-Delocalization Properties of Dinuclear Mixed-Valence Complexes with MCp*(dppe) (M = Fe, Ru) Termini Bridged by Metalloporphyrin Linkers. ACS ORGANIC & INORGANIC AU 2024; 4:504-516. [PMID: 39371324 PMCID: PMC11450764 DOI: 10.1021/acsorginorgau.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 10/08/2024]
Abstract
Four dinuclear organometallic molecular wire complexes with diethynylmetalloporphyrin linkers 1 MM' , [5,15-bis{MCp*(dppe)ethynyl}-10,20-diarylporphinato]M' (Cp* = η5-C5Me5; dppe = 1,2-bis(diphenylphosphino)ethane; M/M' = Fe/Zn (1 FeZn ), Ru/Zn (1 RuZn ), Fe/Ni (1 FeNi ), Ru/Ni (1 RuNi ); aryl = 3,5-di-tert-butylphenyl), are synthesized and characterized by NMR, CV, UV-vis-NIR, and ESI-TOF mass spectrometry techniques. Electrochemical investigations combined with electronic absorption spectroscopic studies reveal strong interactions among the electron-donating, redox-active MCp*(dppe) termini and the metalloporphyrin moieties. The monocationic species of the four complexes obtained by chemical oxidation have been characterized as mixed-valence Class II/III or Class III compounds according to the Robin-Day classification despite the long molecular dimension (>1.5 nm), as demonstrated by their intense intervalence charge transfer bands (IVCT) in the near IR region. DFT calculations indicate large spin densities on the metalloporphyrin moieties. Furthermore, the wirelike performance can be finely tuned by coordination of appropriate nitrogen donors to the axial sites of the metalloporphyrin.
Collapse
Affiliation(s)
| | - Masanori Ono
- Laboratory for Chemistry
and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yuya Tanaka
- Laboratory for Chemistry
and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Munetaka Akita
- Laboratory for Chemistry
and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
6
|
Sentyurin VV, Levitskiy OA, Yankova TS, Grishin YK, Lyssenko KA, Goloveshkin AS, Alabugin IV, Magdesieva TV. Double Spin with a Twist: Synthesis and Characterization of a Neutral Mixed-Valence Organic Stable Diradical. J Am Chem Soc 2024; 146:26261-26274. [PMID: 39259835 DOI: 10.1021/jacs.4c08167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A convenient design strategy opens access to neutral open-shell mixed-valence species via the redox transformation of charged stable precursors, i.e., the spiro-fused borate anions. We have implemented this strategy for the synthesis of the first neutral mixed-valence diradical: two neutral mixed-valence radical fragments were assembled via a twisted biphenyl bridge. The diradical is a crystalline solid obtained in almost quantitative yield by using a facile synthetic procedure. It is stable at room temperature in the triplet ground state with a very small singlet/triplet gap. This metal-free diradical can reversibly form five redox states. The diradical exhibits an intense IVCT band in the NIR region and can be assigned as a Class 2 Robin-Day MV (mixed valence) system with weakly interacting redox centers. Computations suggest that this diradical finds itself in a unique tug-of-war between two electron delocalization patterns, Kekulé and non-Kekulé, which gives rise to two geometric isomers that are close in energy but drastically different in spin distribution and polarity. Such bistable spin-systems should be intrinsically switchable and promising for the design of functional spin devices. The scope and limitations of the new redox-strategy for the neutral MV radicals were also tested on other types of spiro-fused borates, revealing structural factors responsible for the evolution from transient to persistent and then to stable radicals.
Collapse
Affiliation(s)
- Vyacheslav V Sentyurin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Oleg A Levitskiy
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Tatiana S Yankova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Yuri K Grishin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Konstantin A Lyssenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Alexander S Goloveshkin
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, Moscow 119934, Russia
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Tatiana V Magdesieva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| |
Collapse
|
7
|
Ryu J, Yeola S, Jonas DM. Generalized Einstein relations between absorption and emission spectra at thermodynamic equilibrium. Proc Natl Acad Sci U S A 2024; 121:e2410280121. [PMID: 39226343 PMCID: PMC11406287 DOI: 10.1073/pnas.2410280121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/03/2024] [Indexed: 09/05/2024] Open
Abstract
We present Einstein coefficient spectra and a detailed-balance derivation of generalized Einstein relations between them that is based on the connection between spontaneous and stimulated emission. If two broadened levels or bands overlap in energy, transitions between them need not be purely absorptive or emissive. Consequently, spontaneous emission can occur in both transition directions, and four Einstein coefficient spectra replace the three Einstein coefficients for a line. At equilibrium, the four different spectra obey five pairwise relationships and one lineshape generates all four. These relationships are independent of molecular quantum statistics and predict the Stokes' shift between forward and reverse transitions required by equilibrium with blackbody radiation. For Boltzmann statistics, the relative strengths of forward and reverse transitions depend on the formal chemical potential difference between the initial and final bands, which becomes the standard chemical potential difference for ideal solutes. The formal chemical potential of a band replaces both the energy and degeneracy of a quantum level. Like the energies of quantum levels, the formal chemical potentials of bands obey the Rydberg-Ritz combination principle. Each stimulated Einstein coefficient spectrum gives a frequency-dependent transition cross-section. Transition cross-sections obey causality and a detailed-balance condition with spontaneous emission, but do not directly obey generalized Einstein relations. Even with an energetic width much less than the photon energy, a predominantly absorptive forward transition with an energetic width much greater than the thermal energy can have such an extreme Stokes' shift that its reverse transition cross-section becomes predominantly absorptive rather than emissive.
Collapse
Affiliation(s)
- Jisu Ryu
- Department of Chemistry, University of Colorado, Boulder, CO 80309-0215
| | - Sarang Yeola
- Department of Physics, University of Colorado, Boulder, CO 80309-0390
| | - David M Jonas
- Department of Chemistry, University of Colorado, Boulder, CO 80309-0215
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309-0027
| |
Collapse
|
8
|
Yoshimura T, Nagata K, Nakano M. Octahedral Hexanuclear Rhenium Cluster Dimers Bridged by Pyrazine or 4,4'-Bipyridine with 23- and 24-Electron Configurations. Inorg Chem 2024; 63:14913-14923. [PMID: 39069964 DOI: 10.1021/acs.inorgchem.4c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
New pyrazine (pz)- and 4,4'-bipyridine (4,4'-bpy)-bridged octahedral hexanuclear rhenium(III) cluster dimers, [{Re6(μ3-S)8Cl5}2(μ-L)]6- (L = pz, [1]6-; L = 4,4'-bpy, [2]6-), with 2 × 24 d-electrons {Re6(24e)}2 were obtained in a single-step reaction via photoirradiation of [Re6(μ3-S)8Cl6]4- with L in a 2:1 ratio at room temperature. The {Re6(23e)}2 dimers, [{Re6(μ3-S)8Cl5}2(μ-L)]4- (L = pz, [1']4-; L = 4,4'-bpy, [2']4-), were synthesized through two-electron oxidation of [1]6- and [2]6-, respectively. The single-crystal X-ray structures of [1]6- and [1']4- were determined, revealing structural distortion of the Re6 core of [1']4- due to the Jahn-Teller effect. The cyclic voltammograms of [1]6- and [2]6- showed two steps of one-electron redox processes attributable to Re6(23e)Re6(24e)/{Re6(24e)}2 and {Re6(23e)}2/Re6(23e)Re6(24e), respectively. The separation between the two redox potentials is small (0.056 V for [1]6- and 0.039 V for [2]6-). The magnetic susceptibilities of [1']4- and [2']4- were almost temperature-independent, with values of 2.98 and 2.85 μB, respectively, indicating paramagnetism. These results suggest weak electronic interaction between two cluster units bridged by pz or 4,4'-bpy in the intercluster mixed valence state. The compounds [1]6- and [2]6- show photoluminescence in the near-infrared region at 296 K in the solid state.
Collapse
Affiliation(s)
- Takashi Yoshimura
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, Suita 565-0871, Japan
| | - Kojiro Nagata
- Core Facility Center, Osaka University, Toyonaka 560-0043, Japan
| | - Motohiro Nakano
- Research Center for Thermal and Entropic Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| |
Collapse
|
9
|
Šrut A, Lear BJ, Krewald V. Symmetric Electron Transfer Coordinates are Intrinsic to Bridged Systems: An ab Initio Treatment of the Creutz-Taube Ion. Angew Chem Int Ed Engl 2024; 63:e202404727. [PMID: 38949626 DOI: 10.1002/anie.202404727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Indexed: 07/02/2024]
Abstract
A long-standing question in electron transfer research concerns the number and identity of collective nuclear motions that drive electron transfer or localisation. It is well established that these nuclear motions are commonly gathered into a so-called electron transfer coordinate. In this theoretical study, we demonstrate that both anti-symmetric and symmetric vibrational motions are intrinsic to bridged systems, and that both are required to explain the characteristic shape of their intervalence charge transfer bands. Using the properties of a two-state Marcus-Hush model, we identify and quantify these two coordinates as linear combinations of normal modes from ab initio calculations. This quantification gives access to the potential coupling, reorganization energy and curvature of the potential energy surfaces involved in electron transfer, independent of any prior assumptions about the system of interest. We showcase these claims with the Creutz-Taube ion, a prototypical Class III mixed valence complex. We find that the symmetric dimension is responsible for the asymmetric band shape, and trace this back to the offset of the ground and excited state potentials in this dimension. The significance of the symmetric dimension originates from geometry dependent coupling, which in turn is a natural consequence of the well-established superexchange mechanism. The conceptual connection between the symmetric and anti-symmetric motions and the superexchange mechanism appears as a general result for bridged systems.
