1
|
Wei L, Dong Y, Yan W, Zhang Y, Zhan C, Huang WH, Pao CW, Hu Z, Lin H, Xu Y, Geng H, Huang X. Hollow Pt-Encrusted RuCu Nanocages Optimizing OH Adsorption for Efficient Hydrogen Oxidation Electrocatalysis. Angew Chem Int Ed Engl 2024:e202420177. [PMID: 39589084 DOI: 10.1002/anie.202420177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
As one of the best candidates for hydrogen oxidation reaction (HOR), ruthenium (Ru) has attracted significant attention for anion exchange membrane fuel cells (AEMFCs), although it suffers from sluggish kinetics under alkaline conditions due to its strong hydroxide affinity. In this work, we develop ternary hollow nanocages with Pt epitaxy on RuCu (Pt-RuCu NCs) as efficient HOR catalysts for application in AEMFCs. Experimental characterizations and theoretical calculations confirm that the synergy in optimized Pt8.7-RuCu NCs significantly modifies the electronic structure and coordination environment of Ru, thereby balancing the binding strengths of H* and OH* species, which leads to a markedly enhanced HOR performance. Specifically, the optimized Pt8.7-RuCu NCs/C achieves a mass activity of 5.91 A mgPt+Ru -1, which is ~3.3, ~2.2, and ~15.0 times higher than that of RuCu NCs/C (1.38 A mgRu -1), PtRu/C (1.83 A mgPt+Ru -1) and Pt/C (0.37 A mgPt -1), respectively. Impressively, the specific peak power density of fuel cells reaches 15.9 W mgPt+Ru -1, significantly higher than those of most reported PtRu-based fuel cells.
Collapse
Affiliation(s)
- Licheng Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- National energy key laboratory for new hydrogen-ammonia energy technologies, Foshan Xianhu Laboratory, 1 Yangming Road, Foshan, 528200, China
| | - Yuanting Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuqi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Changhong Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden, 01187, Germany
| | - Haixin Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Yong Xu
- i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, 215123, China
| | - Hongbo Geng
- School of Materials Engineering, Changshu Institute of Technology
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| |
Collapse
|
2
|
Ahmad W, Hou Y, Ahmad N, Wang K, Zou C, Wan Z, Aftab S, Zhou S, Pan Z, Gao HL, Liang C, Yan W, Ling M, Lu Z. Sr-induced Fermi Engineering of β-FeOOH for Multifunctional Catalysis. SMALL METHODS 2024; 8:e2301434. [PMID: 38237086 DOI: 10.1002/smtd.202301434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/17/2023] [Indexed: 10/24/2024]
Abstract
Designing a multifunctional electrocatalyst to produce H2 from water, urea, urine, and wastewater, is highly desirable yet challenging because it demands precise Fermi-engineering to realize stronger π-donation from O 2p to electron(e-)-deficient metal (t2g) d-orbitals. Here a Sr-induced phase transformed β-FeOOH/α-Ni(OH)2 catalyst anchored on Ni-foam (designated as pt-NFS) is introduced, where Sr produces plenteous Fe4+ (Fe3+ → Fe4+) to modulate Fermi level and e--transfer from e--rich Ni3+(t2g)-orbitals to e--deficient Fe4+(t2g)-orbitals, via strong π-donation from the π-symmetry lone-pair of O bridge. pt-NFS utilizes Fe-sites near the Sr-atom to break the H─O─H bonds and weakens the adsorption of *O while strengthening that of *OOH, toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Invaluably, Fe-sites of pt-NFS activate H2-production from urea oxidation reaction (UOR) through a one-stage pathway which, unlike conventional two-stage pathways with two NH3-molecules, involves only one NH3-molecule. Owing to more suitable kinetic energetics, pt-NFS requires 133 mV (negative potential shift), 193 mV, ≈1.352 V, and ≈1.375 V versus RHE for HER, OER, UOR, and human urine oxidation, respectively, to reach the benchmark 10 mA cm-2 and also demonstrates remarkable durability of over 25 h. This work opens a new corridor to design multifunctional electrocatalysts with precise Fermi engineering through d-band modulation.
Collapse
Affiliation(s)
- Waqar Ahmad
- Division of New Energy Materials, Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yunpeng Hou
- Division of New Energy Materials, Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Nisar Ahmad
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Kun Wang
- Division of New Energy Materials, Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Chenghao Zou
- Division of New Energy Materials, Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhengwei Wan
- Division of New Energy Materials, Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Sumaira Aftab
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Shaodong Zhou
- Division of New Energy Materials, Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhao Pan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Huai-Ling Gao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Chengdu Liang
- Division of New Energy Materials, Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wenjun Yan
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Min Ling
- Division of New Energy Materials, Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhihui Lu
- Division of New Energy Materials, Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
| |
Collapse
|
3
|
Li S, Ajmal S, Zhou X, Lu M, Li X, Sun Z, Liu S, Zhu M, Li P. Mixed-Dimensional Partial Dealloyed PtCuBi/C as High-Performance Electrocatalysts for Methanol Oxidation with Enhanced CO Tolerance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309226. [PMID: 38126680 DOI: 10.1002/smll.202309226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Developing efficient electrocatalysts for methanol oxidation reaction (MOR) is crucial in advancing the commercialization of direct methanol fuel cells (DMFCs). Herein, carbon-supported 0D/2D PtCuBi/C (0D/2D PtCuBi/C) catalysts are fabricated through a solvothermal method, followed by a partial electrochemical dealloying process to form a novel mixed-dimensional electrochemically dealloyed PtCuBi/C (0D/2D D-PtCuBi/C) catalysts. Benefiting from distinctive mixed-dimensional structure and composition, the as-obtained 0D/2D D-PtCuBi/C catalysts possess abundant accessible active sites. The introduction of Cu as a water-activating element weakens the COads, and oxophilic metal Bi facilitates the OHads, thereby enhancing its tolerance to CO poisoning and promoting MOR activity. The X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure spectroscopy (XAFS) collectively reveal the electron transfer from Cu and Bi to Pt, the electron-enrichment effect induced by dealloying, and the strong interactions among Pt-M (Cu, Pt, and Bi) multi-active sites, which improve the tuning of the electronic structure and enhancement of electron transfer ability. Impressively, the optimized 0D/2D D-PtCuBi/C catalysts exhibit the superior mass activity (MA) of 17.68 A mgPt -1 for MOR, which is 14.86 times higher than that of commercial Pt/C. This study offers a proposed strategy for Pt-based alloy catalysts, enabling their use as efficient anodic materials in fuel cell applications.
Collapse
Affiliation(s)
- Sichen Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Sara Ajmal
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Xiaoxing Zhou
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Maoni Lu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Xinghao Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Zhenjie Sun
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Shoujie Liu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| | - Peng Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
4
|
Han P, Yang X, Wu L, Jia H, Chen J, Shi W, Cheng G, Luo W. A Highly-Efficient Boron Interstitially Inserted Ru Anode Catalyst for Anion Exchange Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304496. [PMID: 37934652 DOI: 10.1002/adma.202304496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/08/2023] [Indexed: 11/09/2023]
Abstract
Developing high-performance electrocatalysts for alkaline hydrogen oxidation reaction (HOR) is crucial for the commercialization of anion exchange membrane fuel cells (AEMFCs). Here, boron interstitially inserted ruthenium (B-Ru/C) is synthesized and used as an anode catalyst for AEMFC, achieving a peak power density of 1.37 W cm-2 , close to the state-of-the-art commercial PtRu catalyst. Unexpectedly, instead of the monotonous decline of HOR kinetics with pH as generally believed, an inflection point behavior in the pH-dependent HOR kinetics on B-Ru/C is observed, showing an anomalous behavior that the HOR activity under alkaline electrolyte surpasses acidic electrolyte. Experimental results and density functional theory calculations reveal that the upshifted d-band center of Ru after the intervention of interstitial boron can lead to enhanced adsorption ability of OH and H2 O, which together with the reduced energy barrier of water formation, contributes to the outstanding alkaline HOR performance with a mass activity of 1.716 mA µgPGM -1 , which is 13.4-fold and 5.2-fold higher than that of Ru/C and commercial Pt/C, respectively.
