1
|
Gong C, Sun S, Zhang Y, Sun L, Su Z, Wu A, Wei G. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications. NANOSCALE 2019; 11:4147-4182. [PMID: 30806426 DOI: 10.1039/c9nr00218a] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bioinspired synthesis offers potential green strategies to build highly complex nanomaterials by utilizing the unique nanostructures, functions, and properties of biomolecules, in which the biomolecular recognition and self-assembly processes play important roles in tailoring the structures and functions of bioinspired materials. Further understanding of biomolecular self-assembly for inspiring the formation and assembly of nanoparticles would promote the design and fabrication of functional nanomaterials for various applications. In this review, we focus on recent advances in bioinspired synthesis and applications of hierarchical nanomaterials based on biomolecular self-assembly. We first discuss biomolecular self-assembly towards biological nanomaterials, in which the mechanisms and ways of biomolecular self-assembly as well as various self-assembled biomolecular nanostructures are demonstrated. Secondly, the bioinspired synthesis strategies including molecule-molecule interaction, molecule-material recognition, molecule-mediated nucleation and growth, and molecule-mediated reduction/oxidation are introduced and discussed. Meanwhile, typical examples and discussions on how biomolecular self-assembly inspires the formation of hierarchical hybrid nanomaterials are presented. Finally, the applications of bioinspired nanomaterials in biofuel cells, light-harvesting systems, batteries, supercapacitors, catalysis, water/air purification, and environmental monitoring are presented and discussed. We believe that this review will be very helpful for readers to understand the self-assembly of biomolecules and the biomimetic/bioinspired strategies for synthesizing hierarchical nanomaterials on the one hand, and on the other hand to design novel materials for extended applications in nanotechnology, materials science, analytical science, and biomedical engineering.
Collapse
Affiliation(s)
- Coucong Gong
- Faculty of Production Engineering and Center for Environmental Research and Sustainable technology (UFT), University of Bremen, D-28359 Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
2
|
Sharma B, Striegler S. Tailored Interactions of the Secondary Coordination Sphere Enhance the Hydrolytic Activity of Cross-Linked Microgels. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Babloo Sharma
- Department of Chemistry and Biochemistry, University of Arkansas, 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| | - Susanne Striegler
- Department of Chemistry and Biochemistry, University of Arkansas, 345 North Campus Drive, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
3
|
Boralugodage NP, Arachchige RJ, Dutta A, Buchko GW, Shaw WJ. Evaluating the role of acidic, basic, and polar amino acids and dipeptides on a molecular electrocatalyst for H2 oxidation. Catal Sci Technol 2017. [DOI: 10.1039/c6cy02579j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Outer coordination sphere interactions reduce the overpotential for H2 oxidation catalysts (brown ellipse) compared to those that have –COOH groups but don't have stabilizing interactions (blue ellipse).
Collapse
Affiliation(s)
| | | | - Arnab Dutta
- Pacific Northwest National Laboratory
- Richland
- 99352 USA
| | | | - Wendy J. Shaw
- Pacific Northwest National Laboratory
- Richland
- 99352 USA
| |
Collapse
|
4
|
Priyadarshani N, Dutta A, Ginovska B, Buchko GW, O’Hagan M, Raugei S, Shaw WJ. Achieving Reversible H2/H+ Interconversion at Room Temperature with Enzyme-Inspired Molecular Complexes: A Mechanistic Study. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01433] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nilusha Priyadarshani
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Arnab Dutta
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Bojana Ginovska
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Garry W. Buchko
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Molly O’Hagan
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Simone Raugei
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Wendy J. Shaw
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
5
|
Marine JE, Song S, Liang X, Rudick JG. Synthesis and Self-Assembly of Bundle-Forming α-Helical Peptide-Dendron Hybrids. Biomacromolecules 2016; 17:336-44. [PMID: 26674475 PMCID: PMC4710556 DOI: 10.1021/acs.biomac.5b01452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dendronized helix bundle assemblies combine the sequence diversity and folding properties of proteins with the tailored physical properties of dendrimers. Assembly of peptide-dendron hybrids into α-helical bundles encapsulates the helix bundle motif in a dendritic sheath that will allow the functional, protein-like domain to be transplanted to nonbiological environments. A bioorthogonal graft-to synthetic strategy for preparing helix bundle-forming peptide-dendron hybrids is described herein for hybrids 1a, 1b, and 2. Titration experiments monitored by circular dichroism spectroscopy support our self-assembly model for how the peptide-dendron hybrids self-assemble into α-helical bundles with the dendrons on outside of the bundle.
