1
|
Zheng C, Schneider M, Marion A, Antes I. The Q41R mutation in the HCV-protease enhances the reactivity towards MAVS by suppressing non-reactive pathways. Phys Chem Chem Phys 2022; 24:2126-2138. [PMID: 35029245 DOI: 10.1039/d1cp05002h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent experimental findings pointed out a new mutation in the HCV protease, Q41R, responsible for a significant enhancement of the enzyme's reactivity towards the mitochondrial antiviral-signaling protein (MAVS). The Q41R mutation is located rather far from the active site, and its involvement in the overall reaction mechanism is thus unclear. We used classical molecular dynamics and QM/MM to study the acylation reaction of HCV NS3/4A protease variants bound to MAVS and the NS4A/4B substrate and uncovered the indirect mechanism by which the Q41R mutation plays a critical role in the efficient cleavage of the substrate. Our simulations reveal that there are two major conformations of the MAVS H1'(p) residue for the wild type protease and only one conformation for the Q41R mutant. The conformational space of H1'(p) is restricted by the Q41R mutation due to a π-π stacking between H1'(p) and R41 as well as a strong hydrogen bond between the backbone of H57 and the side chain of R41. Further QM/MM calculations indicate that the complex with the conformation ruled out by the Q41R substitution is a non-reactive species due to its higher free energy barrier for the acylation reaction. Based on our calculations, we propose a kinetic mechanism that explains experimental data showing an increase of apparent rate constants for MAVS cleavage in Q41R mutants. Our model predicts that the non-reactive conformation of the enzyme-substrate complex modulates reaction kinetics like an uncompetitive inhibitor.
Collapse
Affiliation(s)
- Chen Zheng
- Technische Universität München (TUM), TUM School of Life Sciences, Freising 85354, Germany. .,Technische Universität München (TUM), TUM Center for Functional Protein Assemblies, Garching 85747, Germany
| | - Markus Schneider
- Technische Universität München (TUM), TUM School of Life Sciences, Freising 85354, Germany. .,Technische Universität München (TUM), TUM Center for Functional Protein Assemblies, Garching 85747, Germany
| | - Antoine Marion
- Technische Universität München (TUM), TUM School of Life Sciences, Freising 85354, Germany. .,Middle East Technical University, Department of Chemistry, Ankara 06800, Turkey.
| | - Iris Antes
- Technische Universität München (TUM), TUM School of Life Sciences, Freising 85354, Germany. .,Technische Universität München (TUM), TUM Center for Functional Protein Assemblies, Garching 85747, Germany
| |
Collapse
|
2
|
Elsässer B, Goettig P. Mechanisms of Proteolytic Enzymes and Their Inhibition in QM/MM Studies. Int J Mol Sci 2021; 22:3232. [PMID: 33810118 PMCID: PMC8004986 DOI: 10.3390/ijms22063232] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Experimental evidence for enzymatic mechanisms is often scarce, and in many cases inadvertently biased by the employed methods. Thus, apparently contradictory model mechanisms can result in decade long discussions about the correct interpretation of data and the true theory behind it. However, often such opposing views turn out to be special cases of a more comprehensive and superior concept. Molecular dynamics (MD) and the more advanced molecular mechanical and quantum mechanical approach (QM/MM) provide a relatively consistent framework to treat enzymatic mechanisms, in particular, the activity of proteolytic enzymes. In line with this, computational chemistry based on experimental structures came up with studies on all major protease classes in recent years; examples of aspartic, metallo-, cysteine, serine, and threonine protease mechanisms are well founded on corresponding standards. In addition, experimental evidence from enzyme kinetics, structural research, and various other methods supports the described calculated mechanisms. One step beyond is the application of this information to the design of new and powerful inhibitors of disease-related enzymes, such as the HIV protease. In this overview, a few examples demonstrate the high potential of the QM/MM approach for sophisticated pharmaceutical compound design and supporting functions in the analysis of biomolecular structures.