Collapse
Affiliation(s)
- Pengyu Han
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xinyi Yang
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Liqing Wu
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Hongnan Jia
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Jingchao Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Wenwen Shi
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Gongzhen Cheng
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
5
|
Cheng W, Sun C, Liu W, Wang Z. High-Entropy Alloy PtCuNiCoMn Nanoparticles on rGO for Electrooxidation of Methanol and Formic Acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2343-2351. [PMID: 38230630 DOI: 10.1021/acs.langmuir.3c03540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
High-entropy alloy (HEA) nanoparticles have attracted great attention due to their excellent electrocatalytic properties. Herein, PtCuNiCoMn HEA nanoparticles supported on reduced graphene oxide (rGO) are synthesized via a solvothermal co-reduction method and are used as an electrocatalyst for the electrooxidation of methanol and formic acid. Owing to the synergistic effect between the component metals, the high-entropy effect, and the sluggish diffusion effect, the PtCuNiCoMn HEA nanoparticles possess significantly improved electrocatalytic activity and stability compared to PtCuNiCo, PtCuNi, PtCu, Pt nanoparticles, and the commercial Pt/C catalyst. The results reveal the unique advantages of HEA nanoparticles in the field of electrocatalysis. The synthesis method is simple and effective, which may be valuable for the preparation of other HEA electrocatalysts.
Collapse
Affiliation(s)
- Wenting Cheng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Chengrui Sun
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Wen Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Zhenghua Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
| |
Collapse
|
6
|
Liang J, Cheng H, Zhao B, Hu Q, Xing Z, Zhang Y, Niu L. Boosting the Methanol Oxidation Reaction Activity of Pt-Ru Clusters via Resonance Energy Transfer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302149. [PMID: 37194975 DOI: 10.1002/smll.202302149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Indexed: 05/18/2023]
Abstract
The sluggish kinetics of the methanol oxidation reaction (MOR) with PtRu electrocatalyst severely hinder the commercialization of direct methanol fuel cells (DMFCs). The electronic structure of Pt is of significant importance for its catalytic activity. Herein, it is reported that low-cost fluorescent carbon dots (CDs) can regulate the behavior of the D-band center of Pt in PtRu clusters through resonance energy transfer (RET), resulting in a significant increase in the catalytic activity of the catalyst participating in methanol electrooxidation. For the first time, the bifunction of RET is used to provide unique strategy for fabrication of PtRu electrocatalysts, not only tunes the electronic structure of metals, but also provides an important role in anchoring metal clusters. Density functional theory calculations further prove that charge transfer between CDs and Pt promotes the dehydrogenation of methanol on PtRu catalysts and reduces the free energy barrier of the reaction associated with the oxidation of CO* to CO2 . This helps to improve the catalytic activity of the systems participating in MOR. The performance of the best sample is 2.76 times higher than that of commercial PtRu/C (213.0 vs 76.99 mW cm - 2 mg Pt - 1 ${\rm{mW\ cm}}^{ - 2}{\rm{\ mg}}_{{\rm{Pt}}}^{ - 1}$ ). The fabricated system can be potentially used for the efficient fabrication of DMFCs.
Collapse
Affiliation(s)
- Jiahui Liang
- Guangzhou Key Laboratory of Sensing Materials & Devices /Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Heyun Cheng
- Guangzhou Key Laboratory of Sensing Materials & Devices /Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Bolin Zhao
- Guangzhou Key Laboratory of Sensing Materials & Devices /Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Qiong Hu
- Guangzhou Key Laboratory of Sensing Materials & Devices /Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Zihao Xing
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yuwei Zhang
- Guangzhou Key Laboratory of Sensing Materials & Devices /Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials & Devices /Center for Advanced Analytical Science/School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
7
|
Ahmad W, Hou Y, Khan R, Wang L, Zhou S, Wang K, Wan Z, Zhou S, Yan W, Ling M, Liang C. V-Integration Modulates t 2g -Electrons of a Single Crystal Ir 1- x (Ir 0.8 V 0.2 O 2 ) x -BHC for Boosted and Durable OER in Acidic Electrolyte. SMALL METHODS 2023:e2201247. [PMID: 37086116 DOI: 10.1002/smtd.202201247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Realizing efficacious π-donation from the O 2p orbital to electron-deficient metal (t2g ) d-orbitals along with separately tuned adsorption of *O and *OOH, is an imperious pre-requisite for an electrocatalyst design to demonstrate boosted oxygen evolution reaction (OER) performance. To regulate the π-donation and the adsorption ability for *O and *OOH, herein, a facile strategy to modulate the electron transfer from electron-rich t2g -orbitals to electron-deficient t2g -orbitals, via strong π-donation from the π-symmetry lone pairs of the bridging O2- , and the d-band center of a biomimetic honeycomb (BHC)-like nanoarchitecture (Ir1- x (Ir0.8 V0.2 O2 )x -BHC) is introduced. The suitable integration of V heteroatoms in the single crystal system of IrO2 decreases the electron density on the neighboring Ir sites, and causes an upshift in the d-band center of Ir1- x (Ir0.8 V0.2 O2 )x -BHC, weakening the adsorption of *O while strengthening that of *OOH, lowers the energy barrier for OER. Therefore, BHC design demonstrates excellent OER performance (shows a small overpotential of 238 mV at 10 mA cm-2 and a Tafel slope of 39.87 mV dec-1 ) with remarkable stability (130 h) in corrosive acidic electrolyte. This work opens a new corridor to design robust biomimetic nanoarchitectures of modulated π-symmetry (t2g ) d-orbitals and the band structure, to achieve excellent activity and durability in acidic environment.
Collapse
Affiliation(s)
- Waqar Ahmad
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Yunpeng Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Rashid Khan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Shiyu Zhou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Kun Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Zhengwei Wan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Wenjun Yan
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Min Ling
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| | - Chengdu Liang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard, Quzhou, 324000, China
| |
Collapse
|
8
|
Xie F, Gan M, Ma L. N-Doped Carbon Nanotube Shell Encapsulating the NiFe Metal Core for Enhanced Catalytic Stability in Methanol Oxidation Reaction by the Structural Cooperation Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15198-15208. [PMID: 36459487 DOI: 10.1021/acs.langmuir.2c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploitation of high-efficiency catalysts toward methanol oxidation is a pivotal step to promote the commercialization of direct methanol fuel cells. Herein, a strategy is demonstrated to prepare nitrogen-doped carbon nanotubes with NiFe metal particles (NiFe@N-CNT) as the carrier material of Pt nanoparticles. Combining SEM and TEM, NiFe metal particles are fully encapsulated in N-CNTs, and they form the metal core and carbon nanotube shell structure based on the structural cooperation mechanism. Surprisingly, the as-prepared Pt/NiFe@N-CNT catalyst shows superior catalytic activity (1023 mA mg-1Pt) compared to commercial Pt/C (392 mA mg-1Pt), Pt/Ni@N-CNT (331 mA mg-1Pt), and Pt/Fe@N-CNT (592 mA mg-1Pt). After 1000 cycles, Pt/NiFe@N-CNT maintains the optimal catalytic activity (588 mA mg-1Pt), and its mass activity loss is 42.5%, which is better than those of commercial Pt/C (64.0%), Pt/Ni@N-CNT (67.7%), and Pt/Fe@N-CNT (59.6%) catalysts, indicating that the Pt/NiFe@N-CNT catalyst achieves excellent catalytic activity and stability, which stems chiefly from the homodispersed Pt nanoparticles and the generation of the metal core-carbon nanotube shell based on the structural cooperation mechanism. This study reports the facile construction of a metal core-carbon nanotube shell structure, which intrinsically ameliorates structural collapse of carrier material, thereby improving the catalytic stability of the Pt-based catalyst and broadening the view for design of other desire catalysts in methanol oxidation.
