1
|
Dombrowski JP, Kalendra V, Ziegler MS, Lakshmi KV, Bell AT, Tilley TD. M-Ge-Si thermolytic molecular precursors and models for germanium-doped transition metal sites on silica. Dalton Trans 2024; 53:7340-7349. [PMID: 38602311 DOI: 10.1039/d4dt00644e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The synthesis, thermolysis, and surface organometallic chemistry of thermolytic molecular precursors based on a new germanosilicate ligand platform, -OGe[OSi(OtBu)3]3, is described. Use of this ligand is demonstrated with preparation of complexes containing the first-row transition metals Cr, Mn, and Fe. The thermolysis and grafting behavior of the synthesized complexes, Fe{OGe[OSi(OtBu)3]3}2 (FeGe), Mn{OGe[OSi(OtBu)3]3}2(THF)2 (MnGe) and Cr{OGe[OSi(OtBu)3]3}2(THF)2 (CrGe), was evaluated using a combination of thermogravimetric analysis; nuclear magnetic resonance (NMR), ultraviolet-visible (UV-Vis), and electron paramagnetic resonance (EPR) spectroscopies; and single-crystal X-ray diffraction (XRD). Grafting of the precursors onto SBA-15 mesoporous silica and subsequent calcination in air led to substantial changes in transition metal coordination environments and oxidation states, the implications of which are discussed in the context of low-coordinate and low oxidation state thermolytic molecular precursors.
Collapse
Affiliation(s)
- James P Dombrowski
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| | - Vidmantas Kalendra
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Micah S Ziegler
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Alexis T Bell
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 201 Gilman Hall, Berkeley, CA, USA
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| |
Collapse
|
2
|
Hu Y, Zhang S, Zhang Z, Zhou H, Li B, Sun Z, Hu X, Yang W, Li X, Wang Y, Liu S, Wang D, Lin J, Chen W, Wang S. Enhancing Photocatalytic-Transfer Semi-Hydrogenation of Alkynes Over Pd/C 3 N 4 Through Dual Regulation of Nitrogen Defects and the Mott-Schottky Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304130. [PMID: 37403556 DOI: 10.1002/adma.202304130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
The selective hydrogenation of alkynes is an important reaction; however, the catalytic activity and selectivity in this reaction are generally conflicting. In this study, ultrafine Pd nanoparticles (NPs) loaded on a graphite-like C3 N4 structure with nitrogen defects (Pd/DCN) are synthesized. The resulting Pd/DCN exhibits excellent photocatalytic performance in the transfer hydrogenation of alkynes with ammonia borane. The reaction rate and selectivity of Pd/DCN are superior to those of Pd/BCN (bulk C3 N4 without nitrogen defects) under visible-light irradiation. The characterization results and density functional theory calculations show that the Mott-Schottky effect in Pd/DCN can change the electronic density of the Pd NPs, and thus enhances the hydrogenation selectivity toward phenylacetylene. After 1 h, the hydrogenation selectivity of Pd/DCN reaches 95%, surpassing that of Pd/BCN (83%). Meanwhile, nitrogen defects in the supports improve the visible-light response and accelerate the transfer and separation of photogenerated charges to enhance the catalytic activity of Pd/DCN. Therefore, Pd/DCN exhibits higher efficiency under visible light, with a turnover frequency (TOF) of 2002 min-1 . This TOF is five times that of Pd/DCN under dark conditions and 1.5 times that of Pd/BCN. This study provides new insights into the rational design of high-performance photocatalytic transfer hydrogenation catalysts.
Collapse
Affiliation(s)
- Yaning Hu
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Shuo Zhang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hexin Zhou
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Bing Li
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Zhiyi Sun
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuemin Hu
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Wenxiu Yang
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xiaoyan Li
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Yu Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Shuhu Liu
- Beijing Synchrontron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100029, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jie Lin
- Ningbo Institute of Materials Technology and Engineering, Ningbo, 315201, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shuo Wang
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| |
Collapse
|
3
|
Tang S, Li L, Cao X, Yang Q. Ni -chitosan/carbon nanotube: An efficient biopolymer -inorganic catalyst for selective hydrogenation of acetylene. Heliyon 2023; 9:e13523. [PMID: 36873148 PMCID: PMC9975094 DOI: 10.1016/j.heliyon.2023.e13523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
This work developed an efficient Ni catalyst based on chitosan for selective hydrogenation of acetylene. The Ni catalyst was prepared by the reaction of the chitosan/carbon nanotube composite with NiSO4 solution. The synthesized Ni-chitosan/carbon nanotube catalyst was characterized by inductively coupled plasma, FTIR, SEM and XRD. The results of FTIR and XRD demonstrated that Ni2+ successfully coordinated with chitosan. The addition of chitosan greatly improved the catalytic performances of Ni-chitosan/carbon nanotube catalyst. Over the Ni-chitosan/carbon nanotube catalyst, both the acetylene conversion and the selectivity to ethylene all achieved 100% at 160 °C and 190 °C, respectively. The catalytic performances of 6 mg Ni-chitosan/carbon nanotube catalyst were even better than that of 400 mg Ni single atom catalyst in literature. Extending the crosslinking time of chitosan and increasing the amount of the crosslinking agent were beneficial to enhance the catalytic effect of Ni-chitosan/carbon nanotube catalyst.
