1
|
Tiessler-Sala L, Maréchal JD, Lledós A. Rationalization of a Streptavidin Based Enantioselective Artificial Suzukiase: An Integrative Computational Approach. Chemistry 2024; 30:e202401165. [PMID: 38752552 DOI: 10.1002/chem.202401165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Indexed: 06/06/2024]
Abstract
An Artificial Metalloenzyme (ArM) built employing the streptavidin-biotin technology has been used for the enantioselective synthesis of binaphthyls by means of asymmetric Suzuki-Miyaura cross-coupling reactions. Despite its success, it remains a challenge to understand how the length of the biotin cofactors or the introduction of mutations to streptavidin leads the preferential synthesis of one atropisomer over the other. In this study, we apply an integrated computational modeling approach, including DFT calculations, protein-ligand dockings and molecular dynamics to rationalize the impact of mutations and length of the biotion cofactor on the enantioselectivities of the biaryl product. The results unravel that the enantiomeric differences found experimentally can be rationalized by the disposition of the first intermediate, coming from the oxidative addition step, and the entrance of the second substrate. The work also showcases the difficulties facing to control the enantioselection when engineering ArM to catalyze enantioselective Suzuki-Miyaura couplings and how the combination of DFT calculations, molecular dockings and MD simulations can be used to rationalize artificial metalloenzymes.
Collapse
Affiliation(s)
- Laura Tiessler-Sala
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Agustí Lledós
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| |
Collapse
|
2
|
Igareta NV, Tachibana R, Spiess DC, Peterson RL, Ward TR. Spiers Memorial Lecture: Shielding the active site: a streptavidin superoxide-dismutase chimera as a host protein for asymmetric transfer hydrogenation. Faraday Discuss 2023; 244:9-20. [PMID: 36924204 PMCID: PMC10416703 DOI: 10.1039/d3fd00034f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 03/17/2023]
Abstract
By anchoring a metal cofactor within a host protein, so-called artificial metalloenzymes can be generated. Such hybrid catalysts combine the versatility of transition metals in catalyzing new-to-nature reactions with the power of genetic-engineering to evolve proteins. With the aim of gaining better control over second coordination-sphere interactions between a streptavidin host-protein (Sav) and a biotinylated cofactor, we engineered a hydrophobic dimerization domain, borrowed from superoxide dismutase C (SOD), on Sav's biotin-binding vestibule. The influence of the SOD dimerization domain (DD) on the performance of an asymmetric transfer hydrogenase (ATHase) resulting from anchoring a biotinylated Cp*Ir-cofactor - [Cp*Ir(biot-p-L)Cl] (1-Cl) - within Sav-SOD is reported herein. We show that, depending on the nature of the residue at position Sav S112, the introduction of the SOD DD on the biotin-binding vestibule leads to an inversion of configuration of the reduction product, as well as a fivefold increase in catalytic efficiency. The findings are rationalized by QM/MM calculations, combined with X-ray crystallography.
Collapse
Affiliation(s)
- Nico V Igareta
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, CH-4058, Switzerland.
- National Center of Competence in Research (NCCR) "Molecular Systems Engineering", 4058 Basel, Switzerland.
| | - Ryo Tachibana
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, CH-4058, Switzerland.
| | - Daniel C Spiess
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, CH-4058, Switzerland.
| | - Ryan L Peterson
- National Center of Competence in Research (NCCR) "Molecular Systems Engineering", 4058 Basel, Switzerland.
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, CH-4058, Switzerland.
- National Center of Competence in Research (NCCR) "Molecular Systems Engineering", 4058 Basel, Switzerland.