Collapse
Affiliation(s)
- Adam Šrut
- TU Darmstadt, Department of Chemistry, Quantum Chemistry, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Benjamin J Lear
- The Pennsylvania State University, Department of Chemistry, University Park, PA 16802, Pennsylvania, USA
| | - Vera Krewald
- TU Darmstadt, Department of Chemistry, Quantum Chemistry, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| |
Collapse
|
10
|
Zhang X, Jiang X, Zhao Q, Li Y, Feng L, Ye S, Tung CH, Wang W. Synthesis and Characterization of Bridging-Diazene Diiron Half-Sandwich Complexes: The Role of Sulfur Hydrogen Bonding. Inorg Chem 2024; 63:14040-14049. [PMID: 39007501 DOI: 10.1021/acs.inorgchem.4c01783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
We report two bridging-diazene diiron complexes [Cp*Fe(8-quinolinethiolate)]2(μ-N2H2) (1-N2H2) and [Cp*Fe(1,2-Cy2PC6H4S)]2(μ-N2H2) (2-N2H2), synthesized by the reaction of hydrazine with the corresponding thiolate-based iron half-sandwich complex, [Cp*Fe(8-quinolinethiolate)]2 (1) and Cp*Fe(1,2-Cy2PC6H4S) (2). Crystallographic analysis reveals that the thiolate sites in 1-N2H2 and 2-N2H2 can engage in N-H···S hydrogen bonding with the diazene protons. 1-N2H2 is thermally stable in both solid and solution states, allowing for one-electron oxidation to afford a cationic diazene radical complex [1-N2H2]+ at room temperature. In contrast, 2-N2H2 tends to undergo N2H2/N2 transformation, leading to the formation of a Fe(III)-H species by the loss of N2. In addition to stabilizing HN=NH species through the hydrogen bonding, the thiolate-based ligands also seem to facilitate proton-coupled electron transfer, thereby promoting N-H cleavage.
Collapse
Affiliation(s)
- Xin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xuebin Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuting Zhao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yongxian Li
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
11
|
Goodwin MJ, Dickenson JC, Ripak A, Deetz AM, McCarthy JS, Meyer GJ, Troian-Gautier L. Factors that Impact Photochemical Cage Escape Yields. Chem Rev 2024; 124:7379-7464. [PMID: 38743869 DOI: 10.1021/acs.chemrev.3c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The utilization of visible light to mediate chemical reactions in fluid solutions has applications that range from solar fuel production to medicine and organic synthesis. These reactions are typically initiated by electron transfer between a photoexcited dye molecule (a photosensitizer) and a redox-active quencher to yield radical pairs that are intimately associated within a solvent cage. Many of these radicals undergo rapid thermodynamically favored "geminate" recombination and do not diffuse out of the solvent cage that surrounds them. Those that do escape the cage are useful reagents that may undergo subsequent reactions important to the above-mentioned applications. The cage escape process and the factors that determine the yields remain poorly understood despite decades of research motivated by their practical and fundamental importance. Herein, state-of-the-art research on light-induced electron transfer and cage escape that has appeared since the seminal 1972 review by J. P. Lorand entitled "The Cage Effect" is reviewed. This review also provides some background for those new to the field and discusses the cage escape process of both homolytic bond photodissociation and bimolecular light induced electron transfer reactions. The review concludes with some key goals and directions for future research that promise to elevate this very vibrant field to even greater heights.
Collapse
Affiliation(s)
- Matthew J Goodwin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John C Dickenson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexia Ripak
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Alexander M Deetz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jackson S McCarthy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
- Wel Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
12
|
Leiby IS, Parparcén V, Ding N, Kunz KJ, Wolfarth SA, Stevens JE, Nataro C. Cleavage of [Pd 2(PP) 2( μ-Cl) 2][BArF 24] 2 (PP = Bis(phosphino)ferrocene, BArF 24 = Tetrakis(3,5-bis(trifluoromethyl)phenyl)borate) with Monodentate Phosphines. Molecules 2024; 29:2047. [PMID: 38731539 PMCID: PMC11085644 DOI: 10.3390/molecules29092047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
The addition of Na[BArF24] (BArF24 = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate) to [Pd(PP)Cl2] (PP = 1,1'-bis(phosphino)ferrocene ligands) compounds results in the loss of a chloride ligand and the formation of the dimeric species [Pd2(PP)2(μ-Cl)2][BArF24]2. In most cases, the addition of a monodentate phosphine, PR3, to these dimeric species leads to cleaving of the dimer and formation of [Pd(PP)(PR3)Cl][BArF24]. While these reactions are readily observed via a significant color change, the 31P{1H} NMR spectra offer more significant support, as the singlet for the dimer is replaced with three doublets of doublets. The reaction seems to take place for a wide range of PR3 ligands, although there do appear to be steric limitations to the reaction. The compounds were thoroughly characterized by NMR, and X-ray crystal structures of several of the compounds were obtained. In addition, the ferrocenyl backbone of the 1,1'-bis(phosphino)ferrocene ligands provides an opportunity to examine the oxidative electrochemistry of these compounds. In general, the potential at which oxidations of these compounds occurs shows a dependence on the phosphine substituents.
Collapse
Affiliation(s)
- Ian S. Leiby
- Department of Chemistry, Lafayette College, Easton, PA 18045, USA
| | | | - Natalya Ding
- Department of Chemistry, Lafayette College, Easton, PA 18045, USA
| | - Klara J. Kunz
- Department of Chemistry, Lafayette College, Easton, PA 18045, USA
| | | | - Jeremiah E. Stevens
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Chip Nataro
- Department of Chemistry, Lafayette College, Easton, PA 18045, USA
| |
Collapse
|
13
|
Hruska E, Zhu Q, Biswas S, Fortunato MT, Broderick DR, Morales CM, Herbert JM, Turro C, Baker LR. Water-Mediated Charge Transfer and Electron Localization in a Co 3Fe 2 Cyanide-Bridged Trigonal Bipyramidal Complex. J Am Chem Soc 2024; 146:8031-8042. [PMID: 38478877 DOI: 10.1021/jacs.3c11451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The effects of temperature and chemical environment on a pentanuclear cyanide-bridged, trigonal bipyramidal molecular paramagnet have been investigated. Using element- and oxidation state-specific near-ambient pressure X-ray photoemission spectroscopy (NAP-XPS) to probe charge transfer and second order, nonlinear vibrational spectroscopy, which is sensitive to symmetry changes based on charge (de)localization coupled with DFT, a detailed picture of environmental effects on charge-transfer-induced spin transitions is presented. The molecular cluster, Co3Fe2(tmphen)6(μ-CN)6(t-CN)6, abbrev. Co3Fe2, shows changes in electronic behavior depending on the chemical environment. NAP-XPS shows that temperature changes induce a metal-to-metal charge transfer (MMCT) in Co3Fe2 between a Co and Fe center, while cycling between ultrahigh vacuum and 2 mbar of water at constant temperature causes oxidation state changes not fully captured by the MMCT picture. Sum frequency generation vibrational spectroscopy (SFG-VS) probes the role of the cyanide ligand, which controls the electron (de)localization via the superexchange coupling. Spectral shifts and intensity changes indicate a change from a charge delocalized, Robin-Day class II/III high spin state to a charge-localized, class I low spin state consistent with DFT. In the presence of a H-bonding solvent, the complex adopts a localized electronic structure, while removal of the solvent delocalizes the charges and drives an MMCT. This change in Robin-Day classification of the complex as a function of chemical environment results in reversible switching of the dipole moment, analogous to molecular multiferroics. These results illustrate the important role of the chemical environment and solvation on underlying charge and spin transitions in this and related complexes.
Collapse
Affiliation(s)
- Emily Hruska
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Quansong Zhu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Somnath Biswas
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Matthew T Fortunato
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dustin R Broderick
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Christine M Morales
- Department of Chemistry, University of Mount Union, Alliance, Ohio 44601, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - L Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
14
|
Sanderson HJ, Kociok-Köhn G, McMullin CL, Hintermair U. Twinned versus linked organometallics - bimetallic "half-baguette" pentalenide complexes of Rh(I). Dalton Trans 2024; 53:5881-5899. [PMID: 38446046 DOI: 10.1039/d3dt04325h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The application of Mg[Ph4Pn] and Li·K[Ph4Pn] in transmetalation reactions to a range of Rh(I) precursors led to the formation of "half-baguette" anti-[RhI(L)n]2[μ:η5:η5Ph4Pn] (L = 1,5-cyclooctadiene, norbornadiene, ethylene; n = 1, 2) and syn-[RhI(CO)2]2[μ:η5:η5Ph4Pn] complexes as well as the related iridium complex anti-[IrI(COD)]2[μ:η5:η5Ph4Pn]. With CO exclusive syn metalation was obtained even when using mono-nuclear Rh(I) precursors, indicating an electronic preference for syn metalation. DFT analysis showed this to be the result of π overlap between the adjacent M(CO)2 units which overcompensates for dz2 repulsion of the metals, an effect which can be overridden by steric clash of the auxiliary ligands to yield anti-configuration as seen in the larger olefin complexes. syn-[RhI(CO)2]2[μ:η5:η5Ph4Pn] is a rare example of a twinned organometallic where the two metals are held flexibly in close proximity, but the two d8 Rh(I) centres did not show signs of M-M bonding interactions or exhibit Lewis basic behaviour as in some related mono-nuclear Cp complexes due to the acceptor properties of the ligands. The ligand substitution chemistry of syn-[RhI(CO)2]2[μ:η5:η5Ph4Pn] was investigated with a series of electronically and sterically diverse donor ligands (P(OPh)3, P(OMe)3, PPh3, PMe3, dppe) yielding new mono- and bis-substituted complexes, with E-syn-[RhI(CO)(P{OR})3]2[μ:η5:η5Ph4Pn] (R = Me, Ph) characterised by XRD.