Collapse
Affiliation(s)
- Siye Tang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Liying Li
- Henan Pingmei Shenma Dongda Chemistry Co., Ltd, Kaifeng 475003, China
| | - Xinxiang Cao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Qingqing Yang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
4
|
Li J, Yao Z, Zhao J, Deng S, Wang S, Wang J. Microkinetic simulations of acetylene(acetylene-d2) hydrogenation(deuteration) on Ag nanoparticles. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Probing the Roles of S Atom and Nanoparticle Size over Different Sizes of S-modified Cu and Pd Nanoparticles in Regulating Catalytic Performance of Acetylene Semi-hydrogenation. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Wang L, Wang B, Fan M, Ling L, Zhang R. Unraveling the Structure and Composition Sensitivity of Transition Metal Phosphide toward Catalytic Performance of C2H2 Semi-Hydrogenation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Wang Y, Wu Y, Guo X, Wang B, Fan M, Zhang R. Cu Catalysts Doped with a Heteroatom into the Subsurface: Unraveling the Role of Subsurface Chemistry in Tuning the Catalytic Performance of C 2H 2 Selective Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41896-41911. [PMID: 36097393 DOI: 10.1021/acsami.2c08539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Heteroatoms doped into the subsurface of transition metals play a vital role in heterogeneous catalysis via either expressing surface structures or even directly participating in the reaction. Herein, DFT calculations and microkinetic modeling are implemented to examine C2H2 selective hydrogenation over heteroatom (H, B, C, N, or P)-doped Cu(111) and Cu(211) subsurfaces, which are compared with pure Cu(111) and Cu(211) to unravel the role of subsurface chemistry in tuning the surface structure and further regulating catalytic performance. Our results indicate that the catalytic performance toward C2H2 selective hydrogenation is closely related to the type of doped subsurface heteroatom and the Cu surface coordination environment, which can be attributed to the simultaneous change of Cu surface geometric and electronic structures. Catalytic performance improvement over the heteroatom-doped Cu(111) is generally better than that over the doped Cu(211); especially, B- or N-doped Cu(111) has excellent C2H4 activity and selectivity and greatly inhibits green oil. For the heteroatom-doped Cu(211), better performance is only obtained on P-Cu(211), which is still lower than the B- and N-doped Cu(111). The subsurface heteroatom doping should focus on high-coordination Cu(111) instead of low-coordination Cu(211). AIMD simulations verified the thermal stability of B-Cu(111) and N-Cu(111); both were screened out to be the most suitable catalysts toward C2H2 hydrogenation. This work clearly unravels the role of subsurface chemistry in heterogeneous catalysis and contributes to the rational design of high-performance metal catalysts by tuning surface structures with the heteroatom into the subsurface.
Collapse
Affiliation(s)
- Yuan Wang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Yueyue Wu
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Xinyi Guo
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Baojun Wang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Maohong Fan
- Departments of Chemical and Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Riguang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| |
Collapse
|
8
|
Semi-Hydrogenation of Acetylene to Ethylene Catalyzed by Bimetallic CuNi/ZSM-12 Catalysts. Catalysts 2022. [DOI: 10.3390/catal12091072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The purpose of this work is to develop a low-cost and high-performance catalyst for the selective catalytic hydrogenation of acetylene to ethylene. Non-precious metals Cu and Ni were selected as active ingredients for this study. Using ZSM-12 as a carrier, Cu-Ni bimetallic catalysts of CuNix/ZSM-12 (x = 5, 7, 9, 11) with different Ni/Cu ratios were prepared by incipient wetness impregnation method. The total Cu and Ni loading were 2 wt%. Under the optimal reaction conditions, the acetylene conversion was 100%, and the ethylene selectivity was 82.48%. The CuNi7/ZSM-12 prepared in this work exhibits good performance in the semi-hydrogenation of acetylene to ethylene with low cost and has potential for industrial application.
Collapse
|
9
|
Sun M, Wang F, Lv G, Zhang X. Effective Inhibition of Ethane Generation on Fe 5C 2 Nanoparticles Doped with ppm Level of Pd for Selective Hydrogenation of Acetylene. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mingshuai Sun
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Fumin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Guojun Lv
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu China
| | - Xubin Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
10
|
Ligand-coordination effects on the selective hydrogenation of acetylene in single-site Pd-ligand supported catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Zhu Y, Jian C, Xue R, Zhang W, Guo R, Gao Y, Chen DL, Zhang F, Zhu W, Wang FF. Theoretical understanding on all-solid frustrated Lewis pair sites of C 2N anchored by single metal atom. J Chem Phys 2022; 157:054704. [DOI: 10.1063/5.0100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Designing all-solid heterogeneous catalysts with frustrated Lewis pairs (FLPs) has aroused great attentions recently because of its appealing low dissociation energy for H2 molecule and thus a promotion of hydrogenation reaction is expected. The sterically encumbered Lewis acid (metal site) and base (nitrogen site) in the cavity of single transition metal atom doped M/C2N sheet makes it potential candidate with FLP, while a comprehensive understanding of its intrinsic property and reactivity is still required. Calculations show that the complete dissociation of H2 molecule into two H* at the N sites requires two steps, i.e., heterolytic cleavage of H2 molecule and the transfer of H* from metal site to N site, which are highly related to the acidity of the metal site. The Ni/C2N and Pd/C2N, which outperform over the other 8 transition metal atom (M) anchored M/C2N candidates, possess low energy barriers for the complete dissociation of H2 molecule, with values of only 0.30 and 0.20 eV, respectively. Furthermore, both Ni/C2N and Pd/C2N catalysts can achieve semi-hydrogenation of C2H2 into C2H4, with overall barriers of 0.81 and 0.75 eV, respectively, lower than many reported catalysts. It is speculated that M/C2N catalysts with intrinsic FLPs may also find applications in other important hydrogenation reaction.