| |
Collapse
|
3
|
Sánchez-Aparicio JE, Sciortino G, Mates-Torres E, Lledós A, Maréchal JD. Successes and challenges in multiscale modelling of artificial metalloenzymes: the case study of POP-Rh 2 cyclopropanase. Faraday Discuss 2022; 234:349-366. [PMID: 35147145 DOI: 10.1039/d1fd00069a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular modelling applications in metalloenzyme design are still scarce due to a series of challenges. On top of that, the simulations of metal-mediated binding and the identification of catalytic competent geometries require both large conformational exploration and simulation of fine electronic properties. Here, we demonstrate how the incorporation of new tools in multiscale strategies, namely substrate diffusion exploration, allows taking a step further. As a showcase, the enantioselective profiles of the most outstanding variants of an artificial Rh2-based cyclopropanase (GSH, HFF and RFY) developed by Lewis and co-workers (Nat. Commun., 2015, 6, 7789 and Nat. Chem., 2018, 10, 318-324) have been rationalized. DFT calculations on the free-cofactor-mediated process identify the carbene insertion and the cyclopropanoid formation as crucial events, the latter being the enantiodetermining step, which displays up to 8 competitive orientations easily altered by the protein environment. The key intermediates of the reaction were docked into the protein scaffold showing that some mutated residues have direct interaction with the cofactor and/or the co-substrate. These interactions take the form of a direct coordination of Rh in GSH and HFF and a strong hydrophobic patch with the carbene moiety in RFY. Posterior molecular dynamics sustain that the cofactor induces global re-arrangements of the protein. Finally, massive exploration of substrate diffusion, based on the GPathFinder approach, defines this event as the origin of the enantioselectivity in GSH and RFY. For HFF, fine molecular dockings suggest that it is likely related to local interactions upon diffusion. This work shows how modelling of long-range mutations on the catalytic profiles of metalloenzymes may be unavoidable and software simulating substrate diffusion should be applied.
Collapse
Affiliation(s)
| | - Giuseppe Sciortino
- InSiliChem, Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Eric Mates-Torres
- InSiliChem, Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Agustí Lledós
- InSiliChem, Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Jean-Didier Maréchal
- InSiliChem, Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
4
|
|
5
|
Booth RL, Grogan G, Wilson KS, Duhme-Klair AK. Artificial imine reductases: developments and future directions. RSC Chem Biol 2020; 1:369-378. [PMID: 34458768 PMCID: PMC8341917 DOI: 10.1039/d0cb00113a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Biocatalytic imine reduction has been a topic of intense research by the artificial metalloenzyme community in recent years. Artificial constructs, together with natural enzymes, have been engineered to produce chiral amines with high enantioselectivity. This review examines the design of the main classes of artificial imine reductases reported thus far and summarises approaches to enhancing their catalytic performance using complementary methods. Examples of utilising these biocatalysts in vivo or in multi-enzyme cascades have demonstrated the potential that artIREDs can offer, however, at this time their use in biocatalysis remains limited. This review explores the current scope of artIREDs and the strategies used for catalyst improvement, and examines the potential for artIREDs in the future.
Collapse
Affiliation(s)
| | - Gideon Grogan
- York Structural Biology Laboratory, Department of Chemistry, University of York UK
| | - Keith S Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York UK
| | | |
Collapse
|
6
|
Alonso-Cotchico L, Rodrı́guez-Guerra J, Lledós A, Maréchal JD. Molecular Modeling for Artificial Metalloenzyme Design and Optimization. Acc Chem Res 2020; 53:896-905. [PMID: 32233391 DOI: 10.1021/acs.accounts.0c00031] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Artificial metalloenzymes (ArMs) are obtained by inserting homogeneous catalysts into biological scaffolds and are among the most promising strategies in the quest for new-to-nature biocatalysts. The quality of their design strongly depends on how three partners interact: the biological host, the "artificial cofactor," and the substrate. However, structural characterization of functional artificial metalloenzymes by X-ray or NMR is often partial, elusive, or absent. How the cofactor binds to the protein, how the receptor reorganizes upon the binding of the cofactor and the substrate, and which are the binding mode(s) of the substrate for the reaction to proceed are key questions that are frequently unresolved yet crucial for ArM design. Such questions may eventually be solved by molecular modeling but require a step change beyond the current state-of-the-art methodologies.Here, we summarize our efforts in the study of ArMs, presenting both the development of computational strategies and their application. We first focus on our integrative computational framework that incorporates a variety of methods such as protein-ligand docking, classical molecular dynamics (MD), and pure quantum mechanical (QM) methods, which, when properly combined, are able to depict questions that range from host-cofactor binding predictions to simulations of entire catalytic mechanisms. We also pay particular attention to the protein-ligand docking strategies that we have developed to accurately predict the binding of transition metal-containing molecules to proteins. While this aspect is fundamental to many bioinorganic fields beyond ArMs, it has been disregarded from the molecular modeling landscape until very recently.Next we describe how to apply this computational framework to particular ArMs including systems previously characterized experimentally as well as others where computation served to guide the design. We start with the prediction of the interactions between homogeneous catalysts and biological hosts. Protein-ligand docking is pivotal at that stage, but it needs to be combined with QM/MM or MD approaches when the binding of the cofactor implies significant conformational changes of the protein or involve changes of the electronic state of the metal.Then, we summarize molecular modeling studies aimed at identifying cofactor-substrate arrangements inside the ArM active pocket that are consistent with its reactivity. These calculations stand on "Theozyme"-like dockings, MD-refined or not, which provide molecular rationale of the catalytic profiles of the artificial systems.In the third section, we present case studies to decode the entire catalytic mechanism of two ArMs: (1) an iridium based asymmetric transfer hydrogenase obtained by insertion of Noyori's catalyst into streptavidin and (2) a metallohydrolase achieved by including a receptor. Transition states, second coordination sphere effects, as well as motions of the cofactors are identified as drivers of the enantiomeric profiles.Finally, we report computer-aided designs of ArMs to guide experiments toward chemical and mutational changes that improve their activity and/or enantioselective profiles and expand toward future directions.