Collapse
Affiliation(s)
- Hugh J Sanderson
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Gabriele Kociok-Köhn
- Material and Chemical Characterisation Facility, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Claire L McMullin
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Ulrich Hintermair
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
- Institute for Sustainability, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
15
|
Wang GX, Shan C, Chen W, Wu B, Zhang P, Wei J, Xi Z, Ye S. Unusual Electronic Structures of an Electron Transfer Series of [Cr(μ-η 1 : η 1 -N 2 )Cr] 0/1+/2. Angew Chem Int Ed Engl 2024; 63:e202315386. [PMID: 38299757 DOI: 10.1002/anie.202315386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
In dinitrogen (N2 ) fixation chemistry, bimetallic end-on bridging N2 complexes M(μ-η1 : η1 -N2 )M can split N2 into terminal nitrides and hence attract great attention. To date, only 4d and 5d transition complexes, but none of 3d counterparts, could realize such a transformation. Likewise, complexes {[Cp*Cr(dmpe)]2 (μ-N2 )}0/1+/2+ (1-3) are incapable to cleave N2 , in contrast to their Mo congeners. Remarkably, cross this series the N-N bond length of the N2 ligand and the N-N stretching frequency exhibit unprecedented nonmonotonic variations, and complexes 1 and 2 in both solid and solution states display rare thermally activated ligand-mediated two-center spin transitions, distinct from discrete dinuclear spin crossovers. In-depth analyses using wave function based ab initio calculations reveal that the Cr-N2 -Cr bonding in complexes 1-3 is distinguished by strong multireference character and cannot be described by solely one electron configuration or Lewis structure, and that all intriguing spectroscopic observations originate in their sophisticate multireference electronic structures. More critical is that such multireference bonding of complexes 1-3 is at least a key factor that contributes to their kinetic inertness toward N2 splitting. The mechanistic understanding is then used to rationalize the disparate reactivity of related 3d M(μ-η1 : η1 -N2 )M complexes compared to their 4d and 5d analogs.
Collapse
Affiliation(s)
- Gao-Xiang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Chunxiao Shan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Botao Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Peng Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
16
|
Li TY, Su SD, He Y, Wu XT, Sheng TL. Syntheses, crystal structures and MMCT properties of diruthenium-based cyanido-bridged RuV/VI2-NC-Ru II complexes. Dalton Trans 2024; 53:5010-5019. [PMID: 38226679 DOI: 10.1039/d3dt01861j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The goal of this study was to investigate how the electron-donating capability around the lower valent metal ion and the electron-accepting capability of the higher valent metal ion influence metal to metal charge transfer (MMCT) properties in mixed-valence complexes. A series of trinuclear ruthenium complexes represented as [Ru2(ap-4-Me)3(CH3COO)NCRuCpMex(dppe)][PF6] (CpMex = polymethylcyclopentadienyl, x = 0, 1, and 5; and dppe = 1, 2-bis(diphenylphosphino)ethane, ap-4-Me = 2-anilino-4-methylpyridine) and their one-electron oxidized products were synthesized and fully characterized. The UV-vis-NIR spectra confirmed that as the electron donor character of the CpMex(dppe)RuCN fragment enhanced or the electron-accepting capability of the higher valent diruthenium cluster increased, the RuII → RuV2 or RuVI2 Ru2 MMCT bands shifted to lower energies, which was supported by TDDFT calculations.
Collapse
Affiliation(s)
- Ting-Ya Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shao-Dong Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Yong He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Tian-Lu Sheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| |
Collapse
|
17
|
Palii A, Aldoshin S, Tsukerblat B. Theoretical insight into clocking in a molecular mixed-valence cell of quantum cellular automata through the vibronic approach. J Chem Phys 2024; 160:014302. [PMID: 38174797 DOI: 10.1063/5.0179133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
In this article, we develop a vibronic theory of clocking in molecular quantum cellular automata (QCA). The clocking mechanism is considered for a trigonal trimeric mixed-valence (MV) system with one mobile electron, which is shown to act as the dimeric unit encoding binary information (Boolean states 0 or 1) coupled to a third redox center (Null state). The model includes the electron transfer between the three centers; vibronic coupling of the mobile charge with the "breathing" modes, forming a double degenerate Jahn-Teller vibration of the molecular triangle; and two electric fields, one collinear to the dimeric unit, which controls the binary states, and the other perpendicular to this unit, performing clocking. In the framework of the adiabatic approximation, the potential surface of the trimeric system has been studied and the condition determining switching and clocking has been analyzed in terms of the two controlling fields and the vibronic and transfer parameters. A thorough understanding of the site populations is achieved through the quantum-mechanical solution of the vibronic problem, maintaining the adiabatic condition for the controlling fields. It is shown that a MV trimer can act as a molecular clocked QCA cell, with favorable conditions being a positive electron transfer parameter and sufficiently strong vibronic coupling.
Collapse
Affiliation(s)
- Andrew Palii
- Federal Research Center of Problems of Chemical Physics and Medicine Chemistry of RAS, Moscow Region, Chernogolovka 142432, Russian Federation
| | - Sergey Aldoshin
- Federal Research Center of Problems of Chemical Physics and Medicine Chemistry of RAS, Moscow Region, Chernogolovka 142432, Russian Federation
| | - Boris Tsukerblat
- Department of Chemistry, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| |
Collapse
|
18
|
Tarifa L, Geer AM, Asensio L, López JA, Ciriano MA, Tejel C. Redox-Transmetalation Reactions: Easy Access to Homo- and Heterodimetallic d 8,d 10 Complexes. Inorg Chem 2023; 62:19421-19432. [PMID: 37988130 DOI: 10.1021/acs.inorgchem.3c02200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The ability of the imine PyCH═N-CH2Py (Py = 2-pyridyl, bpi) to behave as a heteroditopic ligand, which is suitable for creating two separate compartments to host metals in different oxidation states, has been developed by studying the reactions of the mixed-valence complexes [(cod)M-Ι(μ-bpi)MΙ(cod)] (M = Rh, Ir) with [M'(Cl)2(PPh3)2] (M' = Pd, Ni). The results depend on the molar ratio of the reagents used (1:1 or 1:2) to give the heterometallic complexes {d10-M',d8-M}-[(PPh3)(Cl)M'0(μ-bpi)MΙ(cod)] (Pd,Rh, 4; Pd,Ir, 5; Ni,Rh, 8; Ni,Ir, 9) and the two-electron mixed-valent compounds [(PPh3)(Cl)M'0(μ-bpi)M'ΙΙ(Cl)] (M' = Ni, 10; Pd, 11), respectively. A redox process occurs in the replacement of the low-valent [(cod)M-I] fragment, whereas the exchange of the [(cod)MI] fragment is redox-neutral. The metal with a d8 configuration in the products exhibits a square-planar geometry coordinated to two (Rh/Ir) or three (Ni/Pd) nitrogen atoms of the bridging bpi ligand. Conversely, the metal with a d10 configuration adopts trigonal-planar geometries, π-bonded to the imine C═N bond. The isolated complexes 4/5 and 10/11, along with the hypothetical heterometallic Pd,Ni compound (12), were studied by DFT methods. Additionally, the T-shaped moiety 'M'ΙΙ(PPh3)(Cl)(η1-CH-N(bpi))', stabilized by a secondary γ-agostic interaction, and the 'M'II(Cl)(κ3N-bpi)' fragment was found to be accessible redoxomers of complexes 10 and 11 by DFT calculations.
Collapse
Affiliation(s)
- Luis Tarifa
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ana M Geer
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Laura Asensio
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - José A López
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Miguel A Ciriano
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Cristina Tejel
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
19
|
Šrut A, Krewald V. Vibrational Coherences of the Photoinduced Mixed-Valent Creutz-Taube Ion Revealed by Excited State Dynamics. J Phys Chem A 2023; 127:9911-9920. [PMID: 37883652 DOI: 10.1021/acs.jpca.3c04415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A recent study of photoinduced mixed-valency in the one-electron reduced form (μ-pz)[RuII(NH3)5]24+ of the Creutz-Taube ion used transient absorption spectroscopy with vis-NIR broadband detection to uncover a mixed-valent excited state with a typical intervalence charge transfer band and a nanosecond lifetime [Pieslinger et al. Angew. Chem., Int. Ed. 2022, 61, e202211747]. Herein, we use excited state dynamics simulations with implicit solvation to elucidate the electronic and vibrational evolution in the first 10 ps after the optical excitation. A manifold of excited states with weak interaction between the metal centers is populated already at time zero due to the breakdown of the Condon approximation and dominates the population of electronic states at short time scales (<0.5 ps). A long-lived vibrational wave packet mostly confined to oscillations of the metal center-bridge distances is observed. The oscillations are traced to the electronic structure properties of states with weak metal-metal coupling. The long-lived mixed-valent excited state of the Creutz-Taube ion analogue is formed vibrationally cold and has a more compact geometry. While experimentally, intersystem crossing and vibrational relaxation were deduced to be completed within 1 ps, our analysis indicates that both processes might persist at longer times.