Collapse
Affiliation(s)
| | | | | | | | - Rou Guo
- Zhejiang Normal University, China
| | | | | | | | | | | |
Collapse
|
12
|
Feng H, Ding H, Wang S, Liang Y, Deng Y, Yang Y, Wei M, Zhang X. Machine-Learning-Assisted Catalytic Performance Predictions of Single-Atom Alloys for Acetylene Semihydrogenation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25288-25296. [PMID: 35622997 DOI: 10.1021/acsami.2c02317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Selective semihydrogenation of acetylene for the production of polymer-grade ethylene is a significant chemical industrial process. Facile activization of acetylene and weak adsorption of ethylene are critical requirements for high-performance catalysis. Single-atom alloys (SAAs) have strong binding effect on acetylene and weak effect on ethylene, which have been regarded as the superior catalysts for acetylene semihydrogenation. Herein, we established a pioneering machine learning (ML) assisted approach to investigate the reaction activity and selectivity of 70 SAA catalysts for acetylene semihydrogenation. As the most desirable ML model, the gradient boosting regression (GBR) algorithm has been extended to predict the energy barrier of *C2Hn (n = 2-4) hydrogenation with a root-mean-square error (RMSE) of only 0.02 eV. Notably, five candidate SAAs with excellent activity and selectivity for acetylene semihydrogenation are screened out via accessible descriptors. These data of ML prediction have been verified by DFT calculation with a high-accuracy (error less than 0.07 eV). This work demonstrates the potential of ML-assisted approach for predicting the energy barrier of transition state and simultaneously provides a convenient approach for the rational design of efficient catalysts.
Collapse
Affiliation(s)
- Haisong Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hu Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Si Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yujie Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuan Deng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
13
|
Xie W, Xu J, Chen J, Wang H, Hu P. Achieving Theory-Experiment Parity for Activity and Selectivity in Heterogeneous Catalysis Using Microkinetic Modeling. Acc Chem Res 2022; 55:1237-1248. [PMID: 35442027 PMCID: PMC9069691 DOI: 10.1021/acs.accounts.2c00058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Microkinetic modeling based on density functional
theory (DFT)
energies plays an essential role in heterogeneous catalysis because
it reveals the fundamental chemistry for catalytic reactions and bridges
the microscopic understanding from theoretical calculations and experimental
observations. Microkinetic modeling requires building a set of ordinary
differential equations (ODEs) based on the calculation results of
thermodynamic properties of adsorbates and kinetic parameters for
the reaction elementary steps. Solving a microkinetic model can extract
information on catalytic chemistry, including critical reaction intermediates,
reaction pathways, the surface species distribution, activity, and
selectivity, thus providing vital guidelines for altering catalysts. However, the quantitative reliability of traditional microkinetic
models is often insufficient to conclusively extrapolate the mechanistic
details of complex reaction systems. This can be attributed to several
factors, the most important of which is the limitation of obtaining
an accurate estimation of the energy inputs via traditional calculation
methods. These limitations include the difficulty of using static
DFT methods to calculate reaction energies of adsorption/desorption
processes, often rate-controlling or selectivity-determining steps,
and the inadequate consideration of surface coverage effects. In addition,
the robust microkinetic software is rare, which also complicates the
resolution of complex catalytic systems. In this Account, we
review our recent works toward refining the
predictions of microkinetic modeling in heterogeneous catalysis and
achieving theory–experiment parity for activity and selectivity.
First, we introduce CATKINAS, a microkinetic software developed in
our group, and show how it disentangles the problem that traditional
microkinetic software has and how it can now be applied to obtain
kinetic results for more sophisticated reaction systems. Second, we
describe a molecular dynamics method developed recently to obtain
the free-energy changes for the adsorption/desorption process to fill
in the missing energy inputs. Third, we show that a rigorous consideration
of surface coverage effects is pivotal for building more realistic
models and obtaining accurate kinetic results. Following a series
of studies on acetylene hydrogenation reactions on Pd catalysts, we
demonstrate how this new approach can provide an improved quantitative
understanding of the mechanism, active site, and intrinsic structural
sensitivity. Finally, we conclude with a brief outlook and the remaining
challenges in this field.