Collapse
Affiliation(s)
- Fei Xie
- College of Chemistry & Chemical Engineering, Chongqing University, Chongqing400044, P. R. China
| | - Mengyu Gan
- College of Chemistry & Chemical Engineering, Chongqing University, Chongqing400044, P. R. China
| | - Li Ma
- College of Chemistry & Chemical Engineering, Chongqing University, Chongqing400044, P. R. China
| |
Collapse
|
9
|
Elmaalouf M, Da Silva A, Duran S, Tard C, Comesaña-Hermo M, Gam-Derouich S, Briois V, Alloyeau D, Giraud M, Piquemal JY, Peron J. Green synthesis of water splitting electrocatalysts: IrO 2 nanocages via Pearson's chemistry. Chem Sci 2022; 13:11807-11816. [PMID: 36320917 PMCID: PMC9580478 DOI: 10.1039/d2sc03640a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/23/2022] [Indexed: 12/09/2023] Open
Abstract
Highly porous iridium oxide structures are particularly well-suited for the preparation of porous catalyst layers needed in proton exchange membrane water electrolyzers. Herein, we report the formation of iridium oxide nanostructured cages, via a water-based process performed at room temperature, using cheap Cu2O cubes as the template. In this synthetic approach, based on Pearson's hard and soft acid-base theory, the replacement of the Cu2O core by an iridium shell is permitted by the difference in hardness/softness of cations and anions of the two reactants Cu2O and IrCl3. Calcination followed by acid leaching allow the removal of residual copper oxide cores and leave IrO2 hierarchical porous structures with outstanding activity toward the oxygen evolution reaction. Fundamental understanding of the reaction steps and identification of the intermediates are permitted by coupling a set of ex situ and in situ techniques including operando time-resolved X-ray absorption spectroscopy during the synthesis.
Collapse
Affiliation(s)
| | | | - Silvia Duran
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris 91120 Palaiseau France
| | - Cédric Tard
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris 91120 Palaiseau France
| | | | | | - Valérie Briois
- SOLEIL Synchrotron, UR1-CNRS L'Orme des Merisiers, BP48 91192 Gif-sur-Yvette France
| | - Damien Alloyeau
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques (MPQ) F-75013 Paris France
| | - Marion Giraud
- Université Paris Cité, CNRS, ITODYS F-75013 Paris France
| | | | - Jennifer Peron
- Université Paris Cité, CNRS, ITODYS F-75013 Paris France
| |
Collapse
|
10
|
Song B, Chung I, Kim J, Yun M, Yun Y. Promoting effects of residual poly(vinyl alcohol) capping agent on the activity and chemoselectivity of Pt/Al2O3 for catalytic hydrogenation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
McGuire SC, Wesley W, Sasaki K, Tong X, Wong SS. Yttrium-based Double Perovskite Nanorods for Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30914-30926. [PMID: 35759361 DOI: 10.1021/acsami.2c07377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, we investigate the effect of the chemical composition of double perovskite nanorods on their versatile electrocatalytic activity not only as supports for the oxidation of small organic molecules but also as catalysts for the oxygen evolution reaction. Specifically, Y2CoMnO6 and Y2NiMnO6 nanorods with average diameters of 300 nm were prepared by a two-step hydrothermal method, in which the individual effects of synthetic parameters, such as the pH, annealing temperature, and precursor ratios on both the composition and morphology, were systematically investigated. When used as supports for Pt nanoparticles, Y2CoMnO6/Pt catalysts exhibited an electrocatalytic activity for the methanol oxidation reaction, which is 2.1 and 1.3 times higher than that measured for commercial Pt/C and Y2NiMnO6/Pt, respectively. Similarly, the Co-based catalyst support material displayed an ethanol oxidation activity, which is 2.3 times higher than both Pt/C and Y2NiMnO6/Pt. This clear enhancement in the activity for Y2CoMnO6 can largely be attributed to strong metal-support interactions, as evidenced by a downshift in the binding energy of the Pt 4f bands, measured by X-ray photoelectron spectroscopy (XPS), which is often correlated not only with a downshift in the d-band center but also to a decreased adsorption of poisoning adsorbates. Moreover, when used as catalysts for the oxygen evolution reaction, Y2CoMnO6 displayed a much greater activity as compared with Y2NiMnO6. This behavior can largely be attributed not only to a preponderance of comparatively more favorable oxidation states and electronic configurations but also to the formation of an active layer on the surface of the Y2CoMnO6 catalyst, which collectively gives rise to improved performance metrics and greater stability as compared with both IrO2 and Y2NiMnO6. Overall, these results highlight the importance of both the chemical composition and the electronic structure of double perovskites, especially when utilized in multifunctional roles as either supports or catalysts.
Collapse
Affiliation(s)
- Scott C McGuire
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| | - Weiqiao Wesley
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| | - Kotaro Sasaki
- Chemistry Division, Brookhaven National Laboratory, Building 555, Upton, New York 11973, United States
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Building 735, Upton, New York 11973, United States
| | - Stanislaus S Wong
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
12
|
Controlled Synthesis of High-index Faceted Pt nanocatalysts Directly on Carbon Paper for Methanol Electrooxidation. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00749-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Li Y, Yang C, Ge C, Yao N, Yin J, Jiang W, Cong H, Cheng G, Luo W, Zhuang L. Electronic Modulation of Ru Nanosheet by d-d Orbital Coupling for Enhanced Hydrogen Oxidation Reaction in Alkaline Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202404. [PMID: 35754182 DOI: 10.1002/smll.202202404] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The alkaline polymer electrolyte fuel cells (APEFCs) hold great promise for using nonnoble metal-based electrocatalysts toward the cathodic oxygen reduction reaction (ORR), but are hindered by the sluggish anodic hydrogen oxidation reaction (HOR) in alkaline electrolytes. Here, a strategy is reported to promote the alkaline HOR performance of Ru by incorporating 3d-transition metals (V, Fe, Co, and Ni), where the conduction band minimum (CBM) level of Ru can be rationally tailored through strong d-d orbital coupling. As expected, the obtained RuFe nanosheet exhibits outstanding HOR performance with the mass activity of 233.46 A gPGM -1 and 23-fold higher than the Ru catalyst, even threefold higher than the commercial Pt/C. APEFC employing this RuFe as anodic catalyst gives a peak power density of 1.2 W cm-2 , outperforming the documented Pt-free anodic catalyst-based APEFCs. Experimental results and density functional theory calculations suggest the enhanced OH-binding energy and reduced formation energy of water derived from the downshifted CBM level of Ru contribute to the enhanced HOR activity.