Collapse
Affiliation(s)
- Adam Šrut
- Department of Chemistry, Theoretical Chemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany
| | - Vera Krewald
- Department of Chemistry, Theoretical Chemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
20
|
Zeng C, Xu QD, Liu XL, Hu SM, Wu XT, Sheng TL. Different delocalized ranges in mixed valence cyanido-metal-bridged Fe-Ru-Fe complexes controlled by terminal ligand substitution modification. Dalton Trans 2023; 52:16858-16869. [PMID: 37910432 DOI: 10.1039/d3dt02208k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
In order to investigate the properties of metal to metal charge transfer (MMCT) influenced by the relative energy level between the bridging unit and the terminal unit, two groups of heterotrimetallic cyanido-metal-bridged complexes, trans-[Cp(dppe)Fe-CN-Ru(MeOpy)4-NC-Fe(dppe)Cp][X]n (1[X]n; n = 2, 3, or 4; X = PF6 or BF4) (Cp = cyclopentadiene, dppe = 1,2-bis(diphenylphosphino)ethane, MeOpy = 4-methoxypyridine) and [Cp*(dppe)Fe-CN-Ru(MeOpy)4-NC-Fe(dppe)Cp*] [X]n (2[X]n; Cp* = 1,2,3,4,5-pentamethylcyclopentadiene; n = 2, 3, or 4; X = PF6 or BF4) were synthesized and fully characterized. The crystallography data suggest different oxidation sites in the ground state for one-electron oxidation products 13+ and 23+, and the electrochemical and Mössbauer spectra suggest that in the one-electron oxidation compounds 13+, the charge is delocalized all along the trimetal backbone Fe-Ru-Fe, while in 23+, the charge is rather delocalized between the two metal parts Fe-Ru. Further oxidation of N3+ gives N4+ (N = 1 or 2), during which a spin transfer towards the terminal units is observed in both series.
Collapse
Affiliation(s)
- Chen Zeng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Qing-Dou Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| | - Xiao-Lin Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Sheng-Min Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| | - Tian-Lu Sheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| |
Collapse
|
21
|
Fataftah MS, Mercado BQ, Holland PL. Valence Delocalization and Metal-Metal Bonding in Carbon-Bridged Mixed-Valence Iron Complexes. Chemistry 2023; 29:e202301962. [PMID: 37574453 PMCID: PMC10843690 DOI: 10.1002/chem.202301962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
The carbide ligand in the iron-molybdenum cofactor (FeMoco) in nitrogenase bridges iron atoms in different oxidation states, yet it is difficult to discern its ability to mediate magnetic exchange interactions due to the structural complexity of the cofactor. Here, we describe two mixed-valent diiron complexes with C-based ketenylidene bridging ligands, and compare the carbon bridges with the more familiar sulfur bridges. The ground state of the [Fe2 (μ-CCO)2 ]+ complex with two carbon bridges (4) is S=1 / 2 ${{ 1/2 }}$ , and it is valence delocalized on the Mössbauer timescale with a small thermal barrier for electron hopping that stems from the low Fe-C force constant. In contrast, one-electron reduction of the [Fe2 (μ-CCO)] complex with one carbon bridge (2) affords a mixed-valence species with a high-spin ground state (S=7 / 2 ${ 7/2 }$ ), and the Fe-Fe distance contracts by 1 Å. Spectroscopic, magnetic, and computational studies of the latter reveal an Fe-Fe bonding interaction that leads to complete valence delocalization. Analysis of near-IR intervalence charge transfer transitions in 5 indicates a very large double exchange constant (B) in the range of 780-965 cm-1 . These results show that carbon bridges are extremely effective at stabilizing valence delocalized ground states in mixed-valent iron dimers.
Collapse
Affiliation(s)
- Majed S Fataftah
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT-06511, USA
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT-06511, USA
| | - Patrick L Holland
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT-06511, USA
| |
Collapse
|
22
|
Chalil Oglou R, Ulusoy Ghobadi TG, Hegner FS, Galán-Mascarós JR, López N, Ozbay E, Karadas F. Manipulating Intermetallic Charge Transfer for Switchable External Stimulus-Enhanced Water Oxidation Electrocatalysis. Angew Chem Int Ed Engl 2023; 62:e202308647. [PMID: 37498680 DOI: 10.1002/anie.202308647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
Electrocatalytic processes involving the oxygen evolution reaction (OER) present a kinetic bottleneck due to the existence of linear-scaling relationships, which bind the energies of the different intermediates in the mechanism limiting optimization. Here, we offer a way to break these scaling relationships and enhance the electrocatalytic activity of a Co-Fe Prussian blue modified electrode in OER by applying external stimuli. Improvements of ≈11 % and ≈57 % were achieved under magnetic field (0.2 T) and light irradiation (100 mW cm-2 ), respectively, when working at fixed overpotential, η=0.6 V at pH 7. The observed enhancements strongly tie in with the intermetallic charge transfer (IMCT) intensity between Fe and Co sites. Density Functional Theory simulations suggest that tuning the IMCT can lead to a change of the OER mechanism to an external stimuli-sensitive spin crossover-based pathway, which opens the way for switchable electrocatalytic devices.
Collapse
Affiliation(s)
- Ramadan Chalil Oglou
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | | | | | - José Ramón Galán-Mascarós
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), 43007, Tarragona, Spain
- ICREA, The Barcelona Institute of Science and Technology (BIST), 08010, Barcelona, Spain
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), 43007, Tarragona, Spain
| | - Ekmel Ozbay
- NANOTAM-Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, 06800, Ankara, Turkey
| | - Ferdi Karadas
- Department of Chemistry, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| |
Collapse
|
23
|
Zeng C, Xu QD, Liu XL, Yang YY, Hu SM, Wu XT, Sheng TL. Metal-Metal Charge Transfer Properties of a Series of Trinuclear Fe 2 Ru and Corresponding Pentanuclear Fe 2 Ru 2 Ag Cyanido-Bridged Complexes. Chemistry 2023; 29:e202300433. [PMID: 37526193 DOI: 10.1002/chem.202300433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/13/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
A series of trimetallic cyanidometal-bridged compounds [Men Cp(dppe)FeII -(μ-NC)-RuII (MeOpy)4 -(μ-CN)-FeII (dppe)CpMen ] - [PF6 ]2 (N[PF6 ]2 , n=0, N =1; n=1, N=2; n=3, N=3; Cp=cyclopentadiene, dppe=1,2-bis(diphenylphosphino)ethane, MeOpy=4-methoxypyridine) and their one- and two-electron oxidized compounds N3+ and N4+ were synthesized and characterized. Meanwhile, a series of corresponding linear cyanido-bridged pentanuclear compounds [Men Cp(dppe)FeIII -(μ-NC)-RuII (MeOpy)4 -(μ-NC)-AgI -(μ-CN)-RuII (MeOpy)4 -(μ-CN)-FeIII (dppe)CpMen ][BF4 ]5 (M[BF4 ]5 , n=0, M=4; n=1, M=5; n=3, M=6) were also obtained and well characterized. The investigations suggest that in the trinuclear system there exists remote interaction between the two Fe centers, but no significant interactions exist across the central silver unit between the metals on the two sides of the silver center in the pentanuclear system. In both the trinuclear N4+ and the pentanuclear M5+ complexes, there exists the neighboring RuII →FeIII MM'CT transitions, and the MM'CT energy in the corresponding trinuclear system is higher than those in the pentanuclear system in which no remote metal-metal interaction occurs. Meanwhile, as the substituted methyl groups on the cyclopentadiene increases, the redox potential of the ruthenium in the trinuclear N4+ series increases, but that in the pentanuclear M5+ complexes decreases.
Collapse
Affiliation(s)
- Chen Zeng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science Fuzhou, Fujian, 350002, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Qing-Dou Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science Fuzhou, Fujian, 350002, P.R. China
| | - Xiao-Lin Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science Fuzhou, Fujian, 350002, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yu-Ying Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science Fuzhou, Fujian, 350002, P.R. China
| | - Sheng-Min Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science Fuzhou, Fujian, 350002, P.R. China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science Fuzhou, Fujian, 350002, P.R. China
| | - Tian-Lu Sheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science Fuzhou, Fujian, 350002, P.R. China
| |
Collapse
|
24
|
Imai T, Sakamaki D, Aoyagi S, Amaya T. Intramolecular Electron Transfer in Multi-Redox Systems Based on Cyclic [3]Spirobifluorenylene Compound. Chemistry 2023:e202302670. [PMID: 37740416 DOI: 10.1002/chem.202302670] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/24/2023]
Abstract
Cyclic [3]spirobifluorenylene with bulky alkyl groups at the ends (1) was designed and synthesized to investigate the electron transfer phenomena in a π-conjugated system including orthogonal π-conjugated chains. The three bifluorenyl units in 1 are conjugated to each other via spiro-conjugation, resulting in the splitting of the HOMO levels to a small extent. Therefore, the SOMO-HOMO gap of the radical cation species is small, which is considered to allow the facile intramolecular electron transfer. The electronic properties of 1 and its partial structures were characterized by absorption and fluorescence measurements and electrochemical analysis. From the electrochemical oxidation, the interchain Coulombic repulsion was observed. In the TD-DFT calculations for the radical cation species of 1, the geometry-featured interchain electronic transitions were visualized by NTO calculations. The radical cation species of 1 generated by chemical oxidation with SbCl5 exhibited a broadened and lower-energy NIR absorption band exceeding 2000 nm. Considering the results of the TD-DFT calculations, the NIR band of the radical cation of 1 was attributed to the intramolecular electron transfer processes among the bifluorenyl units in the macrocycle. ESR experiments also indicated the delocalization of a spin of 1⋅+ in the whole molecule via hole hopping in the ESR time scale at room temperature. This work demonstrates the usefulness of spiro-conjugation as a bridging unit in molecular wires to facilitate smooth electron transfer.