Collapse
Affiliation(s)
- Wenbo Xie
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| | - Jiayan Xu
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| | - Jianfu Chen
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haifeng Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - P. Hu
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
14
|
Wang Y, Wang B, Fan M, Ling L, Zhang R. C2H2 semi-hydrogenation over Cu catalysts: Revealing the influence of Cu active site types on the catalytic performance. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Xie W, Reid G, Hu P. Discovery of a New Solvent Co-Catalyzed Mechanism in Heterogeneous Catalysis: A First-Principles Study with Molecular Dynamics on Acetaldehyde Hydrogenation on Birnessite. JACS AU 2022; 2:328-334. [PMID: 35252983 PMCID: PMC8889551 DOI: 10.1021/jacsau.1c00452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Indexed: 06/14/2023]
Abstract
Heterogenous hydrogenation reactions are essential in a wide range of chemical industries. In this work, we find that the hydrogenation of acetaldehyde on birnessite cannot occur through the traditional mechanisms due to the strong adsorption of the aldehyde and hydrogen on the surface, using first-principles calculations. We discover that this reaction can occur feasibly via a solvent-cocatalyzed mechanism with molecular hydrogen in the liquid phase: a methanol solvent or a similar solvent is required for the reaction. Free energy calculations shows that the methanol solvent preferentially fills the oxygen vacancies of the catalyst surface and spontaneously dissociates on the surface, in which the resulting hydroxyl group then acts as the coordination site for the carbonyl bond and allows the reaction to proceed without adsorption of the reactants on the surface. The reasons this new mechanism is more favorable over the traditional mechanisms in the literature are scrutinized and discussed. The new mechanism may be followed in many other systems.
Collapse
|
16
|
Fu B, McCue AJ, Liu Y, Weng S, Song Y, He Y, Feng J, Li D. Highly Selective and Stable Isolated Non-Noble Metal Atom Catalysts for Selective Hydrogenation of Acetylene. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04758] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Baoai Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Box 98, 15 Bei San Huan East Road, Beijing 100029, China
| | - Alan J. McCue
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, U.K
| | - Yanan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Box 98, 15 Bei San Huan East Road, Beijing 100029, China
| | - Shaoxia Weng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Box 98, 15 Bei San Huan East Road, Beijing 100029, China
| | - Yuanfei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Box 98, 15 Bei San Huan East Road, Beijing 100029, China
| | - Yufei He
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Box 98, 15 Bei San Huan East Road, Beijing 100029, China
| | - Junting Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Box 98, 15 Bei San Huan East Road, Beijing 100029, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Box 98, 15 Bei San Huan East Road, Beijing 100029, China
| |
Collapse
|
17
|
Yin P, Jie Y, Zhao XJ, Feng YL, Sun T, Rao DM, Pu M, Yan H. Effect of point defects on acetylene hydrogenation reaction over Ni(111) surface: a density functional theory study. Phys Chem Chem Phys 2021; 23:27340-27347. [PMID: 34854437 DOI: 10.1039/d1cp03599a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory (DFT) calculations are carried out to investigate the effect of point defects on acetylene hydrogenation reaction over Ni(111) surface with three different defect concentrations (DC = 0.0500, 0.0625, and 0.0833), compared with the perfect Ni(111) surface. The adsorptions of C2 species and H atoms and the mechanism of acetylene hydrogenation via the ethylene pathway are systematically analyzed. The results indicate that the existence of defects will make C2 species and H atoms more inclined to adsorb near the defects. Introducing an appropriate amount of point defect concentration can enhance the catalytic activity and ethylene selectivity of Ni. In this work, DC = 0.0625 Ni(111) surface has the highest catalytic activity and selectivity of ethylene. This work provides useful theoretical information on the effect of defects on acetylene hydrogenation and is helpful for the design of Ni and related metal catalysts with defects.
Collapse
Affiliation(s)
- Pan Yin
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yao Jie
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiao-Jie Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yu-Liang Feng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Tao Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - De-Ming Rao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hong Yan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
18
|
Chen X, Shi C, Wang XB, Li WY, Liang C. Intermetallic PdZn nanoparticles catalyze the continuous-flow hydrogenation of alkynols to cis-enols. Commun Chem 2021; 4:175. [PMID: 36697793 PMCID: PMC9814770 DOI: 10.1038/s42004-021-00612-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/23/2021] [Indexed: 01/28/2023] Open
Abstract
Designing highly active and stable lead-free palladium-based catalysts without introducing surfactants and stabilizers is vital for large-scale and high-efficiency manufacturing of cis-enols via continuous-flow semi-hydrogenation of alkynols. Herein, we report an intermetallic PdZn/ZnO catalyst, designed by using the coupling strategy of strong electrostatic adsorption and reactive metal-support interaction, which can be used as a credible alternative to the commercial PdAg/Al2O3 and Lindlar catalysts. Intermetallic PdZn nanoparticles with electron-poor active sites on a Pd/ZnO catalyst significantly boost the thermodynamic selectivity with respect to the mechanistic selectivity and therefore enhance the selectivity towards cis-enols. Based on in situ diffuse reflectance infrared Fourier-transform spectra as well as simulations, we identify that the preferential adsorption of alkynol over enol on PdZn nanoparticles suppresses the over-hydrogenation of enols. These results suggest the application of fine surface engineering technology in oxide-supported metal (particles) could tune the ensemble and ligand effects of metallic active sites and achieve directional hydrogenation in fine chemical synthesis.