Collapse
Affiliation(s)
- Yunbo Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Chaoyi Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Chuangxin Ge
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Na Yao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Jinlong Yin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Wenyong Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Gongzhen Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Suzhou Institute of Wuhan University, Suzhou, Jiangsu, 215123, P. R. China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
14
|
Hashemzaei Z, Saravani H, Sharifitabar M, Shahbakhsh M. Copper nanowires / poly (naphtoquinone chromium (III)) for simultaneous voltammetric detection of para - aminophenol, phenol and para - nitrophenol. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Structural and Electrical Properties of Atomic Layer Deposited PtRu Bimetallic Alloy Thin Films. COATINGS 2022. [DOI: 10.3390/coatings12010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The structural and electrical properties of PtRu bimetallic alloy (BA) thin films prepared via atomic layer deposition (ALD) were systemically investigated according to the film composition, which was controlled at a deposition temperature of 340 °C by changing the numbers of Pt and Ru subcycles of a supercycle. As-deposited PtRu BA thin films exhibited weaker crystallinity than Pt36Ru64 when the Ru content was high. However, crystallinity improved, and the peak shifts became clearer after Ar heat treatment at 700 °C, reflecting the formation of well-mixed solid solutions. The electrical resistivity and work function also improved. The work function of PtRu BA thin films can be controlled between the work functions of Pt and Ru, and is only weakly dependent on the film composition in the single solid solution region.
Collapse
|
16
|
Cu(OH)2-Ni(OH)2 engulfed by zeolite-Y hydroxyl nest and multiwalled carbon nanotube for effective methanol oxidation reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Zhao W, Ma L, Gan M, Li X, Zhang Y, Hua X, Wang L. Engineering intermetallic-metal oxide interface with low platinum loading for efficient methanol electrooxidation. J Colloid Interface Sci 2021; 604:52-60. [PMID: 34261019 DOI: 10.1016/j.jcis.2021.06.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Constructing a distinctive electrochemical interface with low platinum content to boost the sluggish methanol electrooxidation kinetics is critical for commercializing the direct methanol fuel cells. Herein, we have synthesized highly active electrocatalysts with unique intermetallic-metal oxide interfaces through a facile pyrolysis method. Physical characterizations demonstrate that the obtained PtFe(1:2)@a-FeOx/NC-C catalyst with low platinum content of 7.2 wt% possesses an interfacial structure composed of face-centered tetragonal (L10) PtFe intermetallic nanoparticles accompanied with amorphous iron oxide. Electrochemical measurements show that the synthesized PtFe(1:2)@a-FeOx/NC-C catalyst not only exhibits excellent methanol electrooxidation activities with a mass activity of 1.48 A mg-1Pt and a specific activity of 2.34 mA cm-2Pt in acid medium, but also possesses better CO-tolerant performance and faster methanol oxidation kinetics compared with commercial Pt/C. The improved electrochemical performances may ascribe to the modified electronic structure by alloying platinum with iron and the special PtFe@a-FeOx interface, which render strong synergistic interactions between bimetallic PtFe nanoparticles and amorphous iron oxide. Consequently, the presented strategy offers new prospects into the construction of low-cost electrocatalysts with unique electrochemical interface for enhancing catalytic performances.
Collapse
Affiliation(s)
- Wei Zhao
- College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Li Ma
- College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Mengyu Gan
- College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Xudong Li
- College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Yuchao Zhang
- College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Xuelian Hua
- College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Ling Wang
- College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
18
|
Zha M, Liu Z, Wang Q, Hu G, Feng L. Efficient alcohol fuel oxidation catalyzed by a novel Pt/Se catalyst. Chem Commun (Camb) 2021; 57:199-202. [DOI: 10.1039/d0cc06386j] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenium spheres decorated with Pt nanoparticles were found to be efficient for alcohol fuel oxidation in fuel cells.
Collapse
Affiliation(s)
- Meng Zha
- School of Chemical Science and Engineering
- School of Energy
- Yunnan University
- Kunming 650091
- China
| | - Zong Liu
- School of Chemical Science and Engineering
- School of Energy
- Yunnan University
- Kunming 650091
- China
| | - Quan Wang
- School of Chemical Science and Engineering
- School of Energy
- Yunnan University
- Kunming 650091
- China
| | - Guangzhi Hu
- School of Chemical Science and Engineering
- School of Energy
- Yunnan University
- Kunming 650091
- China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- China
| |
Collapse
|
19
|
Liu W, Wang P, Wang Z. PtPdCu cubic nanoframes as electrocatalysts for methanol oxidation reaction. CrystEngComm 2021. [DOI: 10.1039/d1ce00710f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PtPdCu cubic nanoframes with unique open architecture exhibit excellent electrocatalytic performances toward methanol electrooxidation.
Collapse
Affiliation(s)
- Wen Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Peng Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Zhenghua Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|
20
|
Abraham BG, Chetty R. Influence of electrodeposition techniques and parameters towards the deposition of Pt electrocatalysts for methanol oxidation. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01510-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Zhang J, Shen L, Jiang Y, Sun S. Random alloy and intermetallic nanocatalysts in fuel cell reactions. NANOSCALE 2020; 12:19557-19581. [PMID: 32986070 DOI: 10.1039/d0nr05475e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fuel cells that use small organic molecules or hydrogen as the anode fuel can power clean electric vehicles. From an experimental perspective, the possible fuel cells' electrocatalytic reaction mechanisms are obtained through in situ electrochemical spectroscopy techniques and density functional theory calculations, providing theoretical guidance for further development of novel nanocatalysts. As advanced nanocatalysts for fuel cells' electrochemical reactions, alloy nanomaterials have greatly improved electrocatalytic activity and stability and have attracted widespread attention. Enhanced electrocatalytic performance of alloy nanocatalysts could be closely related to the synergistic effects, such as electronic and strain effects. Depending on the arrangement of atoms, alloys can be classified into random alloy and intermetallic compounds (ordered structure). Intermetallic compounds generally have lower heats of formation and stronger heteroatomic bonding strength relative to the random alloy, resulting in high chemical and structural stability in either full pH solutions or electrochemical tests. Here, we summarize the latest advances and the structure-function relationship of noble metal alloy nanocatalysts, among which Pt-based catalysts are the main ones, as well as comprehensively understand why they significantly affect the electrocatalytic performance of fuel cells. Novel alloy nanocatalysts with a robust three-phase interface to achieve efficient charge and mass transfer can obtain desirable activity and stability in the electrochemical workstation tests, and is expected to acquire a higher power density on fuel cell test systems with harsh test conditions.
Collapse
Affiliation(s)
- Junming Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.
| | | | | | | |
Collapse
|
22
|
Yang F, Han P, Yao N, Cheng G, Chen S, Luo W. Inter-regulated d-band centers of the Ni 3B/Ni heterostructure for boosting hydrogen electrooxidation in alkaline media. Chem Sci 2020; 11:12118-12123. [PMID: 34094426 PMCID: PMC8162945 DOI: 10.1039/d0sc03917a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ni3B/Ni heterostructures have been constructed, which exhibit exceptional catalytic performance toward the hydrogen oxidation reaction (HOR) under alkaline media, with the mass activity being about 10 times greater than that of Ni3B and Ni, respectively, ranking among the most active platinum-group-metal-free electrocatalysts. Experimental results and theoretical calculations confirm electron transfer from Ni3B to Ni at the Ni3B/Ni interface, resulting in inter-regulated d-band centers of these two components. This inter-regulation gives rise to optimized binding energies of intermediates, which together contribute to enhanced alkaline HOR activity.