Collapse
Affiliation(s)
- Jeannette E. Marine
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Shuang Song
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Xiaoli Liang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Jonathan G. Rudick
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
6
|
|
7
|
Marine JE, Song S, Liang X, Watson MD, Rudick JG. Bundle-forming α-helical peptide-dendron hybrid. Chem Commun (Camb) 2015; 51:14314-7. [PMID: 26268897 PMCID: PMC4567505 DOI: 10.1039/c5cc05468k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptides and dendrons are enticing building blocks from which to construct hybrid macromolecules because each can be prepared as monodisperse and sequence defined materials. Folding and assembly properties designed into the amino acid sequence of a peptide-dendron hybrid manifest in the formation of a dendronized bundle of α-helices.
Collapse
Affiliation(s)
- Jeannette E Marine
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | | | | | | |
Collapse
|
8
|
Sista P, Ghosh K, Martinez JS, Rocha RC. Metallo-Biopolymers: Conjugation Strategies and Applications. POLYM REV 2014. [DOI: 10.1080/15583724.2014.913063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Ginovska-Pangovska B, Dutta A, Reback ML, Linehan JC, Shaw WJ. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation. Acc Chem Res 2014; 47:2621-30. [PMID: 24945095 DOI: 10.1021/ar5001742] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Redox active metalloenzymes play a major role in energy transformation reactions in biological systems. Examples include formate dehydrogenases, nitrogenases, CO dehydrogenase, and hydrogenases. Many of these reactions are also of interest to humans as potential energy storage or utilization reactions for photoelectrochemical, electrolytic, and fuel cell applications. These metalloenzymes consist of redox active metal centers where substrates are activated and undergo transformation to products accompanied by electron and proton transfer to or from the substrate. These active sites are typically buried deep within a protein matrix of the enzyme with channels for proton transport, electron transport, and substrate/product transport between the active site and the surface of the protein. In addition, there are amino acid residues that lie in close proximity to the active site that are thought to play important roles in regulating and enhancing enzyme activity. Directly studying the outer coordination sphere of enzymes can be challenging due to their complexity, and the use of modified molecular catalysts may allow us to provide some insight. There are two fundamentally different approaches to understand these important interactions. The "bottom-up" approach involves building an amino acid or peptide containing outer coordination sphere around a functional molecular catalyst, and the "top-down" approach involves attaching molecular catalyst to a structured protein. Both of these approaches have been undertaken for hydrogenase mimics and are the emphasis of this Account. Our focus has been to utilize amino acid or peptide based scaffolds on an active functional enzyme mimic for H2 oxidation and production, [Ni(P(R)2N(R('))2)2](2+). This "bottom-up" approach has allowed us to evaluate individual functional group and structural contributions to electrocatalysts for H2 oxidation and production. For instance, using amine, ether, and carboxylic acid functionalities in the outer coordination sphere enhances proton movement and results in lower catalytic overpotentials for H2 oxidation, while achieving water solubility in some cases. Amino acids with acidic and basic side chains concentrate substrate around catalysts for H2 production, resulting in up to 5-fold enhancements in rate. The addition of a structured peptide in an H2 production catalyst limited the structural freedom of the amino acids nearest the active site, while enhancing the overall rate. Enhanced stability to oxygen or extreme conditions such as strongly acidic or basic conditions has also resulted from an amino acid based outer coordination sphere. From the "top-down" approach, others have achieved water solubility and photocatalytic activity by associating this core complex with photosystem-I. Collectively, by use of this well understood core, the role of individual and combined features of the outer coordination sphere are starting to be understood at a mechanistic level. Common mechanisms have yet to be defined to predictably control these processes, but our growing knowledge in this area is essential for the eventual mimicry of enzymes by efficient molecular catalysts for practical use.
Collapse
Affiliation(s)
| | - Arnab Dutta
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Matthew L. Reback
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - John C. Linehan
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Wendy J. Shaw
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
10
|
Kier BL, Andersen NH. Captides: rigid junctions between beta sheets and small molecules. J Pept Sci 2014; 20:704-15. [PMID: 24909552 DOI: 10.1002/psc.2657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 12/15/2022]
Abstract
An extensive series of covalently linked small molecule-peptide adducts based on a terminally capped-beta hairpin motif is reported. The constructs can be prepared by standard solid-phase Fmoc chemistry with one to four peptide chains linked to small molecule hubs bearing carboxylic acid moieties. The key feature of interest is the precise, buried environment of the small molecule, and its rigid orientation relative to one or more short but fully structured peptide chain(s). Most of this study employs a minimalist nine residue 'captide', a capped β-turn, but we illustrate general applicability to peptides which can terminate in a beta strand. The non-peptide portion of these adducts can include nearly any molecule bearing one or more carboxylic acid groups. Fold-dependent rigidity sets this strategy apart from the currently available bioconjugation methods, which typically engender significant flexibility between peptide and tag. Applications to catalyst enhancement, drug design, higher-order assembly, and FRET calibration rulers are discussed.