Collapse
Affiliation(s)
- Xiao Chen
- grid.30055.330000 0000 9247 7930State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
| | - Chuang Shi
- grid.30055.330000 0000 9247 7930State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
| | - Xing-Bao Wang
- grid.440656.50000 0000 9491 9632State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024 China ,grid.440656.50000 0000 9491 9632Key Laboratory of Coal Science and Technology (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024 China
| | - Wen-Ying Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China. .,Key Laboratory of Coal Science and Technology (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024, China.
| | - Changhai Liang
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
19
|
C2H2 semi-hydrogenation on the Pdshell@Mcore (M = Cu, Ag, Au) alloy catalysts: The influence of shell Pd ensemble form on the catalytic activity and selectivity. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Wang L, Zhao B, Russell CK, Fan M, Wang B, Ling L, Zhang R. Cu2O-catalyzed C2H2 selective hydrogenation: Use of S for efficiently enhancing C2H4 selectivity and reducing the formation of green oil precursor. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Adsorption Behavior and Electron Structure Engineering of Pd-IL Catalysts for Selective Hydrogenation of Acetylene. Catal Letters 2021. [DOI: 10.1007/s10562-020-03485-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Qi Y, Wang B, Fan M, Li D, Zhang R. C2H2 semi-hydrogenation on the metal M (M = Cu, Ag, Au) alloyed single-atom Pd catalysts: Effects of Pd coordination number and environment on the catalytic performance. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Sun D, Bi Q, Deng M, Jia B, Huang F. Atomically dispersed Pd-Ru dual sites in an amorphous matrix towards efficient phenylacetylene semi-hydrogenation. Chem Commun (Camb) 2021; 57:5670-5673. [PMID: 33977994 DOI: 10.1039/d1cc00923k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Optimizing the active sites to balance the conversion and selectivity of the target reaction has long been a challenging quest in developing noble metal-based catalysts. By dispersing Pd and Ru in an amorphous zirconium hydrogen phosphate matrix cross-linked by ionic inorganic oligomers, highly diluted noble metal (<0.2 mol%) can be utilized as dual single-atom sites in oxides for the semi-hydrogenation of phenylacetylene with optimized conversion and selectivity (both >90%) to styrene. In situ DRIFT-IR results suggested the fast generation of surface hydroxyl groups during the catalytic reaction, indicating the high efficiency of the single-atom sites to dissociate bound H2. This work provides an easily scaled-up method for the production of cost-effective single-atom catalysts extendable to various oxide matrices.
Collapse
Affiliation(s)
- Du Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Qingyuan Bi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Mingxia Deng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Bingquan Jia
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China. and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
24
|
Zheng W, Ma L, Wang B, Wang J, Zhang R. C2H2 selective hydrogenation over the CuxMy or PdxNy intermetallic compounds: The influences of partner metal type and ratio on the catalytic performance. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Metallic nanoparticles for electrocatalytic reduction of halogenated organic compounds: A review. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Xie W, Xu J, Ding Y, Hu P. Quantitative Studies of the Key Aspects in Selective Acetylene Hydrogenation on Pd(111) by Microkinetic Modeling with Coverage Effects and Molecular Dynamics. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05345] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Wenbo Xie
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| | - Jiayan Xu
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| | - Yunxuan Ding
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| | - P. Hu
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| |
Collapse
|
27
|
Yang K, Yang B. Addressing the uncertainty of DFT-determined hydrogenation mechanisms over coinage metal surfaces. Faraday Discuss 2021; 229:50-61. [PMID: 33660703 DOI: 10.1039/c9fd00122k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory (DFT) has been considered as a powerful tool for the identification of reaction mechanisms. However, it is still unclear whether the error of DFT calculations would lead to mis-identification of mechanisms. Here, taking the hydrogenation of acetylene and 1,3-butadiene as model reactions and employing a well-trained Bayesian error estimation functional with van der Waals correlation (BEEF-vdW), we try to estimate the error of DFT calculation results statistically, and therefore predict the reliability of the hydrogenation mechanisms identified. With an ensemble of 2000 functionals obtained around the BEEF-vdW functional as well as a descriptor developed to represent the possibility of different mechanisms, we found that the non-Horiuti-Polanyi mechanism is preferred on Ag(211) and Au(211), while the Horiuti-Polanyi mechanism is dominant on Cu(211). We further discovered that the descriptor is linearly correlated with the adsorption energies of reaction intermediates during acetylene and butadiene hydrogenation, and the hydrogenation of strongly adsorbed species are more likely to follow the Horiuti-Polanyi mechanism. We found the probability of following the non-HP mechanism obeys the order Cu(211) < Au(211) < Ag(211). Our work gives a more comprehensive explanation for the mechanisms of coinage metal catalyzed hydrogenation reactions, and also provides more theoretical insights into the development of new high-performance catalysts for selective hydrogenation reactions.
Collapse
Affiliation(s)
- Kunran Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. and CAS Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
28
|
The effects of doping metal type and ratio on the catalytic performance of C2H2 semi-hydrogenation over the intermetallic compound-containing Pd catalysts. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Zhao J, He L, Yu J, Shi Y, Miao R, Guan Q, Ning P. Preparation of MCM-41 supported nickel NPs for the high-efficiency semi-hydrogenation of acetylene. NEW J CHEM 2021. [DOI: 10.1039/d0nj03632c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-efficiency nonnoble-metal catalysts for acetylene hydrogenation.