Collapse
Affiliation(s)
- Tomoya Imai
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| | - Daisuke Sakamaki
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Shinobu Aoyagi
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| | - Toru Amaya
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| |
Collapse
|
25
|
Robinson DA, Foster ME, Bennett CH, Bhandarkar A, Webster ER, Celebi A, Celebi N, Fuller EJ, Stavila V, Spataru CD, Ashby DS, Marinella MJ, Krishnakumar R, Allendorf MD, Talin AA. Tunable Intervalence Charge Transfer in Ruthenium Prussian Blue Analog Enables Stable and Efficient Biocompatible Artificial Synapses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207595. [PMID: 36437049 DOI: 10.1002/adma.202207595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Emerging concepts for neuromorphic computing, bioelectronics, and brain-computer interfacing inspire new research avenues aimed at understanding the relationship between oxidation state and conductivity in unexplored materials. This report expands the materials playground for neuromorphic devices to include a mixed valence inorganic 3D coordination framework, a ruthenium Prussian blue analog (RuPBA), for flexible and biocompatible artificial synapses that reversibly switch conductance by more than four orders of magnitude based on electrochemically tunable oxidation state. The electrochemically tunable degree of mixed valency and electronic coupling between N-coordinated Ru sites controls the carrier concentration and mobility, as supported by density functional theory computations and application of electron transfer theory to in situ spectroscopy of intervalence charge transfer. Retention of programmed states is improved by nearly two orders of magnitude compared to extensively studied organic polymers, thus reducing the frequency, complexity, and energy costs associated with error correction schemes. This report demonstrates dopamine-mediated plasticity of RuPBA synapses and biocompatibility of RuPBA with neuronal cells, evoking prospective application for brain-computer interfacing.
Collapse
Affiliation(s)
| | | | | | | | | | - Aleyna Celebi
- Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Nisa Celebi
- Sandia National Laboratories, Livermore, CA, 94550, USA
| | | | | | | | - David S Ashby
- Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Matthew J Marinella
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | | | | | - A Alec Talin
- Sandia National Laboratories, Livermore, CA, 94550, USA
| |
Collapse
|
26
|
Šrut A, Lear BJ, Krewald V. The Marcus dimension: identifying the nuclear coordinate for electron transfer from ab initio calculations. Chem Sci 2023; 14:9213-9225. [PMID: 37655015 PMCID: PMC10466304 DOI: 10.1039/d3sc01402a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/06/2023] [Indexed: 09/02/2023] Open
Abstract
The Marcus model forms the foundation for all modern discussion of electron transfer (ET). In this model, ET results in a change in diabatic potential energy surfaces, separated along an ET nuclear coordinate. This coordinate accounts for all nuclear motion that promotes electron transfer. It is usually assumed to be dominated by a collective asymmetric vibrational motion of the redox sites involved in the ET. However, this coordinate is rarely quantitatively specified. Instead, it remains a nebulous concept, rather than a tool for gaining true insight into the ET pathway. Herein, we describe an ab initio approach for quantifying the ET coordinate and demonstrate it for a series of dinitroradical anions. Using sampling methods at finite temperature combined with density functional theory calculations, we find that the electron transfer can be followed using the energy separation between potential energy surfaces and the extent of electron localization. The precise nuclear motion that leads to electron transfer is then obtained as a linear combination of normal modes. Once the coordinate is identified, we find that evolution along it results in a change in diabatic state and optical excitation energy, as predicted by the Marcus model. Thus, we conclude that a single dimension of the electron transfer described in Marcus-Hush theory can be described as a well-defined nuclear motion. Importantly, our approach allows the separation of the intrinsic electron transfer coordinate from other structural relaxations and environmental influences. Furthermore, the barrier separating the adiabatic minima was found to be sufficiently thin to enable heavy-atom tunneling in the ET process.
Collapse
Affiliation(s)
- Adam Šrut
- Department of Chemistry, Theoretical Chemistry, TU Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| | - Benjamin J Lear
- Department of Chemistry, The Pennsylvania State University University Park PA 16802 USA
| | - Vera Krewald
- Department of Chemistry, Theoretical Chemistry, TU Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| |
Collapse
|
27
|
Gao Y, Li S, Zeng XC, Wu M. Exploitation of mixed-valency chemistry for designing a monolayer with double ferroelectricity and triferroic couplings. NANOSCALE 2023; 15:13567-13573. [PMID: 37565465 DOI: 10.1039/d3nr02216a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Mixed-valence compounds possess both intriguing chemical and physical properties such as the intervalence charge transfer band and thus have been excellent model systems for the investigation of fundamental electron- and charge-transfer phenomena. Herein, we show that valence stratification can be a source of symmetry breaking and generating ferroelectricity in two-dimensional (2D) materials. We present ab initio computation evidence of the monolayer Cu2Cl3 structure with Cu ions being stratified into two separated layers of Cu(I) and Cu(II). Chemically, this unique monolayer not only entails lower formation energy than the bulk CuCl + CuCl2, but also enables the swapping of two valences through vertical ferroelectric switching, leading to a hitherto unreported chemical valencing phenomenon. Notably, the Jahn-Teller distortion of the Cu(II) layer results in another source of symmetry breaking and thus in-plane ferroelectricity. Apart from the valence swapping and self-contained double ferroelectricity, the monolayer's ferroelasticity is also coupled with in-plane ferroelectricity, while the monolayer's ferromagnetism is coupled with vertical polarization owing to the distinct magnetization of each Cu(I) and Cu(II) layer, thereby evoking the long-sought 2D triferroicity as well as triferroic couplings.
Collapse
Affiliation(s)
- Yaxin Gao
- School of Physics and Mechanical Electrical & Engineering, Institute of Theoretical Physics, Hubei University of Education, Wuhan, Hubei 430205, China.
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Sha Li
- School of Physics and Mechanical Electrical & Engineering, Institute of Theoretical Physics, Hubei University of Education, Wuhan, Hubei 430205, China.
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.
| | - Menghao Wu
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
28
|
Kessler BJO, Mansoor IF, Wozniak DI, Emge TJ, Lipke MC. Controlling Intramolecular and Intermolecular Electronic Coupling of Radical Ligands in a Series of Cobaltoviologen Complexes. J Am Chem Soc 2023; 145:15924-15935. [PMID: 37460450 DOI: 10.1021/jacs.3c03725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Controlling electronic coupling between multiple redox sites is of interest for tuning the electronic properties of molecules and materials. While classic mixed-valence (MV) systems are highly tunable, e.g., via the organic bridges connecting the redox sites, metal-bridged MV systems are difficult to control because the electronics of the metal cannot usually be altered independently of redox-active moieties embedded in its ligands. Herein, this limitation was overcome by varying the donor strengths of ancillary ligands in a series of cobalt complexes without directly perturbing the electronics of viologen-like redox sites bridged by the cobalt ions. The cobaltoviologens [1X-Co]n+ feature four 4-X-pyridyl donor groups (X = CO2Me, Cl, H, Me, OMe, NMe2) that provide gradual electronic tuning of the bridging CoII centers, while a related complex [2-Co]n+ with NHC donors supports exclusively CoIII states even upon reduction of the viologen units. Electrochemistry and IVCT band analysis indicate that the MV states of these complexes have electronic structures ranging from fully localized ([2-Co]4+; Robin-Day Class I) to fully delocalized ([1CO2Me-Co]3+; Class III) descriptions, demonstrating unprecedented control over electronic coupling without changing the identity of the redox sites or bridging metal. Additionally, single-crystal XRD characterization of the homovalent complexes [1H-Co]2+ and [1H-Zn]2+ revealed radical-pairing interactions between the viologen ligands of adjacent complexes, representing a type of through-space electronic coupling commonly observed for organic viologen radicals but never before seen in metalloviologens. The extended solid-state packing of these complexes produces 3D networks of radical π-stacking interactions that impart unexpected mechanical flexibility to these crystals.
Collapse
Affiliation(s)
- Brice J O Kessler
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Iram F Mansoor
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Derek I Wozniak
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Thomas J Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
29
|
Clendening RA, Delancey SS, Poore AT, Xue S, Guo Y, Tian S, Ren T. Enabling Valence Delocalization in Iron(III) Macrocyclic Complexes through Ring Unsaturation. Inorg Chem 2023; 62:11121-11133. [PMID: 37390479 PMCID: PMC10688613 DOI: 10.1021/acs.inorgchem.3c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The complexes [FeIII(HMC)(C2DMA)2]CF3SO3 ([2]OTf) and [FeIII(HMTI)(C2Y)2]CF3SO3 ([3a-c]OTf) have been prepared and thoroughly characterized (HMC = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane; HMTI = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene; Y = Fc (ferrocenyl, [3a]OTf), 4-(N,N-dimethyl)anilino (DMA, [3b]OTf), or 4-(N,N-bis(4-methoxyphenyl)anilino (TPA, [3c]OTf); OTf- = CF3SO3-)). Vibrational and electronic absorption spectroelectrochemical analyses following one-electron oxidation of the ethynyl substituent Y revealed evidence of strong coupling in the resultant mixed valent species for all HMTI-based complexes. However, the analogous mixed valent ion based on [2]OTf appeared to be more localized. Thus, the tetra-imino macrocycle HMTI has enabled significant valence delocalization along the -C2-FeIII-C2- bridge. Electron paramagnetic resonance and Mössbauer spectroscopic studies of [3b]OTf reveal that the π-acidity of HMTI lowers the energy of the FeIII dπ orbitals compared to the purely σ-donating HMC. This observation provides a basis for the interpretation of the macrocycle-dependent valence (de)localization.