Collapse
Affiliation(s)
- Lur Alonso-Cotchico
- Departament de Quı́mica, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallès, Barcelona Spain
| | - Jaime Rodrı́guez-Guerra
- Departament de Quı́mica, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallès, Barcelona Spain
| | - Agustí Lledós
- Departament de Quı́mica, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallès, Barcelona Spain
| | - Jean-Didier Maréchal
- Departament de Quı́mica, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallès, Barcelona Spain
| |
Collapse
|
7
|
Feng H, Guo X, Zhang H, Chen L, Yin P, Chen C, Duan X, Zhang X, Wei M. Mechanistic insights into artificial metalloenzymes towards imine reduction. Phys Chem Chem Phys 2019; 21:23408-23417. [PMID: 31625550 DOI: 10.1039/c9cp04473f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the field of artificial metalloenzyme (ArM) catalysis, how to identify the critical factors affecting the catalytic activity and enantioselectivity remains a challenge. In this work, the mechanism of enantioselective reduction of imine catalyzed by using [Rh(Me4Cpbiot)Cl2]·S112H Sav (denoted as S112H) and [Rh(Me4Cpbiot)Cl2]·K121H Sav (denoted as K121H) was studied by using molecular dynamics (MD) simulations combined with density functional theory (DFT) calculations. Four binding modes of imine, two proton sources (hydronium ion and lysine) and eight proposed reaction pathways were systematically discussed. The results showed that due to the anchoring effect of the mutation site of ArMs, the rhodium complex which oscillated like a pendulum was bound to a specific conformation, which further determined the chirality of the reduced product. C-Hπ, cation-π and ππ weak interactions played an important role in imine binding, and the favorable binding mode of imine was catalyzed by S112H in landscape orientation and catalyzed by K121H in portrait orientation, respectively. LYS121 is the most possible proton source in the S112H catalytic process while the proton source in the K121H catalytic process is the hydronium ion of the active sites. Furthermore, based on the reaction mechanism, modification of Rh(Me4Cpbiot)Cl2 was carried out in S112H and K121H, and the results suggested that the reaction barrier could be effectively reduced by replacing the methyl groups on Cp* with an amino group. This work gives a fundamental understanding of the mechanism of ArMs toward the imine reduction reaction, in the hope of providing a strategy for reasonable designs of ArMs with high enantioselectivity.