Collapse
Affiliation(s)
| | - Peter Goettig
- Structural Biology Group, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria;
| |
Collapse
|
3
|
Yang F, Totsingan F, Dolan E, Khare SD, Gross RA. Protease-Catalyzed l-Aspartate Oligomerization: Substrate Selectivity and Computational Modeling. ACS OMEGA 2020; 5:4403-4414. [PMID: 32175488 PMCID: PMC7066554 DOI: 10.1021/acsomega.9b03290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/11/2019] [Indexed: 05/20/2023]
Abstract
Poly(aspartic acid) (PAA) is a biodegradable water-soluble anionic polymer that can potentially replace poly(acrylic acid) for industrial applications and has shown promise for regenerative medicine and drug delivery. This paper describes an efficient and sustainable route that uses protease catalysis to convert l-aspartate diethyl ester (Et2-Asp) to oligo(β-ethyl-α-aspartate), oligo(β-Et-α-Asp). Comparative studies of protease activity for oligo(β-Et-α-Asp) synthesis revealed α-chymotrypsin to be the most efficient. Papain, which is highly active for l-glutamic acid diethyl ester (Et2-Glu) oligomerization, is inactive for Et2-Asp oligomerization. The assignment of α-linkages between aspartate repeat units formed by α-chymotrypsin catalysis is based on nuclear magnetic resonance (NMR) trifluoacetic acid titration, circular dichroism, and NMR structural analysis. The influence of reaction conditions (pH, temperature, reaction time, and buffer/monomer/α-chymotrypsin concentrations) on oligopeptide yield and average degree of polymerization (DPavg) was determined. Under preferred reaction conditions (pH 8.5, 40 °C, 0.5 M Et2-Asp, 3 mg/mL α-chymotrypsin), Et2-Asp oligomerizations reached maximum oligo(β-Et-α-Asp) yields of ∼60% with a DPavg of ∼12 (M n 1762) in just 5 min. Computational modeling using Rosetta software gave relative energies of substrate docking to papain and α-chymotrypsin active sites. The substrate preference calculated by Rosetta modeling of α-chymotrypsin and papain for Et2-Asp and Et2-Glu oligomerizations, respectively, is consistent with experimental results.
Collapse
Affiliation(s)
- Fan Yang
- Center for Biotechnology
and Interdisciplinary Studies (CBIS), Rensselaer
Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United
States
| | - Filbert Totsingan
- Center for Biotechnology
and Interdisciplinary Studies (CBIS), Rensselaer
Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United
States
| | - Elliott Dolan
- Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Sagar D. Khare
- Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Richard A. Gross
- Center for Biotechnology
and Interdisciplinary Studies (CBIS), Rensselaer
Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United
States
| |
Collapse
|
4
|
Cuesta SA, Mora JR, Zambrano CH, Torres FJ, Rincón L. Comparative study of the nucleophilic attack step in the proteases catalytic activity: A theoretical study. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1705412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sebastián A. Cuesta
- Instituto de Simulación Computacional (ISM), Universidad San Francisco de Quito (USFQ), Quito, Ecuador
- Departamento de Ingeniería Química – Grupo de Química Computacional y Teórica (QCT), Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| | - José R. Mora
- Instituto de Simulación Computacional (ISM), Universidad San Francisco de Quito (USFQ), Quito, Ecuador
- Departamento de Ingeniería Química – Grupo de Química Computacional y Teórica (QCT), Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| | - Cesar H. Zambrano
- Instituto de Simulación Computacional (ISM), Universidad San Francisco de Quito (USFQ), Quito, Ecuador
- Departamento de Ingeniería Química – Grupo de Química Computacional y Teórica (QCT), Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| | - F. Javier Torres
- Instituto de Simulación Computacional (ISM), Universidad San Francisco de Quito (USFQ), Quito, Ecuador
- Departamento de Ingeniería Química – Grupo de Química Computacional y Teórica (QCT), Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| | - Luis Rincón
- Instituto de Simulación Computacional (ISM), Universidad San Francisco de Quito (USFQ), Quito, Ecuador
- Departamento de Ingeniería Química – Grupo de Química Computacional y Teórica (QCT), Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| |
Collapse
|
5
|
Nutho B, Mulholland AJ, Rungrotmongkol T. The reaction mechanism of Zika virus NS2B/NS3 serine protease inhibition by dipeptidyl aldehyde: a QM/MM study. Phys Chem Chem Phys 2019; 21:14945-14956. [PMID: 31236554 DOI: 10.1039/c9cp02377a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zika virus (ZIKV) infection has become a global public health problem, associated with microcephaly in newborns and Guillain-Barré syndrome in adults. Currently, there are no commercially available anti-ZIKV drugs. The viral protease NS2B/NS3, which is involved in viral replication and maturation, is a potential drug target. Peptidomimetic aldehyde inhibitors bind covalently to the catalytic S135 of the NS3 protease. Here, we apply hybrid quantum mechanics/molecular mechanics (QM/MM) free-energy simulations at the PDDG-PM3/ff14SB level to investigate the inhibition mechanism of the ZIKV protease by a dipeptidyl aldehyde inhibitor (acyl-KR-aldehyde). The results show that proton transfer from the catalytic S135 to H51 occurs in concert with nucleophilic addition on the aldehyde warhead by S135. The anionic covalent complex between the dipeptidyl aldehyde and the ZIKV protease is analogous to the tetrahedral intermediate for substrate hydrolysis. Spontaneous protonation by H51 forms the hemiacetal. In addition, we use correlated ab initio QM/MM potential energy path calculations at levels up to LCCSD(T)/(aug)-cc-pVTZ to obtain accurate potential energy profiles of the reaction, which also support a concerted mechanism. These results provide detailed insight into the mechanism of ZIKV protease inhibition by a peptidyl aldehyde inhibitor, which will guide in the design of inhibitors.