Collapse
Affiliation(s)
- Reese A. Clendening
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Stephanie S. Delancey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew T. Poore
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shan Xue
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Shiliang Tian
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tong Ren
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
30
|
Hou B, Thoss M, Banin U, Rabani E. Incoherent nonadiabatic to coherent adiabatic transition of electron transfer in colloidal quantum dot molecules. Nat Commun 2023; 14:3073. [PMID: 37244903 PMCID: PMC10224918 DOI: 10.1038/s41467-023-38470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/27/2023] [Indexed: 05/29/2023] Open
Abstract
Electron transfer is a fundamental process in chemistry, biology, and physics. One of the most intriguing questions concerns the realization of the transitions between nonadiabatic and adiabatic regimes of electron transfer. Using colloidal quantum dot molecules, we computationally demonstrate how the hybridization energy (electronic coupling) can be tuned by changing the neck dimensions and/or the quantum dot sizes. This provides a handle to tune the electron transfer from the incoherent nonadiabatic regime to the coherent adiabatic regime in a single system. We develop an atomistic model to account for several states and couplings to the lattice vibrations and utilize the mean-field mixed quantum-classical method to describe the charge transfer dynamics. Here, we show that charge transfer rates increase by several orders of magnitude as the system is driven to the coherent, adiabatic limit, even at elevated temperatures, and delineate the inter-dot and torsional acoustic modes that couple most strongly to the charge transfer dynamics.
Collapse
Affiliation(s)
- Bokang Hou
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Michael Thoss
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
31
|
Han Y, Cheng X, Zhong Y, Cui B. Near‐Infrared Electrochromism Based on Intervalence Charge Transfer. MIXED‐VALENCE SYSTEMS 2023:431-462. [DOI: 10.1002/9783527835287.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
32
|
Li J, Shi Y, Cheng T. Electronic coupling and electron transfer in hydrogen-bonded mixed-valence compounds. Phys Chem Chem Phys 2023. [PMID: 37158078 DOI: 10.1039/d3cp01337e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Electron transfer provided by hydrogen bonds represents a unique and highly significant area of research, as it has a crucial role to play in a wide variety of chemical and biological systems. The hydrogen-bonded mixed-valence system, in the form of donor-hydrogen bond-acceptor, provides an ideal platform for exploring thermally-induced electron transfer across this non-covalent unit. Over the past decades, ongoing progress has been made in this field. Here we critically assess some studies on the qualitative and quantitative evaluation of electronic coupling and thermal electron transfer across hydrogen bond interface. Additionally, selected experimental examples are discussed in terms of intervalence charge transfer, with particular attention paid to the proton-coupled and often overlooked proton-uncoupled electron transfer pathway in hydrogen-bonded mixed-valence systems. We further highlight the major limitations of this research area and suggest potential directions for future exploration.
Collapse
Affiliation(s)
- Juanjuan Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yuqing Shi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Tao Cheng
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| |
Collapse
|
33
|
Wedal JC, Anderson-Sanchez LM, Dumas MT, Gould CA, Beltrán-Leiva MJ, Celis-Barros C, Páez-Hernández D, Ziller JW, Long JR, Evans WJ. Synthesis and Crystallographic Characterization of a Reduced Bimetallic Yttrium ansa-Metallocene Hydride Complex, [K(crypt)][(μ-Cp An)Y(μ-H)] 2 (Cp An = Me 2Si[C 5H 3(SiMe 3)-3] 2), with a 3.4 Å Yttrium-Yttrium Distance. J Am Chem Soc 2023; 145:10730-10742. [PMID: 37133919 DOI: 10.1021/jacs.3c01405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The reduction of a bimetallic yttrium ansa-metallocene hydride was examined to explore the possible formation of Y-Y bonds with 4d1 Y(II) ions. The precursor [CpAnY(μ-H)(THF)]2 (CpAn = Me2Si[C5H3(SiMe3)-3]2) was synthesized by hydrogenolysis of the allyl complex CpAnY(η3-C3H5)(THF), which was prepared from (C3H5)MgCl and [CpAnY(μ-Cl)]2. Treatment of [CpAnY(μ-H)(THF)]2 with excess KC8 in the presence of one equivalent of 2.2.2-cryptand (crypt) generates an intensely colored red-brown product crystallographically identified as [K(crypt)][(μ-CpAn)Y(μ-H)]2. The two rings of each CpAn ligand in the reduced anion [(μ-CpAn)Y(μ-H)]21- are attached to two yttrium centers in a "flyover" configuration. The 3.3992(6) and 3.4022(7) Å Y···Y distances between the equivalent metal centers within two crystallographically independent complexes are the shortest Y···Y distances observed to date. Ultraviolet-visible (UV-visible)/near infrared (IR) and electron paramagnetic resonance (EPR) spectroscopy support the presence of Y(II), and theoretical analysis describes the singly occupied molecular orbital (SOMO) as an Y-Y bonding orbital composed of metal 4d orbitals mixed with metallocene ligand orbitals. A dysprosium analogue, [K(18-crown-6)(THF)2][(μ-CpAn)Dy(μ-H)]2, was also synthesized, crystallographically characterized, and studied by variable temperature magnetic susceptibility. The magnetic data are best modeled with the presence of one 4f9 Dy(III) center and one 4f9(5dz2)1 Dy(II) center with no coupling between them. CASSCF calculations are consistent with magnetic measurements supporting the absence of coupling between the Dy centers.
Collapse
Affiliation(s)
- Justin C Wedal
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | | | - Megan T Dumas
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Colin A Gould
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - María J Beltrán-Leiva
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Cristian Celis-Barros
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Dayán Páez-Hernández
- Center of Applied Nanoscience (CANS), Universidad Andres Bello, Santiago 8370146, Chile
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - William J Evans
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
34
|
Popli C, Jang Y, Misra R, D'Souza F. Charge Resonance and Photoinduced Charge Transfer in Bis( N, N-dimethylaminophenyl-tetracyanobutadiene)-diketopyrrolopyrrole Multimodular System. J Phys Chem B 2023; 127:4286-4299. [PMID: 37133351 DOI: 10.1021/acs.jpcb.3c01528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Intervalence charge transfer (IVCT) or charge resonance is often observed in redox-active systems encompassed of two identical electroactive groups, where one of the groups is either oxidized or reduced and serves as a model system to improve our fundamental understanding of charge transfer. This property has been explored in the present study in a multimodular push-pull system carrying two N,N-dimethylaminophenyl-tetracyanobutadiene (DMA-TCBD) entities covalently linked to the opposite ends of bis(thiophenyl)diketopyrrolopyrrole (TDPP). Electrochemical or chemical reduction of one of the TCBDs promoted electron resonance between them, exhibiting an IVCT absorption peak in the near-infrared area. The comproportionation energy, -ΔGcom, and equilibrium constant, Kcom, evaluated from the split reduction peak were, respectively, 1.06 × 104 J/mol and 72.3 M-1. Excitation of the TDPP entity in the system promoted the thermodynamically feasible sequential charge transfer and separation of charges in benzonitrile, wherein the IVCT peak formed upon charge separation served as a signature peak in characterizing the product. Further, transient data analyzed using Global Target Analysis revealed the charge separation to take place in a ps time scale (k ∼ 1010 s-1) as a result of close positioning and strong electronic interaction between the entities. The significance of IVCT in probing excited-state processes is evidenced by the present study.
Collapse
Affiliation(s)
- Charu Popli
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Youngwoo Jang
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| |
Collapse
|
35
|
Shen J, He W. The fabrication strategies of near-infrared absorbing transition metal complexes. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
36
|
Zilberg S, Tsukerblat B, Palii A. Polaronic Mechanism of Vibronic Localization in Mixed-Valence Cation Radicals with a Non-Conjugated Chromophore on the Bridge. J Phys Chem A 2023; 127:3281-3292. [PMID: 37040558 DOI: 10.1021/acs.jpca.2c07241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
In quest of a controllable intramolecular electron transfer (ET) across a bridge, we study the cation-radical form of the parent 1,4-diallyl-butane (I) and its derivatives (II)-(VI). In these mixed-valence (MV) compounds, the bridge of variable length connecting allyl redox sites can be either saturated (-CH2 CH2-) (I, III, and V) or unsaturated, modified by the π-spacer (-HC═CH-) (II, IV, and VI). Ab initio calculations for the charge delocalized transition structure and for fully optimized localized form of 1,ω-diallyl cation radicals I-VI allowed us to estimate the potential barriers for ET between the terminal allyl groups, vibronic coupling, and ET parameters. The ET barrier in all compounds with the π-fragment on the bridge is shown to be higher with respect to that in the systems with a saturated bridge. We propose a model based on the concept of a specific polaronic effect of the spacer. Charge localization at an allyl group creates an electric field polarizing the π-fragment and the bridge as a whole. The induced dipole moment interacts with the localized charge giving rise to the additional vibronic stabilization in a self-consistent manner without an appreciable change of localized charge. Utilization of this spacer-driven polaronic effect is expected to provide a route to a controllable ET in bridged MV compounds.