Collapse
Affiliation(s)
- Haisong Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wu S, Zhou Y, Rebelein JG, Kuhn M, Mallin H, Zhao J, Igareta NV, Ward TR. Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes. J Am Chem Soc 2019; 141:15869-15878. [PMID: 31509711 PMCID: PMC6805045 DOI: 10.1021/jacs.9b06923] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The biotin–streptavidin technology
has been extensively
exploited to engineer artificial metalloenzymes (ArMs) that catalyze
a dozen different reactions. Despite its versatility, the homotetrameric
nature of streptavidin (Sav) and the noncooperative binding of biotinylated
cofactors impose two limitations on the genetic optimization of ArMs:
(i) point mutations are reflected in all four subunits of Sav, and
(ii) the noncooperative binding of biotinylated cofactors to Sav may
lead to an erosion in the catalytic performance, depending on the
cofactor:biotin-binding site ratio. To address these challenges, we
report on our efforts to engineer a (monovalent) single-chain dimeric
streptavidin (scdSav) as scaffold for Sav-based ArMs. The versatility
of scdSav as host protein is highlighted for the asymmetric transfer
hydrogenation of prochiral imines using [Cp*Ir(biot-p-L)Cl] as cofactor. By capitalizing on a more precise genetic fine-tuning
of the biotin-binding vestibule, unrivaled levels of activity and
selectivity were achieved for the reduction of challenging prochiral
imines. Comparison of the saturation kinetic data and X-ray structures
of [Cp*Ir(biot-p-L)Cl]·scdSav with a structurally
related [Cp*Ir(biot-p-L)Cl]·monovalent scdSav
highlights the advantages of the presence of a single biotinylated
cofactor precisely localized within the biotin-binding vestibule of
the monovalent scdSav. The practicality of scdSav-based ArMs was illustrated
for the reduction of the salsolidine precursor (500 mM) to afford
(R)-salsolidine in 90% ee and >17 000 TONs.
Monovalent scdSav thus provides a versatile scaffold to evolve more
efficient ArMs for in vivo catalysis and large-scale applications.
Collapse
Affiliation(s)
- Shuke Wu
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Yi Zhou
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Johannes G Rebelein
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Miriam Kuhn
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Hendrik Mallin
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Jingming Zhao
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Nico V Igareta
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Thomas R Ward
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| |
Collapse
|
9
|
Drienovská I, Alonso-Cotchico L, Vidossich P, Lledós A, Maréchal JD, Roelfes G. Design of an enantioselective artificial metallo-hydratase enzyme containing an unnatural metal-binding amino acid. Chem Sci 2017; 8:7228-7235. [PMID: 29081955 PMCID: PMC5633786 DOI: 10.1039/c7sc03477f] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/01/2017] [Indexed: 01/04/2023] Open
Abstract
The design of artificial metalloenzymes is a challenging, yet ultimately highly rewarding objective because of the potential for accessing new-to-nature reactions. One of the main challenges is identifying catalytically active substrate-metal cofactor-host geometries. The advent of expanded genetic code methods for the in vivo incorporation of non-canonical metal-binding amino acids into proteins allow to address an important aspect of this challenge: the creation of a stable, well-defined metal-binding site. Here, we report a designed artificial metallohydratase, based on the transcriptional repressor lactococcal multidrug resistance regulator (LmrR), in which the non-canonical amino acid (2,2'-bipyridin-5yl)alanine is used to bind the catalytic Cu(ii) ion. Starting from a set of empirical pre-conditions, a combination of cluster model calculations (QM), protein-ligand docking and molecular dynamics simulations was used to propose metallohydratase variants, that were experimentally verified. The agreement observed between the computationally predicted and experimentally observed catalysis results demonstrates the power of the artificial metalloenzyme design approach presented here.
Collapse
Affiliation(s)
- Ivana Drienovská
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , Netherlands .
| | - Lur Alonso-Cotchico
- Departament de Química , Universitat Autònoma de Barcelona , Edifici C.n. , 08193 Cerdanyola del Vallés , Barcelona , Spain .
| | - Pietro Vidossich
- Departament de Química , Universitat Autònoma de Barcelona , Edifici C.n. , 08193 Cerdanyola del Vallés , Barcelona , Spain .
| | - Agustí Lledós
- Departament de Química , Universitat Autònoma de Barcelona , Edifici C.n. , 08193 Cerdanyola del Vallés , Barcelona , Spain .
| | - Jean-Didier Maréchal
- Departament de Química , Universitat Autònoma de Barcelona , Edifici C.n. , 08193 Cerdanyola del Vallés , Barcelona , Spain .
| | - Gerard Roelfes
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , Netherlands .