Collapse
Affiliation(s)
- Jieyu Zhao
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming
- China
| | - Liang He
- BiomassChem Group
- Faculty of Chemical Engineering
- Kunming University of Science and Technology
- Kunming
- China
| | - Jiangdong Yu
- Development Research Center of Yunnan Provincial People's Government
- Kunming
- P. R. China
| | - Yuzhen Shi
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming
- China
| | - Rongrong Miao
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming
- China
| | - Qingqing Guan
- Faculty of Civil Engineering and Mechanics
- Kunming University of Science and Technology
- Kunming
- China
| | - Ping Ning
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming
- China
| |
Collapse
|
30
|
Hu M, Jin L, Dang Y, Suib SL, He J, Liu B. Supported Pt Nanoparticles on Mesoporous Titania for Selective Hydrogenation of Phenylacetylene. Front Chem 2020; 8:581512. [PMID: 33330371 PMCID: PMC7718006 DOI: 10.3389/fchem.2020.581512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/14/2020] [Indexed: 11/26/2022] Open
Abstract
Semi-hydrogenation of alkynes to alkenes is one of the most important industrial reactions. However, it remains technically challenging to obtain high alkene selectivity especially at a high alkyne conversion because of kinetically favorable over hydrogenation. In this contribution, we show that supported ultrasmall Pt nanoparticles (2.5 nm) on mesoporous TiO2 (Pt@mTiO2) remarkably improve catalytic performance toward semi-hydrogenation of phenylacetylene. Pt@mTiO2 is prepared by co-assembly of Pt and Ti precursors with silica colloidal templates via an evaporation-induced self-assembly process, followed by further calcination for thermal decomposition of Pt precursors and crystallization of mTiO2 simultaneously. As-resultant Pt@mTiO2 discloses a high hydrogenation activity of phenylacetylene, which is 2.5 times higher than that of commercial Pt/C. More interestingly, styrene selectivity over Pt@mTiO2 remains 100% in a wide phenylacetylene conversion window (20–75%). The styrene selectivity is >80% even at 100% phenylacetylene conversion while that of the commercial Pt/C is 0%. The remarkable styrene selectivity of the Pt@mTiO2 is derived from the weakened styrene adsorption strength on the atop Pt sites as observed by diffuse reflectance infrared Fourier transform spectroscopy with CO as a probe molecule (CO-DRIFTS). Our strategy provides a new avenue for promoting alkyne to alkene transformation in the kinetically unfavorable region through novel catalyst preparation.
Collapse
Affiliation(s)
- Mingzhen Hu
- Jiangsu Key Laboratory of New Power Batteries, Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China.,Department of Chemistry, University of Connecticut, Mansfield, CT, United States
| | - Lei Jin
- Department of Chemistry, University of Connecticut, Mansfield, CT, United States
| | - Yanliu Dang
- Institute of Materials Science, University of Connecticut, Mansfield, CT, United States
| | - Steven L Suib
- Department of Chemistry, University of Connecticut, Mansfield, CT, United States.,Institute of Materials Science, University of Connecticut, Mansfield, CT, United States
| | - Jie He
- Department of Chemistry, University of Connecticut, Mansfield, CT, United States.,Institute of Materials Science, University of Connecticut, Mansfield, CT, United States
| | - Ben Liu
- Jiangsu Key Laboratory of New Power Batteries, Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
31
|
Liu Y, Fu F, McCue A, Jones W, Rao D, Feng J, He Y, Li D. Adsorbate-Induced Structural Evolution of Pd Catalyst for Selective Hydrogenation of Acetylene. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03897] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanan Liu
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengzhi Fu
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Alan McCue
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, U.K
| | - Wilm Jones
- Department of Chemistry, University College London, 20 Gower Street, London WC1E 6BT, U.K
| | - Deming Rao
- Institute of Science and Technology Strategy, Jiangxi Academy of Science, Jiangxi 330096, China
| | - Junting Feng
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yufei He
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dianqing Li
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
32
|
Zhang J, Yang J, Cheng L, Wang Y, Feng G. Adsorption of acetylene on Sn-doped Ni(111) surfaces: a density functional study. J Mol Model 2020; 26:310. [PMID: 33084983 DOI: 10.1007/s00894-020-04568-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022]
Abstract
First-principle density functional theory calculations have been performed to investigate the adsorption of C2H2 on Ni(111) and Sn@Ni(111) at different coverages. At low coverage, the C2H2 molecule is strongly adsorbed on Ni(111) and the dissociation of the H atom is not favorable. Furthermore, the more the H atom dissociated, the more unstable the system is. However, the dissociation structure of C2H+H has the largest adsorption energy on Sn@Ni(111), indicating that the dissociation structure is more stable than molecular adsorbed C2H2. At moderate coverage, there is some repulsive interaction between two C2H2 molecules, inducing the decrease in adsorption energy. On Ni(111), the two C2H2 tend to adsorb separately, however, the dimer C4H4 has the largest adsorption energy on Sn@Ni(111). At high coverage, the trimer derivative benzene has the largest adsorption energy on both Ni(111) and Sn@Ni(111) surfaces. The adsorption energies of the formed benzene are very high on the two systems, even larger than those of three individual adsorbed C2H2.