Collapse
Affiliation(s)
- Shmuel Zilberg
- Department of Chemical Sciences, Materials Research Center, Ariel University, 4076414 Ariel, Israel
| | - Boris Tsukerblat
- Department of Chemical Sciences, Materials Research Center, Ariel University, 4076414 Ariel, Israel
- Department of Chemistry, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Andrew Palii
- Laboratory of Molecular Magnetic Nanomaterials, Federal Research Center of Problems of Chemical Physics and Medical Chemistry, 142432 Chernogolovka, Russian Federation
| |
Collapse
|
37
|
Carter C, Kratish Y, Marks TJ. Influence of Rare-Earth Ion Radius on Metal-Metal Charge Transfer in Trinuclear Mixed-Valent Complexes. Inorg Chem 2023; 62:4799-4813. [PMID: 36921086 DOI: 10.1021/acs.inorgchem.2c03973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
We report the synthesis and characterization of a highly conjugated bisferrocenyl pyrrolediimine ligand, Fc2PyrDIH (1), and its trinuclear complexes with rare earth ions─(Fc2PyrDI)M(N(TMS)2)2 (2-M, M = Sc, Y, Lu, La). Crystal structures, nuclear magnetic resonance (NMR) spectra, and ultraviolet/visible/near-infrared (UV/vis-NIR) data are presented. The latter are in good agreement with DFT calculations, illuminating the impact of the rare earth ionic radius on NIR charge transfer excitations. For [2-Sc]+, the charge transfer is at 11,500 cm-1, while for [2-Y]+, only a d-d transition at 8000 cm-1 is observed. Lu has an ionic radius in between Sc and Y, and the [2-Lu]+ complex exhibits both transitions. From time-dependent density functional theory (TDDFT) analysis, we assign the 11,500 cm-1 transition as a mixture of metal-to-ligand charge transfer (MLCT) and metal-to-metal charge transfer (MMCT), rather than pure metal-to-metal CT because it has significant ligand character. Typically, the ferrocenes moieties have high rotational freedom in bis-ferrocenyl mixed valent complexes. However, in the present (Fc2PyrDI)M(N(TMS)2)2 complexes, ligand-ligand repulsions lock the rotational freedom so that rare-earth ionic radius-dependent geometric differences increasingly influence orbital overlap as the ionic radius falls. The Marcus-Hush coupling constant HAB trends as [2-Sc]+ > [2-Lu]+ > [2-Y]+.
Collapse
Affiliation(s)
- Cole Carter
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Yosi Kratish
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tobin J Marks
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
38
|
Ramírez-Wierzbicki I, Pieslinger GE, Aramburu-Trošelj BM, Abate PO, Cadranel A. Ru Monoimines with Extended Excited-State Lifetimes and Geometrical Modulation of Photoinduced Mixed-Valence Interactions. Inorg Chem 2023; 62:3808-3816. [PMID: 36802519 DOI: 10.1021/acs.inorgchem.2c04054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The photophysical properties of monodentate-imine ruthenium complexes do not usually fulfil the requirements for supramolecular solar energy conversion schemes. Their short excited-state lifetimes, like the 5.2 ps metal-to-ligand charge transfer (MLCT) lifetime of [Ru(py)4Cl(L)]+ with L = pz (pyrazine), preclude bimolecular or long-range photoinduced energy or electron transfer reactions. Here, we explore two strategies to extend the excited-state lifetime, based on the chemical modification of the distal N atom of pyrazine. On one hand, we used L = pzH+, where protonation stabilized MLCT states, rendering thermal population of MC states less favorable. On the other hand, we prepared a symmetric bimetallic arrangement in which L = {(μ-pz)Ru(py)4Cl} to enable hole delocalization via photoinduced mixed-valence interactions. A lifetime extension of 2 orders of magnitude is accomplished, with charge transfer excited states living 580 ps and 1.6 ns, respectively, reaching compatibility with bimolecular or long-range photoinduced reactivity. These results are similar to those obtained with Ru pentaammine analogues, suggesting that the strategy employed is of general applicability. In this context, the photoinduced mixed-valence properties of the charge transfer excited states are analyzed and compared with those of different analogues of the Creutz-Taube ion, demonstrating a geometrical modulation of the photoinduced mixed-valence properties.
Collapse
Affiliation(s)
- Ivana Ramírez-Wierzbicki
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.,CONICET─Universidad de Buenos Aires, Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - German E Pieslinger
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.,CONICET─Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Bruno M Aramburu-Trošelj
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.,CONICET─Universidad de Buenos Aires, Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Pedro O Abate
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.,CONICET─Universidad de Buenos Aires, Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Alejandro Cadranel
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.,CONICET─Universidad de Buenos Aires, Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.,Department Chemie und Pharmazie, Physikalische Chemie Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen 91058, Germany.,Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, Erlangen 91058, Germany
| |
Collapse
|
39
|
Kamin AA, Moseley IP, Oh J, Brannan EJ, Gannon PM, Kaminsky W, Zadrozny JM, Xiao DJ. Geometry-dependent valence tautomerism, magnetism, and electrical conductivity in 1D iron–tetraoxolene chains. Chem Sci 2023; 14:4083-4090. [PMID: 37063793 PMCID: PMC10094740 DOI: 10.1039/d2sc06392a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Here we show how a simple change in the geometry of 1D iron–tetraoxolene chains dramatically alters the observed physical properties, including the presence of valence tautomerism, strong magnetic coupling, and electrical conductivity.
Collapse
Affiliation(s)
- Ashlyn A Kamin
- Department of Chemistry, University of Washington Seattle Washington 98195 USA
| | - Ian P Moseley
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| | - Jeewhan Oh
- Department of Chemistry and Chemical Biology, Harvard University Cambridge Massachusetts 02138 USA
| | - E J Brannan
- Department of Chemistry, University of Washington Seattle Washington 98195 USA
| | - Paige M Gannon
- Department of Chemistry, University of Washington Seattle Washington 98195 USA
| | - Werner Kaminsky
- Department of Chemistry, University of Washington Seattle Washington 98195 USA
| | - Joseph M Zadrozny
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| | - Dianne J Xiao
- Department of Chemistry, University of Washington Seattle Washington 98195 USA
| |
Collapse
|
40
|
Bhunia S, Chattopadhyay S. Mono-anionic succinic acid bridged cationic cobalt(III/II/III) compounds of N2O2 donor ‘reduced Schiff base’ ligands containing perchlorate counter ions: Synthesis, structures and different non-covalent interactions in self-assembly. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
41
|
Harrison DP, Grotjahn R, Naher M, Ghazvini SMBH, Mazzucato DM, Korb M, Moggach SA, Lambert C, Kaupp M, Low PJ. Quantum Interference in Mixed-Valence Complexes: Tuning Electronic Coupling Through Substituent Effects. Angew Chem Int Ed Engl 2022; 61:e202211000. [PMID: 36031588 PMCID: PMC9828041 DOI: 10.1002/anie.202211000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 01/12/2023]
Abstract
Whilst 2- or 5-OMe groups on the bridging phenylene ring in [{Cp*(dppe)RuC≡C}2 (μ-1,3-C6 H4 )]+ have little influence on the electronic structure of this weakly coupled mixed-valence complex, a 4-OMe substituent enhances ground state electron delocalization, and increases the intensity of the IVCT transition. Vibrational frequency and TDDFT calculations (LH20t-D3(BJ), def2-SVP, COSMO (CH2 Cl2 )) on ([{Cp*(dppe)RuC≡C}2 (μ-1,3-C6 H3 -n-OMe)]+ (n=2, 4, 5) models are in excellent agreement with the experimental results. The stronger ground state coupling is attributed to the change in composition of the β-HOSO brought about by the 4-OMe group, which is ortho or para to each of the metal fragments. The intensity of the IVCT transition increases with the greater overlap of the β-HOSO and β-LUSO, whilst the relative phases of the β-HOSO and β-LUSO in the 4-OMe substituted complex are consistent with predictions of constructive quantum interference from molecular circuit rules.
Collapse
Affiliation(s)
- Daniel P. Harrison
- School of Molecular SciencesUniversity of Western Australia35 Stirling HighwayCrawleyWA, 6009Australia
| | - Robin Grotjahn
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
- Present address: Department of ChemistryUniversity of California, Irvine1102 Natural Science IIIrvineCA 92697-2025USA
| | - Masnun Naher
- School of Molecular SciencesUniversity of Western Australia35 Stirling HighwayCrawleyWA, 6009Australia
| | - Seyed M. B. H. Ghazvini
- School of Molecular SciencesUniversity of Western Australia35 Stirling HighwayCrawleyWA, 6009Australia
| | - Daniel M. Mazzucato
- School of Molecular SciencesUniversity of Western Australia35 Stirling HighwayCrawleyWA, 6009Australia
| | - Marcus Korb
- School of Molecular SciencesUniversity of Western Australia35 Stirling HighwayCrawleyWA, 6009Australia
| | - Stephen A. Moggach
- School of Molecular SciencesUniversity of Western Australia35 Stirling HighwayCrawleyWA, 6009Australia
| | - Colin Lambert
- Department of PhysicsUniversity of LancasterLancasterLA1 4YBUK
| | - Martin Kaupp
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| | - Paul J. Low
- School of Molecular SciencesUniversity of Western Australia35 Stirling HighwayCrawleyWA, 6009Australia
| |
Collapse
|
42
|
Liu XL, Li Y, Xu QD, Yang YY, Fu JH, Wu XT, Sheng TL. Influence of the CN Orientation on the Degree of Electron Delocalization of Ru–Ru–Ru Mixed-Valent Complexes. Inorg Chem 2022; 61:17392-17401. [DOI: 10.1021/acs.inorgchem.2c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao-Lin Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, P. R. China
| | - Qing-Dou Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, P. R. China
| | - Yu-Ying Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, P. R. China
| | - Jin-Hui Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, P. R. China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, P. R. China
| | - Tian-Lu Sheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
43
|
Ramírez‐Wierzbicki I, Cotic A, Cadranel A. Photoinduced Intervalence Charge Transfers: Spectroscopic Tools to Study Fundamental Phenomena and Applications. Chemphyschem 2022; 23:e202200384. [PMID: 35785464 PMCID: PMC9805035 DOI: 10.1002/cphc.202200384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Indexed: 01/09/2023]
Abstract
The exploitation of excited state chemistry for solar energy conversion or photocatalysis has been continuously increasing, and the needs of a transition to a sustainable human development indicate this trend will continue. In this scenario, the study of mixed valence systems in the excited state offers a unique opportunity to explore excited state electron transfer reactivity, and, in a broader sense, excited state chemistry. This Concept article analyzes recent contributions in the field of photoinduced mixed valence systems, i. e. those where the mixed valence core is absent in the ground state but created upon light absorption. The focus is on the utilization of photoinduced intervalence charge transfer bands, detected via transient absorption spectroscopy, as key tools to study fundamental phenomena like donor/acceptor inversion, hole delocalization, coexistence of excited states and excited state nature, together with applications in molecular electronics.