Collapse
Affiliation(s)
- Bodee Nutho
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| | - Thanyada Rungrotmongkol
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. and Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Wei W, Ma J, Xie D, Zhou Y. Linking inhibitor motions to proteolytic stability of sunflower trypsin inhibitor-1. RSC Adv 2019; 9:13776-13786. [PMID: 35519558 PMCID: PMC9063939 DOI: 10.1039/c9ra02114k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
The remarkable capability of an enzyme isn't only determined by its active site but also controlled by the environment. To unravel the environment role in catalysis, the dynamic motions as well as the static mechanism need to be studied. In this work, QM/MM MD simulations were employed to study the proteolysis process of SFTI-1 and BiKF, which revealed that a combination of static non-bonded interactions and dynamic motions along the reaction coordinate can account for the different hydrolysis rates between them. A comparison among SFTI-1 and three analogs with similar non-bonded interactions further revealed a positive correlation between the mobility of inhibitors and the hydrolysis rates. Apart from the cyclic backbone and disulfide bond, intramolecular hydrogen bonds also increase the rigidity of the backbone of inhibitors, and therefore hinder inhibitor motions to resist proteolysis. These new detailed mechanistic insights suggest the need to consider inhibitor motions in the rational design of peptide inhibitors. Besides the non-bonded interactions, inhibitor motions especially rotation of the scissile bond also influence proteolytic stability.![]()
Collapse
Affiliation(s)
- Wanqing Wei
- Institute of Theoretical and Computational Chemistry, Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jing Ma
- Institute of Theoretical and Computational Chemistry, Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yanzi Zhou
- Institute of Theoretical and Computational Chemistry, Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
7
|
Shi T, Liu L, Tao W, Luo S, Fan S, Wang XL, Bai L, Zhao YL. Theoretical Studies on the Catalytic Mechanism and Substrate Diversity for Macrocyclization of Pikromycin Thioesterase. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01156] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Lanxuan Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Wentao Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Shenggan Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Shuobing Fan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Xiao-Lei Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
8
|
Lima MCP, Seabra GM. Reaction mechanism of the dengue virus serine protease: a QM/MM study. Phys Chem Chem Phys 2018; 18:30288-30296. [PMID: 27341353 DOI: 10.1039/c6cp03209e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dengue virus (DENV) is the causative agent of the viral infection dengue fever. In spite of all the efforts made to prevent the spread of the disease, once it is contracted, there is no specific treatment for dengue and the WHO guidelines are limited to rest and symptomatic treatment. In its reproductive cycle, DENV utilizes the NS2B-NS3pro, a serine protease, to cleave the viral polyprotein into its constituents. This enzyme is essential for the virus lifecycle, and presents an attractive target for the development of specific dengue treatments. Here we used a hybrid Quantum Mechanics and Molecular Mechanics (QM/MM) Molecular Dynamics approach and Umbrella Sampling to study the first step (acylation) of the reaction catalyzed by NS2B-NS3pro, using the Pairwise Distance Directed Gaussian PM3 (PDDG/PM3) semi-empirical Hamiltonian for the QM subsystem, and Amber ff99SB for the MM subsystem. Our results indicate that the nucleophilic attack on the substrate by Ser135 occurs in a stepwise manner, in which a proton transfer to His51 first activates Ser135, which only later attacks the substrate. The rate-determining step is the Ser135 activation, with a barrier of 24.1 kcal mol-1. Water molecules completing the oxyanion hole stabilize the negative charge formed on the carbonyl oxygen of the substrate. The final step in the process is a proton transfer from His51 to the substrate's nitrogen, which happens with a lower barrier of 5.1 kcal mol-1, and leads directly to the breakage of the peptide bond.