Collapse
Affiliation(s)
- Fulin Yang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Pengyu Han
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Na Yao
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Gongzhen Cheng
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Shengli Chen
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| |
Collapse
|
23
|
Elangovan A, Xu J, Sekar A, Liu B, Li J. Enhancing Methanol Oxidation Reaction with Platinum‐based Catalysts using a N‐Doped Three‐dimensional Graphitic Carbon Support. ChemCatChem 2020. [DOI: 10.1002/cctc.202001162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ayyappan Elangovan
- Department of Chemistry Kansas State University Manhattan, Kansas 66506 USA
| | - Jiayi Xu
- Tim Taylor Department of Chemical Engineering Kansas State University Manhattan, Kansas 66506 USA
| | - Archana Sekar
- Department of Chemistry Kansas State University Manhattan, Kansas 66506 USA
| | - Bin Liu
- Tim Taylor Department of Chemical Engineering Kansas State University Manhattan, Kansas 66506 USA
| | - Jun Li
- Department of Chemistry Kansas State University Manhattan, Kansas 66506 USA
| |
Collapse
|
24
|
Yuda A, Ashok A, Kumar A. A comprehensive and critical review on recent progress in anode catalyst for methanol oxidation reaction. CATALYSIS REVIEWS 2020. [DOI: 10.1080/01614940.2020.1802811] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Afdhal Yuda
- Department of Chemical Engineering, Qatar University, Doha, Qatar
| | - Anchu Ashok
- Department of Chemical Engineering, Qatar University, Doha, Qatar
| | - Anand Kumar
- Department of Chemical Engineering, Qatar University, Doha, Qatar
| |
Collapse
|
25
|
Wang Y, Wu M, Wang K, Chen J, Yu T, Song S. Fe 3O 4@N-Doped Interconnected Hierarchical Porous Carbon and Its 3D Integrated Electrode for Oxygen Reduction in Acidic Media. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000407. [PMID: 32714753 PMCID: PMC7375250 DOI: 10.1002/advs.202000407] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/24/2020] [Indexed: 05/30/2023]
Abstract
The rational design of electrode structure with catalysts adequately utilized is of vital importance for future fuel cells. Herein, a novel 3D oriented wholly integrated electrode comprising core-shell Fe3O4@N-doped-C (Fe3O4@NC) nanoparticles embedded into N-doped ordered interconnected hierarchical porous carbon (denoted as Fe3O4@NC/NHPC) is developed for the oxygen reduction reaction (ORR). The as-prepared catalyst possesses novel structure and efficient active sites. In rotating disk electrode measurements, the Fe3O4@NC/NHPC exhibits almost identical ORR electrocatalytic activity, superior durability, and much better methanol tolerance compared with the commercial Pt/C in acidic media. To the authors' knowledge, this is among the best non-precious-metal ORR catalysts reported so far. Importantly, the Fe3O4@NC/NHPC is successfully in situ assembled onto carbon paper by the electrophoresis method to obtain a well-designed 3D-ordered electrode. With improved mass transfer and maximized active sites for ORR, the 3D-oriented wholly integrated electrode shows superior performance to the one fabricated by the traditional method.
Collapse
Affiliation(s)
- Yi Wang
- The Key Lab of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceSchool of Chemical Engineering and TechnologySchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Mingmei Wu
- The Key Lab of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceSchool of Chemical Engineering and TechnologySchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Kun Wang
- The Key Lab of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceSchool of Chemical Engineering and TechnologySchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Junwei Chen
- The Key Lab of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceSchool of Chemical Engineering and TechnologySchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Tongwen Yu
- The Key Lab of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceSchool of Chemical Engineering and TechnologySchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Shuqin Song
- The Key Lab of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceSchool of Chemical Engineering and TechnologySchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
26
|
Li M, Deng X, Xiang K, Liang Y, Zhao B, Hao J, Luo JL, Fu XZ. Value-Added Formate Production from Selective Methanol Oxidation as Anodic Reaction to Enhance Electrochemical Hydrogen Cogeneration. CHEMSUSCHEM 2020; 13:914-921. [PMID: 31808618 DOI: 10.1002/cssc.201902921] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Electrolytic overall water splitting is a promising approach to produce H2 , but its efficiency is severely limited by the sluggish kinetics of the oxygen evolution reaction (OER) and the low activity of current electrocatalysts. To solve these problems, in addition to the development of efficient precious-metal catalysts, an effective strategy is proposed to replace the OER by the selective methanol oxidation reaction. Ni-Co hydroxide [Nix Co1-x (OH)2 ] nanoarrays were obtained through a facile hydrothermal treatment as the bifunctional electrocatalysts for the co-electrolysis of methanol/water to produce H2 and value-added formate simultaneously. The electrocatalyst could catalyze selective methanol oxidation (≈1.32 V) with a significantly lower energy consumption (≈0.2 V less) than OER. Importantly, methanol was transformed exclusively to value-added formate with a high Faradaic efficiency (selectivity) close to 100 %. Specifically, a cell voltage of only approximately 1.5 V was required to generate a current density of 10 mA cm-2 . Furthermore, the Ni0.33 Co0.67 (OH)2 /Ni foam nanoneedle arrays presented an outstanding stability for overall co-electrolysis.
Collapse
Affiliation(s)
- Mei Li
- College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Xiaohui Deng
- College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Kun Xiang
- College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Yue Liang
- College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Bin Zhao
- College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Jie Hao
- College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518055, Guangdong Province, P. R. China
| | - Jing-Li Luo
- College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518055, Guangdong Province, P. R. China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2G6, Canada
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518055, Guangdong Province, P. R. China
| |
Collapse
|
27
|
Enhanced Anti-CO poisoning of platinum on mesoporous carbon spheres by abundant hydroxyl groups in methanol electro-oxidation. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Li M, Wang Y, Cai J, Li Y, Liu Y, Dong Y, Li S, Yuan X, Zhang X, Dai X. Surface sites assembled-strategy on Pt–Ru nanowires for accelerated methanol oxidation. Dalton Trans 2020; 49:13999-14008. [DOI: 10.1039/d0dt02567d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isolated Ru atoms activate more Pt atoms involved in the Langmuir–Hinshelwood (L–H) pathway, which collectively accelerate methanol oxidation.
Collapse
|
29
|
He Z, Yang Y, Liang HW, Liu JW, Yu SH. Nanowire Genome: A Magic Toolbox for 1D Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902807. [PMID: 31566828 DOI: 10.1002/adma.201902807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/07/2019] [Indexed: 06/10/2023]
Abstract
1D nanomaterials with high aspect ratio, i.e., nanowires and nanotubes, have inspired considerable research interest thanks to the fact that exotic physical and chemical properties emerge as their diameters approach or fall into certain length scales, such as the wavelength of light, the mean free path of phonons, the exciton Bohr radius, the critical size of magnetic domains, and the exciton diffusion length. On the basis of their components, aspect ratio, and properties, there may be imperceptible connections among hundreds of nanowires prepared by different strategies. Inspired by the heredity system in life, a new concept termed the "nanowire genome" is introduced here to clarify the relationships between hundreds of nanowires reported previously. As such, this approach will not only improve the tools incorporating the prior nanowires but also help to precisely synthesize new nanowires and even assist in the prediction on the properties of nanowires. Although the road from start-ups to maturity is long and fraught with challenges, the genetical syntheses of more than 200 kinds of nanostructures stemming from three mother nanowires (Te, Ag, and Cu) are summarized here to demonstrate the nanowire genome as a versatile toolbox. A summary and outlook on future challenges in this field are also presented.
Collapse
Affiliation(s)
- Zhen He
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hai-Wei Liang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jian-Wei Liu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
30
|
Catalytic Combustion of Dimethyl Disulfide on Bimetallic Supported Catalysts Prepared by the Wet-Impregnation Method. Catalysts 2019. [DOI: 10.3390/catal9120994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In this paper, the catalytic combustion of DMDS (dimethyl disulfide, CH3SSCH3) over bimetallic supported catalysts were investigated. It was confirmed that Cu/γ-Al2O3-CeO2 showed best catalytic performance among the five single-metal catalysts. Furthermore, six different metals were separately added into Cu/γ-Al2O3-CeO2 to investigate the promoting effect. The experiments revealed Pt as the most effective promoter and the best catalytic performance was achieved as the adding amount of 0.3 wt%. The characterization results indicated that high activity and resistance to sulfur poisoning of Cu-Pt/γ-Al2O3-CeO2 could be attributed to the synergistic effect between Cu and Pt.