| |
Collapse
|
10
|
Schwizer F, Okamoto Y, Heinisch T, Gu Y, Pellizzoni MM, Lebrun V, Reuter R, Köhler V, Lewis JC, Ward TR. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chem Rev 2017; 118:142-231. [PMID: 28714313 DOI: 10.1021/acs.chemrev.7b00014] [Citation(s) in RCA: 520] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The incorporation of a synthetic, catalytically competent metallocofactor into a protein scaffold to generate an artificial metalloenzyme (ArM) has been explored since the late 1970's. Progress in the ensuing years was limited by the tools available for both organometallic synthesis and protein engineering. Advances in both of these areas, combined with increased appreciation of the potential benefits of combining attractive features of both homogeneous catalysis and enzymatic catalysis, led to a resurgence of interest in ArMs starting in the early 2000's. Perhaps the most intriguing of potential ArM properties is their ability to endow homogeneous catalysts with a genetic memory. Indeed, incorporating a homogeneous catalyst into a genetically encoded scaffold offers the opportunity to improve ArM performance by directed evolution. This capability could, in turn, lead to improvements in ArM efficiency similar to those obtained for natural enzymes, providing systems suitable for practical applications and greater insight into the role of second coordination sphere interactions in organometallic catalysis. Since its renaissance in the early 2000's, different aspects of artificial metalloenzymes have been extensively reviewed and highlighted. Our intent is to provide a comprehensive overview of all work in the field up to December 2016, organized according to reaction class. Because of the wide range of non-natural reactions catalyzed by ArMs, this was done using a functional-group transformation classification. The review begins with a summary of the proteins and the anchoring strategies used to date for the creation of ArMs, followed by a historical perspective. Then follows a summary of the reactions catalyzed by ArMs and a concluding critical outlook. This analysis allows for comparison of similar reactions catalyzed by ArMs constructed using different metallocofactor anchoring strategies, cofactors, protein scaffolds, and mutagenesis strategies. These data will be used to construct a searchable Web site on ArMs that will be updated regularly by the authors.
Collapse
Affiliation(s)
- Fabian Schwizer
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yasunori Okamoto
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Tillmann Heinisch
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yifan Gu
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Michela M Pellizzoni
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Vincent Lebrun
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Raphael Reuter
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Valentin Köhler
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Jared C Lewis
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Thomas R Ward
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| |
Collapse
|
11
|
Pellizzoni M, Facchetti G, Gandolfi R, Fusè M, Contini A, Rimoldi I. Evaluation of Chemical Diversity of Biotinylated Chiral 1,3-Diamines as a Catalytic Moiety in Artificial Imine Reductase. ChemCatChem 2016. [DOI: 10.1002/cctc.201600116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michela Pellizzoni
- Department of Chemistry; University of Basel; Spitalstrasse 51 4056 Basel Switzerland
| | - Giorgio Facchetti
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Via Venezian 21 20133 Milano Italy
| | - Raffaella Gandolfi
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Via Venezian 21 20133 Milano Italy
| | - Marco Fusè
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Via Venezian 21 20133 Milano Italy
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Via Venezian 21 20133 Milano Italy
| | - Isabella Rimoldi
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Via Venezian 21 20133 Milano Italy
| |
Collapse
|
12
|
Wills M. Imino Transfer Hydrogenation Reductions. Top Curr Chem (Cham) 2016; 374:14. [DOI: 10.1007/s41061-016-0013-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/13/2016] [Indexed: 10/22/2022]
|
13
|
Ghattas W, Cotchico-Alonso L, Maréchal JD, Urvoas A, Rousseau M, Mahy JP, Ricoux R. Artificial Metalloenzymes with the Neocarzinostatin Scaffold: Toward a Biocatalyst for the Diels-Alder Reaction. Chembiochem 2016; 17:433-40. [DOI: 10.1002/cbic.201500445] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Wadih Ghattas
- Institute de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); UMR 8182, CNRS, Université Paris-Sud; Bât. 420, rue du Doyen Georges Poitou 91405 Orsay Cedex France
| | - Lur Cotchico-Alonso
- Departament de Química; Universitat Autònoma de Barcelona; Edifici C.n. 08193, Cerdonyola del Vallès Barcelona Spain
| | - Jean-Didier Maréchal
- Departament de Química; Universitat Autònoma de Barcelona; Edifici C.n. 08193, Cerdonyola del Vallès Barcelona Spain
| | - Agathe Urvoas
- Institute for Integrative Biology of the Cell (I2BC); UMR 9198, CEA, CNRS, Université Paris-Sud; Bât. 430, rue du Doyen Georges Poitou 91405 Orsay Cedex France
| | - Maëva Rousseau
- Institute de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); UMR 8182, CNRS, Université Paris-Sud; Bât. 420, rue du Doyen Georges Poitou 91405 Orsay Cedex France
| | - Jean-Pierre Mahy
- Institute de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); UMR 8182, CNRS, Université Paris-Sud; Bât. 420, rue du Doyen Georges Poitou 91405 Orsay Cedex France
| | - Rémy Ricoux
- Institute de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); UMR 8182, CNRS, Université Paris-Sud; Bât. 420, rue du Doyen Georges Poitou 91405 Orsay Cedex France
| |
Collapse
|
14
|
Pellegrino S, Facchetti G, Contini A, Gelmi ML, Erba E, Gandolfi R, Rimoldi I. Ctr-1 Mets7 motif inspiring new peptide ligands for Cu(i)-catalyzed asymmetric Henry reactions under green conditions. RSC Adv 2016. [DOI: 10.1039/c6ra16255j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hybrid catalysts were developed from the Cu(i) binding domain of Ctr1 protein and their activity was evaluated in an asymmetric Henry reaction.