Collapse
Affiliation(s)
- Jing Zhang
- School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, 030021, Shanxi, People's Republic of China.
| | - Junyu Yang
- School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, 030021, Shanxi, People's Republic of China
| | - Lihong Cheng
- Department of Material Science and Engineering, Jiangxi Science and Technology Normal University, Nanchang, 330038, People's Republic of China.
| | - Yan Wang
- School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, 030021, Shanxi, People's Republic of China
| | - Gang Feng
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, College of Chemistry, Nanchang University, Nanchang, 330031, Jiangxi, People's Republic of China.
| |
Collapse
|
33
|
Gunnoe TB. ACS Catalysis Highlights Its Most Cited Papers from Around the Globe: United Kingdom. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Wang Y, Kang L. Selective hydrogenation of acetylene catalyzed by nickel and nitrogen-doped C34: A density functional theory study. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Zhang Y, Sun X, Zhao Y, Su H, Murayama T, Qi C. C, N Co-Decorated Alumina-Supported Au Nanoparticles: Enhanced Catalytic Performance for Selective Hydrogenation of Acetylene. Top Catal 2020. [DOI: 10.1007/s11244-020-01378-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Facilitating hydrogen atom migration via a dense phase on palladium islands to a surrounding silver surface. Proc Natl Acad Sci U S A 2020; 117:22657-22664. [PMID: 32879000 DOI: 10.1073/pnas.2010413117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The migration of species across interfaces can crucially affect the performance of heterogeneous catalysts. A key concept in using bimetallic catalysts for hydrogenation is that the active metal supplies hydrogen atoms to the host metal, where selective hydrogenation can then occur. Herein, we demonstrate that, following dihydrogen dissociation on palladium islands, hydrogen atoms migrate from palladium to silver, to which they are generally less strongly bound. This migration is driven by the population of weakly bound states on the palladium at high hydrogen atom coverages which are nearly isoenergetic with binding sites on the silver. The rate of hydrogen atom migration depends on the palladium-silver interface length, with smaller palladium islands more efficiently supplying hydrogen atoms to the silver. This study demonstrates that hydrogen atoms can migrate from a more strongly binding metal to a more weakly binding surface under special conditions, such as high dihydrogen pressure.
Collapse
|
37
|
Effect of IB-metal on Ni/SiO2 catalyst for selective hydrogenation of acetylene. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63568-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Probe into the effects of surface composition and ensemble effect of active sites on the catalytic performance of C2H2 semi-hydrogenation over the Pd-Ag bimetallic catalysts. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115549] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Cao Y, Zhang H, Ji S, Sui Z, Jiang Z, Wang D, Zaera F, Zhou X, Duan X, Li Y. Adsorption Site Regulation to Guide Atomic Design of Ni–Ga Catalysts for Acetylene Semi‐Hydrogenation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004966] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yueqiang Cao
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Hao Zhang
- Shanghai Institute of Applied Physics Chinese Academy of Science Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shufang Ji
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Zhijun Sui
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zheng Jiang
- Shanghai Institute of Applied Physics Chinese Academy of Science Shanghai 201800 China
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab Shanghai Advanced Research Institute Chinese Academy of Science Shanghai 201210 China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis University of California Riverside CA 92521 USA
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
40
|
Cao Y, Zhang H, Ji S, Sui Z, Jiang Z, Wang D, Zaera F, Zhou X, Duan X, Li Y. Adsorption Site Regulation to Guide Atomic Design of Ni–Ga Catalysts for Acetylene Semi‐Hydrogenation. Angew Chem Int Ed Engl 2020; 59:11647-11652. [DOI: 10.1002/anie.202004966] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Yueqiang Cao
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Hao Zhang
- Shanghai Institute of Applied Physics Chinese Academy of Science Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shufang Ji
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Zhijun Sui
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zheng Jiang
- Shanghai Institute of Applied Physics Chinese Academy of Science Shanghai 201800 China
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab Shanghai Advanced Research Institute Chinese Academy of Science Shanghai 201210 China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis University of California Riverside CA 92521 USA
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
41
|
Yuk SF, Collinge G, Nguyen MT, Lee MS, Glezakou VA, Rousseau R. Selective acetylene hydrogenation over single metal atoms supported on Fe3O4(001): A first-principle study. J Chem Phys 2020; 152:154703. [DOI: 10.1063/1.5142748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Simuck F. Yuk
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Greg Collinge
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Manh-Thuong Nguyen
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Mal-Soon Lee
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Vassiliki-Alexandra Glezakou
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Roger Rousseau
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| |
Collapse
|
42
|
Ma HY, Wang GC. Selective Hydrogenation of Acetylene on Ptn/TiO2 (n = 1, 2, 4, 8) Surfaces: Structure Sensitivity Analysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00190] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hong-Yan Ma
- RenAi College of Tianjin University, Tianjin 301636, China
| | - Gui-Chang Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and the Tianjin key Lab and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
43
|
Pure Acetylene Semihydrogenation over Ni-Cu Bimetallic Catalysts: Effect of the Cu/Ni Ratio on Catalytic Performance. NANOMATERIALS 2020; 10:nano10030509. [PMID: 32168927 PMCID: PMC7153591 DOI: 10.3390/nano10030509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 11/28/2022]
Abstract
Ethylene is an important chemical raw material and with the increasing consumption of petroleum resources, the production of ethylene through the calcium carbide acetylene route has important research significance. In this work, a series of bimetallic catalysts with different Cu/Ni molar ratios are prepared by co-impregnation method for the hydrogenation of calcium carbide acetylene to ethylene. The introduction of an appropriate amount of Cu effectively inhibits not only the formation of ethane and green oil, thus increasing the selectivity of ethylene, but also the formation of carbon deposits, which improves the stability of the catalyst. The ethylene selectivity of the Ni–Cu bimetallic catalyst increases from 45% to 63% compared with the Ni monometallic counterpart and the acetylene conversion still can reach 100% at the optimal conditions of 250 °C, 8000 mL·g−1·h−1 and V(H2)/V(C2H2) = 3. X-ray diffraction and transmission electron microscopy confirmed that the metal particles were highly dispersed on the support, High-resolution transmission electron microscopy and H2-Temperature programmed reduction proved that there was an interaction between Ni and Cu, combined with X-ray photoelectron spectroscopy and density functional theory calculations results, Cu transferred electrons to Ni changed the Ni electron cloud density in NiCux catalysts, thus reducing the adsorption of acetylene and ethylene, which is favorable to ethylene selectivity.