Collapse
|
31
|
Zhang S, Rong H, Yang T, Bai B, Zhang J. Ultrafine PtRu Dilute Alloy Nanodendrites for Enhanced Electrocatalytic Methanol Oxidation. Chemistry 2019; 26:4025-4031. [DOI: 10.1002/chem.201904229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/01/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Shuping Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional, Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional, Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Tianyi Yang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional, Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Bing Bai
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional, Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional, Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
32
|
Hong Y, Kim HJ, Lee HJ, Kim J, Choi SI. Ni(OH) 2 Decorated Pt-Cu Octahedra for Ethanol Electrooxidation Reaction. Front Chem 2019; 7:608. [PMID: 31552225 PMCID: PMC6733919 DOI: 10.3389/fchem.2019.00608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
Here we report the synthesis of 9 nm Ni(OH)2 decorated Pt-Cu octahedra (Ni(OH)2-PtCu) in one-pot synthesis for ethanol oxidation reaction (EOR) electrocatalysis in acidic electrolyte. To prepare Ni(OH)2-PtCu octahedra, CO gas was directly introduced in a reaction process as selective capping agents on the PtCu(111) facet. Ni(OH)2 was naturally deposited on the Pt-Cu octahedra during the synthesis. Carbon supported Ni(OH)2-PtCu (Ni(OH)2-PtCu/C) as an EOR catalyst showed enhanced CO tolerance due to the existence of oxophilic Ni(OH)2 on the surface of Pt-Cu, facilitating water dissolution to produce OH adsorption and to promote complete CO oxidation to CO2. In addition, Pt-Cu alloy composition also showed improvement of CO tolerance because of modified d-band structure of the Pt atoms, thereby weakening the binding strength of CO on the catalysts. Therefore, the Ni(OH)2-PtCu/C showed enhanced EOR activity and durability compared to the Pt-Cu octahedra and commercial Pt/C counterparts.
Collapse
Affiliation(s)
| | | | | | | | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
33
|
Hu L, Ma L, Gan M, Fu S, He H, Jiang M, Xie F, Zhang H. CoMoO4 decorated on the surface of Co,N-doped carbon polyhedrons as the support of platinum with excellent electrocatalytic activity and durability. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.07.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Li HH, Yu SH. Recent Advances on Controlled Synthesis and Engineering of Hollow Alloyed Nanotubes for Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803503. [PMID: 30645003 DOI: 10.1002/adma.201803503] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 10/15/2018] [Indexed: 06/09/2023]
Abstract
The past decade has witnessed great progress in the synthesis and electrocatalytic applications of 1D hollow alloy nanotubes with controllable compositions and fine structures. Hollow nanotubes have been explored as promising electrocatalysts in the fuel cell reactions due to their well-controlled surface structure, size, porosity, and compositions. In addition, owing to the self-supporting ability of 1D structure, hollow nanotubes are capable of avoiding catalyst aggregation and carbon corrosion during the catalytic process, which are two other issues for the widely investigated carbon-supported nanoparticle catalysts. It is currently a great challenge to achieve high activity and stability at a relatively low cost to realize commercialization of these catalysts. An overview of the structural and compositional properties of 1D hollow alloy nanotubes, which provide a large number of accessible active sites, void spaces for electrolytes/reactants impregnation, and structural stability for suppressing aggregation, is presented. The latest advances on several strategies such as hard template and self-templating methods for controllable synthesis of hollow alloyed nanotubes with controllable structures and compositions are then summarized. Benefiting from the advantages of the unique properties and facile synthesis approaches, the capability of 1D hollow nanotubes is then highlighted by discussing examples of their applications in fuel-cell-related electrocatalysis. Finally, the remaining challenges and potential solutions in the field are summarized to provide some useful clues for the future development of 1D hollow alloy nanotube materials.
Collapse
Affiliation(s)
- Hui-Hui Li
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
35
|
Zhang Y, Gao F, Wang C, Shiraishi Y, Du Y. Engineering Spiny PtFePd@PtFe/Pt Core@Multishell Nanowires with Enhanced Performance for Alcohol Electrooxidation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30880-30886. [PMID: 31368299 DOI: 10.1021/acsami.9b09110] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Engineering robust electrocatalysts is always a key point in direct alcohol fuel cells. Catalysts with a one-dimension (1D) structure are well studied and considered as promising candidates among various catalysts in the past decades; however, the precise regulation on the surface structure of 1D nanomaterials is still a worthy subject. By creatively introducing a trimetallic nanoalloy, core@multishell structure, and 1D nanowire (NW) morphology, we have constructed a kind of novel spiny PtFePd@PtFe/Pt core@multishell 1D NW catalysts with PtFePd as the core and PtFe/Pt as the multishell on the basis of improving catalytic property. The composition-optimized Pt5FePd2 1D NWs display remarkable catalytic properties for ethanol oxidation reaction and methanol oxidation reaction, in which mass activities are 4.965 and 4.038 A mg-1, 4.6 and 5.0 and 4.0 and 9.2-fold higher than Pt/C and Pd/C catalysts. Furthermore, the obtained Pt5FePd2 NWs can also retain favorable stability after durability tests. The unique core@multishell structure, spiny 1D NWs with many steps and kinks, and interior electronic and synergistic effect all contribute to the advanced catalytic performance. The present work has rationally designed the novel 1D PtFePd@PtFe/Pt core@multishell NW catalysts and offered a meaningful guideline for the designing of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Renai Road , Suzhou 215123 , P.R. China
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Renai Road , Suzhou 215123 , P.R. China
| | - Caiqin Wang
- College of Science , Nanjing Forestry University , 159 Longpan Road , Nanjing 210037 , P.R. China
| | - Yukihide Shiraishi
- Tokyo University of Science Yamaguchi , Sanyo-Onoda-shi , Yamaguchi 756-0884 , Japan
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Renai Road , Suzhou 215123 , P.R. China
| |
Collapse
|
36
|
Wang H, Wu Y, Luo X, Jiao L, Wei X, Gu W, Du D, Lin Y, Zhu C. Ternary PtRuCu aerogels for enhanced methanol electrooxidation. NANOSCALE 2019; 11:10575-10580. [PMID: 31139808 DOI: 10.1039/c9nr02712b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ternary PtRuCu aerogels are facilely synthesized by one-step in situ reduction. The formation of ternary PtRuCu aerogels can be completed within 2 hours owing to the accelerated gelation kinetics. Because of the unique porous architectures and synergistic effect, the optimized Pt4Ru1Cu5 aerogels exhibited good electrochemical performance for methanol oxidation reaction.