Collapse
Affiliation(s)
- Sara Pellegrino
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Giorgio Facchetti
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Maria Luisa Gelmi
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Emanuela Erba
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Raffaella Gandolfi
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Isabella Rimoldi
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| |
Collapse
|
15
|
Stirling MJ, Sweeney G, MacRory K, Blacker AJ, Page MI. The kinetics and mechanism of the organo-iridium-catalysed enantioselective reduction of imines. Org Biomol Chem 2016; 14:3614-22. [DOI: 10.1039/c6ob00245e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The enantiomeric excess (ee) for the organo-iridium catalysed reduction of imines decreases during the reaction because the rate of formation of the (R)-product amine follows first-order kinetics whereas that for the (S)-enantiomer is zero-order.
Collapse
Affiliation(s)
- Matthew J. Stirling
- IPOS
- The Page Laboratories
- Department of Chemical and Biological Sciences
- The University of Huddersfield
- Huddersfield
| | - Gemma Sweeney
- IPOS
- The Page Laboratories
- Department of Chemical and Biological Sciences
- The University of Huddersfield
- Huddersfield
| | - Kerry MacRory
- IPOS
- The Page Laboratories
- Department of Chemical and Biological Sciences
- The University of Huddersfield
- Huddersfield
| | - A. John Blacker
- Institute of Process Research & Development
- School of Chemistry
- University of Leeds
- Leeds
- UK
| | - Michael I. Page
- IPOS
- The Page Laboratories
- Department of Chemical and Biological Sciences
- The University of Huddersfield
- Huddersfield
| |
Collapse
|
16
|
Chatterjee A, Mallin H, Klehr J, Vallapurackal J, Finke AD, Vera L, Marsh M, Ward TR. An enantioselective artificial Suzukiase based on the biotin-streptavidin technology. Chem Sci 2015; 7:673-677. [PMID: 29896353 PMCID: PMC5953008 DOI: 10.1039/c5sc03116h] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/17/2015] [Indexed: 01/01/2023] Open
Abstract
Introduction of a biotinylated monophosphine palladium complex within streptavidin affords an enantioselective artificial Suzukiase. Site-directed mutagenesis allowed the optimization of the activity and the enantioselectivity of this artificial metalloenzyme. A variety of atropisomeric biaryls were produced in good yields and up to 90% ee.
Introduction of a biotinylated monophosphine palladium complex within streptavidin affords an enantioselective artificial Suzukiase. Site-directed mutagenesis allowed the optimization of the activity and the enantioselectivity of this artificial metalloenzyme. A variety of atropisomeric biaryls were produced in good yields and up to 90% ee. The hybrid catalyst described herein shows comparable TOF to the previous aqueous-asymmetric Suzuki catalysts, and excellent stability under the reaction conditions to realize higher TON through longer reaction time.