Collapse
|
44
|
General trends in Horiuti-Polanyi mechanism vs non-Horiuti-Polanyi mechanism for water formation on transition metal surfaces. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63434-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
An J, Wang X, Zhao J, Jiang S, Quan Y, Pei Y, Wu M, Ren J. Density-functional theory study on hydrogenation of dimethyl oxalate to methyl glycolate over copper catalyst: Effect of copper valence state. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Bruno JE, Dwarica NS, Whittaker TN, Hand ER, Guzman CS, Dasgupta A, Chen Z, Rioux RM, Chandler BD. Supported Ni–Au Colloid Precursors for Active, Selective, and Stable Alkyne Partial Hydrogenation Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James E. Bruno
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78240, United States
| | - Nicolas S. Dwarica
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78240, United States
| | - Todd N. Whittaker
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78240, United States
| | - Emily R. Hand
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78240, United States
| | - Clemente S. Guzman
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78240, United States
| | - Anish Dasgupta
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhifeng Chen
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Robert M. Rioux
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bert D. Chandler
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78240, United States
- Laboratorium für Organische Chemie and Laboratorium für Anorganische Chemie, ETH Zürich, CH-8093 Zurich, Switzerland
| |
Collapse
|
47
|
Polymer‐Assisted Co‐Assembly towards Synthesis of Mesoporous Titania Encapsulated Monodisperse PdAu for Highly Selective Hydrogenation of Phenylacetylene. ChemCatChem 2020. [DOI: 10.1002/cctc.201901957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Yang K, Zaffran J, Yang B. Fast prediction of oxygen reduction reaction activity on carbon nanotubes with a localized geometric descriptor. Phys Chem Chem Phys 2020; 22:890-895. [DOI: 10.1039/c9cp04885e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By using the pyramidalization angle as a localized geometric descriptor for oxygen reduction reaction (ORR) activity of carbon nanotubes (CNTs), we show the ORR activity of these systems can be readily predicted with mere structural optimization of CNTs.
Collapse
Affiliation(s)
- Kunran Yang
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
| | - Jeremie Zaffran
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
| | - Bo Yang
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
| |
Collapse
|
49
|
Xu D, Wu P, Yang B. Origin of CO 2 as the main carbon source in syngas-to-methanol process over Cu: theoretical evidence from a combined DFT and microkinetic modeling study. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00602e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A theoretical study combining DFT and microkinetic modeling provides evidence that CO2 is the main carbon source in methanol synthesis from syngas (CO, CO2 and H2) over Cu.
Collapse
Affiliation(s)
- Dongyang Xu
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
- CAS Key Laboratory of Low-Carbon Conversion Science & Engineering
| | - Panpan Wu
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
| | - Bo Yang
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
| |
Collapse
|
50
|
Liu H, Liu J, Yang B. Computational insights into the strain effect on the electrocatalytic reduction of CO 2 to CO on Pd surfaces. Phys Chem Chem Phys 2020; 22:9600-9606. [PMID: 32322855 DOI: 10.1039/d0cp01042a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) provides a promising scenario to achieve carbon renewable energy storage and alleviate energy depletion. It was found experimentally in the literature that strain over Pd surfaces can adjust the activity and selectivity of electrocatalytic CO2RR. Here, using density functional theory (DFT) calculations and the Sabatier analysis method, we investigated the electrochemical reduction of CO2 to CO at different electric potentials over Pd surfaces with lattice strains of -2%, -1%, 1% and 2%. Four types of Pd surfaces with different structures and co-ordination numbers were considered, namely Pd(111), (100), (110) and (211). We obtained the differential adsorption energy of key intermediates in CO2RR, i.e. COOH and CO, with DFT as a function of CO coverage on these Pd surfaces. Further analysis showed that the adsorption energy at high coverage might be correlated with the Coulomb interaction energy between surface species. With the adsorbate-adsorbate interactions included in the analyses, we found that the strained Pd(111) surface shows the highest CO2RR activity among the four surfaces considered, which is consistent with previous experimental observations. These results highlight the significance of surface strain effects on the reactivity of CO2RR and provide guidance for practical catalyst development.
Collapse
Affiliation(s)
- Hong Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. and CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|