Collapse
Affiliation(s)
- Hengjia Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Qin C, Fan A, Zhang X, Dai X, Sun H, Ren D, Dong Z, Wang Y, Luan C, Ye JY, Sun SG. The in situ etching assisted synthesis of Pt-Fe-Mn ternary alloys with high-index facets as efficient catalysts for electro-oxidation reactions. NANOSCALE 2019; 11:9061-9075. [PMID: 31025672 DOI: 10.1039/c8nr10231g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pt-Based alloys enclosed with high-index facets (HIFs) generally show much higher specific catalytic activities than their counterparts with low-index facets in electro-catalytic reactions. However, the exposure of a certain Pt surface would require a well-defined nanostructure, which usually can only be obtained at larger sizes. Therefore, a low dispersion of Pt atoms in Pt-based alloys with HIFs would affect the atomic utilization of Pt, resulting in most of these Pt-based alloys exhibiting lower mass activity than commercial Pt/C and Pt black catalysts for electro-catalytic reactions. Herein, we address a novel strategy to divide the surface areas of larger sized nanocrystals into small surface area nanocrystals by in situ etching Pt-Fe-Mn concave cubes (CNCs) while maintaining the morphology of the Pt-Fe-Mn alloys to improve the utilization of Pt atoms and thus increase the mass activity. Remarkably, the Pt-Fe-Mn unique concave cube (UCNC) nanocrystals (NCs) showed much higher specific and mass activities toward the methanol oxidation reaction (MOR) than the Pt-Fe-Mn CNCs, commercial Pt black and Pt/C. The kinetic analysis from Tafel plots indicated that UCNC Pt-Fe-Mn NCs had the lowest Tafel slope at whole potentials and the splitting of the first C-H bond of a CH3OH molecule with the first electron transfer was the rate-determining step at high potentials (above 0.45 V). In situ Fourier transform infrared reflection (FTIR) spectroscopic investigation at the molecular level indicated that methanol chemical absorption took place at a low potential of -0.2 V at the UCNC NC electrode. Meanwhile, much higher CO2 productivity was observed at the UCNC NC electrode, indicating the strong anti-poisoning ability of the UCNC Pt-Fe-Mn NCs during methanol electrooxidation. Furthermore, in the formic acid oxidation (FAOR) test, the activity and long-term durability of the Pt-Fe-Mn UCNC NCs were also found to be superior to those of the Pt-Fe-Mn CNCs, commercial Pt black and Pt/C. The enhanced catalytic performance in both the MOR and FAOR is most probably due to the unique HIF structure consisting of small sized particles, enhanced Pt utilization, the richness of crystalline defects and synergetic effects of Pt, Fe, and Mn metals. Our present work provides an insight into the rational design of Pt based alloys with HIFs to improve the catalytic performance of electro-catalytic reactions for fundamental study.
Collapse
Affiliation(s)
- Congli Qin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gou W, Li J, Gao W, Xia Z, Zhang S, Ma Y. Downshifted d‐Band Center of Ru/MWCNTs by Turbostratic Carbon Nitride for Efficient and Robust Hydrogen Evolution in Alkali. ChemCatChem 2019. [DOI: 10.1002/cctc.201900006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wangyan Gou
- Center for Applied Chemical Research Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong University Xi'an 710049 China
| | - Jiayuan Li
- School of Chemical Engineering and TechnologyXi'an Jiaotong University Xi'an 710049 China
| | - Wei Gao
- Center for Applied Chemical Research Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong University Xi'an 710049 China
| | - Zhaoming Xia
- Center for Applied Chemical Research Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong University Xi'an 710049 China
| | - Sai Zhang
- School of Chemical Engineering and TechnologyXi'an Jiaotong University Xi'an 710049 China
| | - Yuanyuan Ma
- Center for Applied Chemical Research Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong University Xi'an 710049 China
| |
Collapse
|
39
|
Yin S, Wang H, Deng K, Dai Z, Wang Z, Xu Y, Li X, Xue H, Wang L. Ultralong Ternary PtRuTe Mesoporous Nanotubes Fabricated by Micelle Assembly with a Self‐Sacrificial Template. Chemistry 2019; 25:5316-5321. [DOI: 10.1002/chem.201806382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/22/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Zechuan Dai
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Hairong Xue
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| |
Collapse
|
40
|
Huo D, Kim MJ, Lyu Z, Shi Y, Wiley BJ, Xia Y. One-Dimensional Metal Nanostructures: From Colloidal Syntheses to Applications. Chem Rev 2019; 119:8972-9073. [DOI: 10.1021/acs.chemrev.8b00745] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Da Huo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Myung Jun Kim
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Benjamin J. Wiley
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
41
|
Lei H, Li X, Sun C, Zeng J, Siwal SS, Zhang Q. Galvanic Replacement-Mediated Synthesis of Ni-Supported Pd Nanoparticles with Strong Metal-Support Interaction for Methanol Electro-oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804722. [PMID: 30735296 DOI: 10.1002/smll.201804722] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Herein, well-defined Pd nanoparticles (NPs) developed on Ni substrate (Pd NPs/Ni) are synthesized via a facile galvanic replacement reaction (GRR) route performed in ethaline-based deep eutectic solvent (DES). For comparison, a Pd NPs/Ni composite is also prepared by the GRR method conducted in an aqueous solution. The Pd NPs/Ni obtained from the ethaline-DES is catalytically more active and durable for the methanol electro-oxidation reaction (MOR) than those of the counterpart derived from conventional aqueous solution and commercial Pd/C under alkaline media. Detailed kinetic analysis indicates that the unique solvent environment offered by ethaline plays vital roles in adjusting the reactivity of the active species and their mass transport properties to control over the genesis of the Pd NPs/Ni nanocomposite. The resulting Pd NPs/Ni catalyst possesses a homogeneous dispersion of Pd NPs with a strong Pd (metal)-Ni (support) interaction. This structure enhances the charge transfer between the support and the active phases, and optimizes the adsorption energy of OH- and CO on the surface, leading to superior electrocatalytic performance. This work provides a novel GRR strategy performed in ethaline-DES to the rational design and construction of advanced metal/support catalysts with strong interaction for improving the activity and durability for MOR.
Collapse
Affiliation(s)
- Hao Lei
- Department of Metallurgy, Key Laboratory of Ionic Liquids Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P.R. China
| | - Xiaotong Li
- Department of Metallurgy, Key Laboratory of Ionic Liquids Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P.R. China
| | - Changbin Sun
- Department of Metallurgy, Key Laboratory of Ionic Liquids Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P.R. China
| | - Junrong Zeng
- Department of Metallurgy, Key Laboratory of Ionic Liquids Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P.R. China
| | - Samarjeet Singh Siwal
- Department of Metallurgy, Key Laboratory of Ionic Liquids Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P.R. China
| | - Qibo Zhang
- Department of Metallurgy, Key Laboratory of Ionic Liquids Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P.R. China
- State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, P.R. China
| |
Collapse
|
42
|
Xu G, Liu J, Liu B, Zhang J. Self-assembly of Pt nanocrystals into three-dimensional superlattices results in enhanced electrocatalytic performance for methanol oxidation. CrystEngComm 2019. [DOI: 10.1039/c8ce01382a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A simple low-temperature solution approach was developed to directly realize a series of three-dimensional Pt nanocrystal superlattices composed of well-defined interior Pt nanocrystals for enhanced electrocatalytic performance for methanol oxidation.
Collapse
Affiliation(s)
- Guangran Xu
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- P.R. China
| | - Jiayin Liu
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- P.R. China
| | - Baocang Liu
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- P.R. China
- Inner Mongolia Key Lab of Nanoscience and Nanotechnology
| | - Jun Zhang
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- P.R. China
- Inner Mongolia Key Lab of Nanoscience and Nanotechnology
| |
Collapse
|
43
|
Park J, Kim HJ, Oh A, Kwon T, Baik H, Choi SI, Lee K. RuO x-decorated multimetallic hetero-nanocages as highly efficient electrocatalysts toward the methanol oxidation reaction. NANOSCALE 2018; 10:21178-21185. [PMID: 30417184 DOI: 10.1039/c8nr06168h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Direct methanol fuel cell technology awaits the development of highly efficient and robust nanocatalysts driving the methanol oxidation reaction (MOR) in a CO poisoning-free fashion. Thus far, various Pt-based alloy nanoparticles have been studied as electrocatalysts toward the MOR, and it has been found that the introduction of dopants such as Ru and Cu to Pt has been particularly successful in mitigating the CO poisoning problem. Herein, we report a facile synthesis of Ru-branched RuPtCu nanocages that involves in situ formation of Ru-doped PtCu nanoparticles and subsequent outgrowth of Ru branches by insertion of additional Ru precursors. We show that the electrocatalytic activity and stability of Ru branched RuPtCu ternary nanocages toward the MOR are greatly improved compared to those of PtCu/C and RuPtCu/C counterparts and state-of-the-art PtRu/C and Pt/C catalysts, mainly due to the synergy between the CO-tolerant RuOx phase and the highly open and robust RuPtCu nanoframe.