Collapse
Affiliation(s)
- M C P Lima
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, s/no, Cidade Universitária - Recife, PE - CEP 50.740-560, Brazil.
| | - G M Seabra
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, s/no, Cidade Universitária - Recife, PE - CEP 50.740-560, Brazil.
| |
Collapse
|
9
|
Abstract
Hepatitis C virus (HCV) currently affects several million people across the globe. One of the major classes of drugs against HCV inhibits the NS3/4A protease of the polyprotein chain. Efficacy of these drugs is severely limited due to the high mutation rate that results in several genetically related quasispecies. The molecular mechanism of drug resistance is frequently deduced from structural studies and binding free energies. However, prediction of new mutations requires the evaluation of both binding free energy of the drug as well as the parameters (kcat and KM) for the natural substrate. The vitality values offer a good approach to investigate and predict mutations that render resistance to the inhibitor. A successful mutation should only affect the binding of the drug and not the catalytic activity and binding of the natural substrate. In this article, we have calculated the vitality values for four known drug inhibitors that are either currently in use or in clinical trials, evaluating binding free energies by the relevant PDLD/S-LRA method and activation barriers by the EVB method. The molecular details pertaining to resistance are also discussed. We show that our calculations are able to reproduce the catalytic effects and binding free energies in a good agreement with the corresponding observed values. Importantly, previous computational approaches have not been able to achieve this task. The trend for the vitality values is in accordance with experimental findings. Finally, we calculate the vitality values for mutations that have either not been studied experimentally or reported for some inhibitors.
Collapse
Affiliation(s)
- Garima Jindal
- Department of Chemistry, University of Southern California , 3620 McClintock Avenue, Los Angeles, California 90089, United States
| | - Dibyendu Mondal
- Department of Chemistry, University of Southern California , 3620 McClintock Avenue, Los Angeles, California 90089, United States
| | - Arieh Warshel
- Department of Chemistry, University of Southern California , 3620 McClintock Avenue, Los Angeles, California 90089, United States
| |
Collapse
|
10
|
Bao JL, Truhlar DG. Variational transition state theory: theoretical framework and recent developments. Chem Soc Rev 2017; 46:7548-7596. [DOI: 10.1039/c7cs00602k] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This article reviews the fundamentals of variational transition state theory (VTST), its recent theoretical development, and some modern applications.
Collapse
Affiliation(s)
- Junwei Lucas Bao
- Department of Chemistry
- Chemical Theory Center, and Minnesota Supercomputing Institute
- University of Minnesota
- Minneapolis
- USA
| | - Donald G. Truhlar
- Department of Chemistry
- Chemical Theory Center, and Minnesota Supercomputing Institute
- University of Minnesota
- Minneapolis
- USA
| |
Collapse
|
11
|
Chen XP, Shi T, Wang XL, Wang J, Chen Q, Bai L, Zhao YL. Theoretical Studies on the Mechanism of Thioesterase-Catalyzed Macrocyclization in Erythromycin Biosynthesis. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01154] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiong-Ping Chen
- State
Key Laboratory of Microbial Metabolism, Joint International Research
Laboratory of Metabolic and Developmental Sciences, MOE-LSC, School
of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ting Shi
- State
Key Laboratory of Microbial Metabolism, Joint International Research
Laboratory of Metabolic and Developmental Sciences, MOE-LSC, School
of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiao-Lei Wang
- State
Key Laboratory of Microbial Metabolism, Joint International Research
Laboratory of Metabolic and Developmental Sciences, MOE-LSC, School
of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jitao Wang
- State
Key Laboratory of Microbial Metabolism, Joint International Research
Laboratory of Metabolic and Developmental Sciences, MOE-LSC, School
of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qihua Chen
- State
Key Laboratory of Microbial Metabolism, Joint International Research
Laboratory of Metabolic and Developmental Sciences, MOE-LSC, School
of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Linquan Bai
- State
Key Laboratory of Microbial Metabolism, Joint International Research
Laboratory of Metabolic and Developmental Sciences, MOE-LSC, School
of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yi-Lei Zhao
- State
Key Laboratory of Microbial Metabolism, Joint International Research
Laboratory of Metabolic and Developmental Sciences, MOE-LSC, School
of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
12
|
Vilà A, González M. Reaction dynamics inside superfluid helium nanodroplets: the formation of the Ne2 molecule from Ne + Ne@(4He)N. Phys Chem Chem Phys 2016; 18:31869-31880. [DOI: 10.1039/c6cp03942a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hybrid TDDFT approach was proposed to consider bimolecular reactive processes in superfluid helium nanodroplets. The Ne + Ne@(4He)N reaction was considered as the first application example. The formation of Ne2 is a complex process related to the nature of the helium density waves and their reflection from the nanodroplet surface.
Collapse
Affiliation(s)
- Arnau Vilà
- Departament de Química Física i IQTC
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Miguel González
- Departament de Química Física i IQTC
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| |
Collapse
|