Collapse
Affiliation(s)
- Brandon L Kier
- University of Washington - Chemistry, Bagley Hall Room 205 Box 351700, Seattle, WA, 98195-1700, USA
| | | |
Collapse
|
11
|
Affiliation(s)
- Daniel L. DuBois
- Center for Molecular Electrocatalysis, Chemical and Materials
Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, K2-57, Richland, Washington 99352, United States
| |
Collapse
|
12
|
Kokan Z, Kirin SI. “Backdoor Induction” of Chirality in Asymmetric Hydrogenation with Rhodium(I) Complexes of Amino Acid Substituted Triphenylphosphane Ligands. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Smith SJ, Du K, Radford RJ, Tezcan FA. Functional, metal-based crosslinkers for α-helix induction in short peptides. Chem Sci 2013; 4:3740-3747. [PMID: 24156013 PMCID: PMC3800689 DOI: 10.1039/c3sc50858g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many protein-protein interactions that play a central role in cellular processes involve α-helical domains. Consequently, there has been great interest in developing strategies for stabilizing short peptides in α-helical conformations toward the inhibition and interrogation of protein-protein interactions. Here, we show that tridentate Hybrid Coordination Motifs (HCMs), which consist of a natural (histidine, His) and an unnatural (8-hydroxyquinoline, Quin) metal binding functionality, can bind divalent metal ions with high affinity and thereby induce/stabilize an α-helical configuration in short peptide sequences. The Quin functionality is readily introduced onto peptide platforms both during or after solid-state peptide synthesis, demonstrating the preparative versatility of HCMs. A systematic study involving a series of HCM-bearing peptides has revealed the critical importance of the length of the linkage between the Quin moiety and the peptide backbone as well as the metal coordination geometry in determining the extent of α-helix induction. Through ZnII coordination or modification with ReI(Quin)(CO)3, the HCM-bearing peptides can be rendered luminescent in the visible region, thus showing that HCMs can be exploited to simultaneously introduce structure and functionality into short peptides.
Collapse
Affiliation(s)
- Sarah J Smith
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093-0356
| | - Kang Du
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093-0356
| | - Robert J Radford
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093-0356
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093-0356
| |
Collapse
|
14
|
Buchko GW, Jain A, Reback ML, Shaw WJ. Structural characterization of the model amphipathic peptide Ac-LKKLLKLLKKLLKL-NH2 in aqueous solution and with 2,2,2-trifluoroethanol and 1,1,1,3,3,3-hexafluoroisopropanol. CAN J CHEM 2013. [DOI: 10.1139/cjc-2012-0429] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Short-chain amphipathic peptides are promising components in the new generation of engineered biomaterials. The model 14-residue leucine–lysine peptide Ac-LKKLLKLLKKLLKL-NH2 (LKα) is one such amphipathic peptide. In dilute aqueous solution (<0.05 mmol/L), it was previously proposed, using CD spectroscopic data, that LKα existed in a cooperative monomeric (unstructured) – tetrameric (α-helical) equilibrium that shifted towards the tetramer at high NaCl and peptide concentrations. Here, at similar peptide concentrations, CD spectroscopy shows that LKα readily adopts α-helical structure in the presence of 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) with maximal helical character in 20% TFE and ∼10% HFIP (v/v). The helical character in fluorinated alcohols suggested by the CD data at low peptide concentrations (0.06 mmol/L) is corroborated at high peptide concentrations (1.5 mmol/L) by NMR NOE data that also show that 1.5 mmol/L LKα is helical in 100% water. Size exclusion chromatography and estimations of rotational correlation times (τc) showed that the self-assembled LKα complexes contained three to five peptides. Removing the N-terminal acetyl group prevents LKα from forming helices and self-associating at high NaCl and peptide concentrations. This more detailed characterization of the structural and physical properties of LKα over a greater range of peptide concentrations and in the presence of fluorinated alcohols will assist the design of biomaterials containing amphipathic peptides and guide the ability to control self-assembly.
Collapse
Affiliation(s)
- Garry W. Buchko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Avijita Jain
- Chemicals & Materials Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Matthew L. Reback
- Chemicals & Materials Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Wendy J. Shaw
- Chemicals & Materials Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|