Collapse
Affiliation(s)
- Jongsik Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Combining 1D metal nanotubes and nanowires into cross-linked 2D and 3D architectures represents an attractive design strategy for creating tailored unsupported catalysts. Such materials complement the functionality and high surface area of the nanoscale building blocks with the stability, continuous conduction pathways, efficient mass transfer, and convenient handling of a free-standing, interconnected, open-porous superstructure. This review summarizes synthetic approaches toward metal nano-networks of varying dimensionality, including the assembly of colloidal 1D nanostructures, the buildup of nanofibrous networks by electrospinning, and direct, template-assisted deposition methods. It is outlined how the nanostructure, porosity, network architecture, and composition of such materials can be tuned by the fabrication conditions and additional processing steps. Finally, it is shown how these synthetic tools can be employed for designing and optimizing self-supported metal nano-networks for application in electrocatalysis and related fields.
Collapse
|
45
|
Konwar D, Basumatary P, Woo SP, Lee Y, Yoon YS. Enhanced performance for proton conducting fuel cells at low temperature. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
Liu F, Qi P, Liang X, Chen W, Li B, Zhang L, Yang Y, Huang S. Tuning Ion Complexing To Rapidly Prepare Hollow Ag-Pt Nanowires with High Activity toward the Methanol Oxidization Reaction. Chemistry 2018; 24:17345-17355. [PMID: 30222221 DOI: 10.1002/chem.201804250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Indexed: 11/06/2022]
Abstract
Hollow Pt-based nanowires (NWs) have important applications in catalysis. Their preparation often involves a two-step process in which M (M=Ag, Pd, Co, Ni) NWs are prepared and subsequently subjected to galvanic reaction in solution containing a Pt precursor. It is challenging to achieve a simple one-step preparation, because the redox potential of PtIV /Pt or PtII /Pt to Pt is high, and therefore, Pt atoms always form first. This work demonstrates that an appropriate pH can decrease the redox potential of PtIV /Pt and allows the one-step preparation of high-quality hollow Pt-Ag NWs rapidly (10 min). Moreover, it is easy to realize large-scale preparation with this method. The NW composition can be adjusted readily to optimize their performance in the electrocatalytic methanol oxidization reaction (MOR). Compared with commercial Pt/C, NWs with appropriate Ag/Pt ratios exhibit high stability, activity, and CO tolerance ability.
Collapse
Affiliation(s)
- Fangyan Liu
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Xueyuan road 276, WenZhou, Zhejiang, 325027, P.R. China
| | - Peimei Qi
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Xueyuan road 276, WenZhou, Zhejiang, 325027, P.R. China
| | - Xiaoli Liang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Xueyuan road 276, WenZhou, Zhejiang, 325027, P.R. China
| | - Wei Chen
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Xueyuan road 276, WenZhou, Zhejiang, 325027, P.R. China
| | - Benxia Li
- Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou, 310018, P.R. China
| | - Lijie Zhang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Xueyuan road 276, WenZhou, Zhejiang, 325027, P.R. China
| | - Yun Yang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Xueyuan road 276, WenZhou, Zhejiang, 325027, P.R. China
| | - Shaoming Huang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Xueyuan road 276, WenZhou, Zhejiang, 325027, P.R. China.,School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P.R. China
| |
Collapse
|
47
|
Chen X, Pan Z, Zhou Q, Huang Z, Xu Y, Hu G, Wu S, Chen C, Lin L, Lin Y. Pt nanoparticles supported on non-carbon titanium chromium nitride nanotubes with high activity and durability for methanol oxidation reaction. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4135-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Huang Y, Babu DD, Wu M, Wang Y. Synergistic Supports Beyond Carbon Black for Polymer Electrolyte Fuel Cell Anodes. ChemCatChem 2018. [DOI: 10.1002/cctc.201801094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yiyin Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 P.R. China
| | - Dickson D. Babu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 P.R. China
| | - Maoxiang Wu
- Key Laboratory of Optoelectronic Materials Chemistry; Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences; Fuzhou 350002 P.R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 P.R. China
| |
Collapse
|
49
|
Sha R, Vishnu N, Badhulika S. Bimetallic Pt-Pd nanostructures supported on MoS 2 as an ultra-high performance electrocatalyst for methanol oxidation and nonenzymatic determination of hydrogen peroxide. Mikrochim Acta 2018; 185:399. [PMID: 30073591 DOI: 10.1007/s00604-018-2927-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
The authors report on a composite based electrocatalyst for methanol oxidation and H2O2 sensing. The composite consists of Pt nanoparticles (NPs), Pd nanoflakes, and MoS2. It was synthesized by chemical reduction followed by template-free electro-deposition of Pt NPs. FESEM images of the Pd nanoflakes on the MoS2 reveal nanorod-like morphology of the Pd NPs on the MoS2 support, whilst FESEM images of the Pt-Pd/MoS2 composite show Pt NPs in high density and with the average size of ~15 nm, all homogeneously electrodeposited on the Pd-MoS2 composite. A glassy carbon electrode (GCE) was modified with the composite to obtain an electrode for methanol oxidation and H2O2 detection. The modified GCE exhibits excellent durability with good catalytic efficiency (the ratio of forward and backward peak current density, If/Ib, is 3.23) for methanol oxidation in acidic medium. It was also used to sense H2O2 at an applied potential of -0.35 V vs. Ag|AgCl which can be detected with a 3.4 μM lower limit of detection. The sensitivity is 7.64 μA μM-1 cm-2 and the dynamic range extends from 10 to 80 μM. This enhanced performance can be explained in terms of the presence of higher percentage of metallic 1T phase rather than a semiconducting 2H phase in MoS2. In addition, this is a result of the high surface area of MoS2 with interwoven nanosheets, the uniform distribution of the Pt NPs without any agglomeration on MoS2 support, and the synergistic effect of Pt NPs, Pd nanoflakes and MoS2 nanosheets. In our perception, this binder-free nano-composite has promising applications in next generation energy conversion and in chemical sensing. Graphical abstract A composite consisting of palladium nanoflakes and molybdenum disulfide was decorated with platinum nanoparticles and then placed on a glassy carbon electrode which is shown to be a viable electrocatalyst for both methanol oxidation and detection of hydrogen peroxide.
Collapse
Affiliation(s)
- Rinky Sha
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | - Nandimalla Vishnu
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | - Sushmee Badhulika
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India.
| |
Collapse
|
50
|
Wang P, Zhang Y, Shi R, Wang Z. Trimetallic PtPdCu nanowires as an electrocatalyst for methanol and formic acid oxidation. NEW J CHEM 2018. [DOI: 10.1039/c8nj04723e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PtPdCu nanowires show enhanced electrocatalytic activity and stability compared to their bimetallic counterparts and commercial Pt/C.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241000
| | - Yuanyuan Zhang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241000
| | - Rui Shi
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241000
| | - Zhenghua Wang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241000
| |
Collapse
|