Collapse
Affiliation(s)
- Anamitra Chatterjee
- Department of Chemistry , University of Basel , Spitalstrasse 51 , 4056 Basel , Switzerland .
| | - Hendrik Mallin
- Department of Chemistry , University of Basel , Spitalstrasse 51 , 4056 Basel , Switzerland .
| | - Juliane Klehr
- Department of Chemistry , University of Basel , Spitalstrasse 51 , 4056 Basel , Switzerland .
| | - Jaicy Vallapurackal
- Department of Chemistry , University of Basel , Spitalstrasse 51 , 4056 Basel , Switzerland .
| | - Aaron D Finke
- Swiss Light Source , Paul Scherrer Institute 5232 Villigen PSI , Switzerland
| | - Laura Vera
- Swiss Light Source , Paul Scherrer Institute 5232 Villigen PSI , Switzerland
| | - May Marsh
- Swiss Light Source , Paul Scherrer Institute 5232 Villigen PSI , Switzerland
| | - Thomas R Ward
- Department of Chemistry , University of Basel , Spitalstrasse 51 , 4056 Basel , Switzerland .
| |
Collapse
|
17
|
Świderek K, Tuñón I, Moliner V, Bertran J. Computational strategies for the design of new enzymatic functions. Arch Biochem Biophys 2015; 582:68-79. [PMID: 25797438 PMCID: PMC4554825 DOI: 10.1016/j.abb.2015.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/09/2015] [Accepted: 03/13/2015] [Indexed: 11/28/2022]
Abstract
In this contribution, recent developments in the design of biocatalysts are reviewed with particular emphasis in the de novo strategy. Studies based on three different reactions, Kemp elimination, Diels-Alder and Retro-Aldolase, are used to illustrate different success achieved during the last years. Finally, a section is devoted to the particular case of designed metalloenzymes. As a general conclusion, the interplay between new and more sophisticated engineering protocols and computational methods, based on molecular dynamics simulations with Quantum Mechanics/Molecular Mechanics potentials and fully flexible models, seems to constitute the bed rock for present and future successful design strategies.
Collapse
Affiliation(s)
- K Świderek
- Departament de Química Física, Universitat de València, 46100 Burjasot, Spain; Institute of Applied Radiation Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - I Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjasot, Spain
| | - V Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - J Bertran
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
18
|
Pàmies O, Diéguez M, Bäckvall JE. Artificial Metalloenzymes in Asymmetric Catalysis: Key Developments and Future Directions. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500290] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K. The ONIOM Method and Its Applications. Chem Rev 2015; 115:5678-796. [PMID: 25853797 DOI: 10.1021/cr5004419] [Citation(s) in RCA: 788] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lung Wa Chung
- †Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China
| | - W M C Sameera
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Romain Ramozzi
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Alister J Page
- §Newcastle Institute for Energy and Resources, The University of Newcastle, Callaghan 2308, Australia
| | - Miho Hatanaka
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Galina P Petrova
- ∥Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria Boulevard James Bourchier 1, 1164 Sofia, Bulgaria
| | - Travis V Harris
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan.,⊥Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, United States
| | - Xin Li
- #State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhuofeng Ke
- ∇School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengyi Liu
- ○Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Hai-Bei Li
- ■School of Ocean, Shandong University, Weihai 264209, China
| | - Lina Ding
- ▲School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Keiji Morokuma
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| |
Collapse
|
20
|
Muñoz Robles V, Ortega-Carrasco E, Alonso-Cotchico L, Rodriguez-Guerra J, Lledós A, Maréchal JD. Toward the Computational Design of Artificial Metalloenzymes: From Protein–Ligand Docking to Multiscale Approaches. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Victor Muñoz Robles
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Barcelona, Spain
| | - Elisabeth Ortega-Carrasco
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Barcelona, Spain
| | - Lur Alonso-Cotchico
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Barcelona, Spain
| | - Jaime Rodriguez-Guerra
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Barcelona, Spain
| | - Agustí Lledós
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Barcelona, Spain
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Barcelona, Spain
| |
Collapse
|
21
|
Filice M, Romero O, Gutiérrez-Fernández J, de las Rivas B, Hermoso JA, Palomo JM. Synthesis of a heterogeneous artificial metallolipase with chimeric catalytic activity. Chem Commun (Camb) 2015; 51:9324-7. [DOI: 10.1039/c5cc02450a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The practical synthesis in high overall yields of a heterogeneous artificial copper-lipase with chimeric catalytic activity (native plus artificial) is presented here. This novel hybrid catalyst showed excellent catalytic properties in Diels–Alder and cascade reactions.