Collapse
Affiliation(s)
- Ivana Ramírez‐Wierzbicki
- Instituto de Química Física de MaterialesMedio Ambiente y Energía (INQUIMAE)CONICET – Universidad de Buenos AiresPabellón 2, Ciudad UniversitariaC1428EHABuenos AiresArgentina
- Departamento de Química InorgánicaAnalítica y Química FísicaUniversidad de Buenos AiresFacultad de Ciencias Exactas y NaturalesPabellón 2, Ciudad UniversitariaC1428EHABuenos AiresArgentina
| | - Agustina Cotic
- Instituto de Química Física de MaterialesMedio Ambiente y Energía (INQUIMAE)CONICET – Universidad de Buenos AiresPabellón 2, Ciudad UniversitariaC1428EHABuenos AiresArgentina
- Departamento de Química InorgánicaAnalítica y Química FísicaUniversidad de Buenos AiresFacultad de Ciencias Exactas y NaturalesPabellón 2, Ciudad UniversitariaC1428EHABuenos AiresArgentina
| | - Alejandro Cadranel
- Instituto de Química Física de MaterialesMedio Ambiente y Energía (INQUIMAE)CONICET – Universidad de Buenos AiresPabellón 2, Ciudad UniversitariaC1428EHABuenos AiresArgentina
- Departamento de Química InorgánicaAnalítica y Química FísicaUniversidad de Buenos AiresFacultad de Ciencias Exactas y NaturalesPabellón 2, Ciudad UniversitariaC1428EHABuenos AiresArgentina
- Department Chemie und PharmaziePhysikalische ChemieFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstraße 391058ErlangenGermany
| |
Collapse
|
44
|
Tanaka Y, Kawano R, Akita M. Acene Size-Dependent Transition of The Radical Centers From the Metal to The Acene Parts In Monocationic Dinuclear (Diethynylacene)diyl Complexes. Chemistry 2022; 28:e202201358. [PMID: 35680560 PMCID: PMC9804824 DOI: 10.1002/chem.202201358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 01/09/2023]
Abstract
Controlling radical localization/delocalization is important for functional materials. The present paper describes synthesis and results of electrochemical, spectroscopic, and theoretical studies of diruthenium (p-diethynylacene)diyl complexes, Me3 Si-(C≡C)2 -Ru(dppe)2 -C≡C-Ar-C≡C-Ru(dppe)2 -(C≡C)2 -SiMe3 (1-6) (dppe: 1,2-bis(diphenylphosphino)ethane), and their monocationic radical species ([1]+ -[6]+ ). The HOMO-LUMO energy gaps can be finely tuned by the acene rings in the bridging ligands installed, as indicated by the absorption maxima of the electronic spectra of 1-6 ranging from the UV region even to the NIR region. The cationic species [1]+ -[6]+ show two characteristic NIR bands, which are ascribed to the charge resonance (CR) and π-π* transition bands, as revealed by spectroelectrochemistry. Expansion of the acene rings in [1]+ -[6]+ causes (1) blue shifts of the CR bands and red shifts of the π-π* transition bands and (2) charge localization on the acene parts as evidenced by the ESR, DFT and TD-DFT analyses. Notably, the monocationic complexes of the larger acene derivatives are characterized as the non-classical acene-localized radicals.
Collapse
Affiliation(s)
- Yuya Tanaka
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
| | - Reo Kawano
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
| | - Munetaka Akita
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology4259 Nagatsuta, Midori-kuYokohama226-8503Japan
| |
Collapse
|
45
|
Mungalimane A, Sateesha K, Mussuvir Pasha K, Dibdalli Y, Patil M, Siruguri V, Reddy R. Syntheses and magnetic properties of substituted bis-indacenyl bi-metallic complexes & application. REVISTA COLOMBIANA DE QUÍMICA 2022. [DOI: 10.15446/rev.colomb.quim.v51n1.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Organometallic compounds, Bis (2,4,6,8 teramethyl-indacenyl) di Iron (1), Bis (2,4,6,8 teramethyl s-indacenyl) mono iron, mono cobalt (2), and Bis (2,6 diethyl-4,8-dimethyl-s-indacenyl) di cobalt (3) were synthesised by means of salt elimination strategy, using Fe(II) and Co(II) salts. The compounds were characterised through spectroscopic and electrochemical methods. Magnetic measurements were carried out by Physical Property Measurement System (PPMS). Mossbauer spectroscopic data reveals that in all compounds, surprisingly, Iron is in +3 oxidation state. DFT calculations have been carried out to understand the change in the oxidation state of a metal. DFT study confirms the electron transfer nature of ligand to metal. Cyclic voltametric study on these compounds shows a large separation (ΔE>800mV) between two oxidation peaks confirming the strong interaction between the metal centres. Magnetic measurements on these organometallic compounds reveals that they exhibit a ferrimagnetic behaviour at temperatures below 40 K.
Collapse
|
46
|
Xu QD, Zeng C, Su SD, He Y, Liu Y, Hu SM, Wu XT, Sheng TL. Investigation of the electron transfer properties between metal centers in binuclear and trinuclear cyanido-bridged mixed valence complexes with cis/ trans-configuration. Dalton Trans 2022; 51:13938-13948. [PMID: 36040443 DOI: 10.1039/d2dt01313d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To investigate the electron transfer properties between metal centers and their influencing factors in binuclear and trinuclear cyanido-bridged mixed valence complexes with cis/trans-configuration, binuclear cis-[Cp(dppe)Fe(μ-NC)Ru(5,5'-dmbpy)2(μ-CN)][PF6]n (cis-1[PF6]n, n = 1, 2) and trinuclear cis/trans-[Cp(dppe)Fe(μ-NC)Ru(5,5'-dmbpy)2(μ-CN)Fe(dppe)Cp][PF6]n (cis/trans-2[PF6]n, n = 2, 3, 4) (Cp = 1,3-cyclopentadiene, dppe = 1,2-bis(diphenylphosphino)ethane, 5,5'-dmbpy = 5,5'-dimethyl-2,2'-bipyridyl) cyanido-bridged complexes were synthesized and well characterized. The experimental results indicate that the presence of the other terminal fragment Cp(dppe)FeIII in cis-2[PF6]4 results in higher MMCT energy than that of cis-1[PF6]2. In addition, the trans-configuration is more conducive to electron transfer between metal centers than the cis-configuration in trinuclear cyanido-bridged mixed valence complexes. Moreover, these mixed valence complexes cis-1[PF6]2 and cis/trans-2[PF6]n (n = 3, 4) could be assigned to Class II systems according to Robin and Day.
Collapse
Affiliation(s)
- Qing-Dou Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| | - Chen Zeng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Shao-Dong Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| | - Yong He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yang Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Sheng-Min Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| | - Tian-Lu Sheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| |
Collapse
|
47
|
Kumar M, Ahmad S, Ali A. Catalytic Reactivity Supported by Redox-Active Ligands Framing: A Mini Review. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Safari P, Gückel S, Gluyas JBG, Moggach SA, Kaupp M, Low PJ. The Use of Bridging Ligand Substituents to Bias the Population of Localized and Delocalized Mixed‐Valence Conformers in Solution. Chemistry 2022; 28:e202200926. [PMID: 35642131 PMCID: PMC9401031 DOI: 10.1002/chem.202200926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Parvin Safari
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley, WA 6009 Australia
| | - Simon Gückel
- Institut für Chemie Theoretische Chemie/Quantenchemie Sekr. C7 Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Josef B. G. Gluyas
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley, WA 6009 Australia
| | - Stephen A. Moggach
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley, WA 6009 Australia
| | - Martin Kaupp
- Institut für Chemie Theoretische Chemie/Quantenchemie Sekr. C7 Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Paul J. Low
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley, WA 6009 Australia
| |
Collapse
|
49
|
Wolfarth SA, Colicchio NG, Nataro CS, Reinheimer EW, Nataro C. Cleavage of the dimeric heterometallic complexes [Pd(dppf)(μ-Cl)]2[BArF24]2 (dppf = 1,1′-bis(diphenylphosphino)ferrocene, BArF24 = tetrakis(bis-3,5-trifluoromethylphenyl)borate) via addition of monodentate phosphine ligands. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Prototype of cell for quantum cellular automata: multimode vibronic model for a two-electron mixed valence molecular square. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|