Collapse
Affiliation(s)
- M. Filice
- Departamento de Biocatálisis, Instituto de Catálisis
- CSIC
- Marie Curie 2
- Campus UAM
- Madrid
| | - O. Romero
- Departamento de Biocatálisis, Instituto de Catálisis
- CSIC
- Marie Curie 2
- Campus UAM
- Madrid
| | - J. Gutiérrez-Fernández
- Departamento de Cristalografía y Biología Estructural
- Instituto de Química-Física Rocasolano (CSIC)
- Serrano 119
- Madrid
- Spain
| | - B. de las Rivas
- Departamento de Biotecnología Microbiana
- Instituto de Ciencia y Tecnología de alimentos y Nutrición
- (CSIC)
- Madrid
- Spain
| | - J. A. Hermoso
- Departamento de Cristalografía y Biología Estructural
- Instituto de Química-Física Rocasolano (CSIC)
- Serrano 119
- Madrid
- Spain
| | - J. M. Palomo
- Departamento de Biocatálisis, Instituto de Catálisis
- CSIC
- Marie Curie 2
- Campus UAM
- Madrid
| |
Collapse
|
22
|
Robles VM, Dürrenberger M, Heinisch T, Lledós A, Schirmer T, Ward TR, Maréchal JD. Structural, Kinetic, and Docking Studies of Artificial Imine Reductases Based on Biotin–Streptavidin Technology: An Induced Lock-and-Key Hypothesis. J Am Chem Soc 2014; 136:15676-83. [DOI: 10.1021/ja508258t] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Victor Muñoz Robles
- Departament
de Química, Universitat Autònoma de Barcelona, Edifici
C.n., 08193 Cerdanyola
del Vallés, Barcelona, Spain
| | | | - Tillmann Heinisch
- Biozenbtrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Agustí Lledós
- Departament
de Química, Universitat Autònoma de Barcelona, Edifici
C.n., 08193 Cerdanyola
del Vallés, Barcelona, Spain
| | - Tilman Schirmer
- Biozenbtrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Thomas R. Ward
- University of Basel, Spitalstrasse
51, CH-4056 Basel, Switzerland
| | - Jean-Didier Maréchal
- Departament
de Química, Universitat Autònoma de Barcelona, Edifici
C.n., 08193 Cerdanyola
del Vallés, Barcelona, Spain
| |
Collapse
|
23
|
Václavík J, Sot P, Pecháček J, Vilhanová B, Matuška O, Kuzma M, Kačer P. Experimental and theoretical perspectives of the Noyori-Ikariya asymmetric transfer hydrogenation of imines. Molecules 2014; 19:6987-7007. [PMID: 24879612 PMCID: PMC6272002 DOI: 10.3390/molecules19066987] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/13/2014] [Accepted: 05/21/2014] [Indexed: 11/25/2022] Open
Abstract
The asymmetric transfer hydrogenation (ATH) of imines catalyzed by the Noyori-Ikariya [RuCl(η6-arene)(N-arylsulfonyl-DPEN)] (DPEN=1,2-diphenylethylene-1,2-diamine) half-sandwich complexes is a research topic that is still being intensively developed. This article focuses on selected aspects of this catalytic system. First, a great deal of attention is devoted to the N-arylsulfonyl moiety of the catalysts in terms of its interaction with protonated imines (substrates) and amines (components of the hydrogen-donor mixture). The second part is oriented toward the role of the η6-coordinated arene. The final part concerns the imine substrate structural modifications and their importance in connection with ATH. Throughout the text, the summary of known findings is complemented with newly-presented ones, which have been approached both experimentally and computationally.
Collapse
Affiliation(s)
- Jiří Václavík
- Department of Organic Technology, Institute of Chemical Technology, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Petr Sot
- Department of Organic Technology, Institute of Chemical Technology, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Jan Pecháček
- Department of Organic Technology, Institute of Chemical Technology, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Beáta Vilhanová
- Department of Organic Technology, Institute of Chemical Technology, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Ondřej Matuška
- Department of Organic Technology, Institute of Chemical Technology, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Marek Kuzma
- Laboratory of Molecular Structure Characterization, Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Petr Kačer
- Department of Organic Technology, Institute of Chemical Technology, Technická 5, CZ-166 28 Prague, Czech Republic.
| |
Collapse
|