1
|
Lv XW, Wang Z, Lai Z, Liu Y, Ma T, Geng J, Yuan ZY. Rechargeable Zinc-Air Batteries: Advances, Challenges, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306396. [PMID: 37712176 DOI: 10.1002/smll.202306396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/27/2023] [Indexed: 09/16/2023]
Abstract
Rechargeable zinc-air batteries (Re-ZABs) are one of the most promising next-generation batteries that can hold more energy while being cost-effective and safer than existing devices. Nevertheless, zinc dendrites, non-portability, and limited charge-discharge cycles have long been obstacles to the commercialization of Re-ZABs. Over the past 30 years, milestone breakthroughs have been made in technical indicators (safety, high energy density, and long battery life), battery components (air cathode, zinc anode, and gas diffusion layer), and battery configurations (flexibility and portability), however, a comprehensive review on advanced design strategies for Re-ZABs system from multiple angles is still lacking. This review underscores the progress and strategies proposed so far to pursuit the high-efficiency Re-ZABs system, including the aspects of rechargeability (from primary to rechargeable), air cathode (from unifunctional to bifunctional), zinc anode (from dendritic to stable), electrolytes (from aqueous to non-aqueous), battery configurations (from non-portable to portable), and industrialization progress (from laboratorial to practical). Critical appraisals of the advanced modification approaches (such as surface/interface modulation, nanoconfinement catalysis, defect electrochemistry, synergistic electrocatalysis, etc.) are highlighted for cost-effective flexible Re-ZABs with good sustainability and high energy density. Finally, insights are further rendered properly for the future research directions of advanced zinc-air batteries.
Collapse
Affiliation(s)
- Xian-Wei Lv
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhongli Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhuangzhuang Lai
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuping Liu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Tianyi Ma
- School of Science, RMIT University Melbourne, Melbourne, Victoria, 3000, Australia
| | - Jianxin Geng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhong-Yong Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, College of Chemistry, Nankai University, Tianjin, 300350, China
| |
Collapse
|
2
|
Li Y, Liu X, Xue S, Liu A, Wen S, Chen S. Boosting the Electrocatalytic Performance of CoPt Alloy with Enhanced Electron Transfer via Atomically Dispersed Cobalt Sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302170. [PMID: 37162444 DOI: 10.1002/smll.202302170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Designing electrocatalysts with strong electronic metal-support interaction can effectively regulate the electronic properties of metal active centers, therefore maximizing the catalytic performance. As a proof of concept, heteroatoms doped carbon with CoPt alloy and isolated Co single atoms (CoPtCoSA@NSC) are synthesized using CoPt bimetallic metal-organic framework as the precursor in this work. The existence of CoSA on the carbon substrate leads to more electron transfer between CoPt and the support, and appropriate upward shift of the d band center of the catalysts, which can effectively reduce the reaction barrier of rate determine step and boost the catalytic performance of CoPt alloy. The enhanced catalytic activity and stability of CoPtCoSA@NSC are demonstrated experimentally. Remarkably, the overpotential for hydrogen evolution reaction is only 23 mV at 10 mA cm-2 and the half-wave potential for oxygen reduction reaction is 0.90 V, both exceeding the commercial Pt/C benchmark. In addition, CoPtCoSA@NSC also exhibits great potential as a cathode electrocatalyst for Zn-air battery, in terms of large open circuit potential of 1.53 V, high power density of 184 mW cm-2 , as well as superior cycling stability. This work provides a novel strategy for regulating the electronic structure and catalytic performance of alloy based electrocatalysts.
Collapse
Affiliation(s)
- Yanqiang Li
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China
| | - Xuan Liu
- School of Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin, 124221, China
| | - Sensen Xue
- School of Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin, 124221, China
| | - Anmin Liu
- School of Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin, 124221, China
| | - Shizheng Wen
- School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huai'an, 223300, China
| | - Siru Chen
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| |
Collapse
|
3
|
New nitrogen-doped graphitic carbon nanosheets with rich structural defects and hierarchical nanopores as efficient metal-free electrocatalysts for oxygen reduction reaction in Zn-Air batteries. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Zhang L, Wang B, Hu J, Huang X, Ma W, Li N, Wågberg T, Hu G. Nickel-induced charge redistribution in Ni-Fe/Fe 3C@nitrogen-doped carbon nanocage as a robust Mott-Schottky bi-functional oxygen catalyst for rechargeable Zn-air battery. J Colloid Interface Sci 2022; 625:521-531. [PMID: 35749847 DOI: 10.1016/j.jcis.2022.06.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 12/19/2022]
Abstract
Designing earth-abundant and advanced bi-functional oxygen electrodes for efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are extremely urgent but still ambiguous. Thus, metal-semiconductor nanohybrids were developed with functionally integrating ORR-active Ni species, OER-active Fe/Fe3C components, and multifunctional N-doped carbon (NDC) support. Expectantly, the resulted NDC nanocage embedded with Ni-Fe alloy and Fe3C particles, as assembled Mott-Schottky-typed catalyst, delivered a promoted half-wave potential of 0.904 V for ORR and a low overpotential of 315 mV at 10 mA/cm2 for OER both in alkaline media, outperforming those of commercial Pt/C and RuO2 counterparts. Most importantly, the optimized Ni-Fe/Fe3C@NDC sample also afforded a peak power density of 267.5 mW/cm2 with a specific capacity of 773.8 mAh/gZn and excellent durability over 80 h when used as the air electrode in rechargeable Zn-air batteries, superior to the state-of-the-art bi-functional catalysts. Ultraviolet photoelectron spectroscopy revealed that the introduction of Ni into the Fe/Fe3C@NDC component could well manipulate the electronic structure of the designed electrocatalyst, leading to an effective built-in electric field established by the Mott-Schottky heterojunction to expedite the continuous interfacial charge-transfer and thus significantly promote the utilization of electrocatalytic active sites. Therefore, this work provides an avenue for the designing and developing robust and durable Mott-Schottky-typed bi-functional catalysts for promising energy conversion.
Collapse
Affiliation(s)
- Lei Zhang
- School of Materials Science and Engineering, School of Chemical Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China
| | - Bin Wang
- School of Materials Science and Engineering, School of Chemical Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China.
| | - Jinsong Hu
- School of Materials Science and Engineering, School of Chemical Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China.
| | - Xinhua Huang
- School of Materials Science and Engineering, School of Chemical Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China
| | - Wenyu Ma
- School of Materials Science and Engineering, School of Chemical Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China
| | - Nianpeng Li
- School of Materials Science and Engineering, School of Chemical Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, PR China
| | - Thomas Wågberg
- Department of Physics, Umeå University, Umeå S-901 87, Sweden
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, PR China; Department of Physics, Umeå University, Umeå S-901 87, Sweden.
| |
Collapse
|
5
|
Xu Z, Zhang X, Li M, Wang X, Zhu M, Dai B. A Highly Active In Situ Zn(CH3COO)2-NC Catalyst for the Acetoxylation of Acetylene. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhuang Xu
- School of Chemistry and Chemical Engineering of Shihezi University, Shihezi, Xinjiang 832000, P. R. China
| | - Xunchao Zhang
- School of Chemistry and Chemical Engineering of Shihezi University, Shihezi, Xinjiang 832000, P. R. China
| | - Mengli Li
- School of Chemistry and Chemical Engineering of Shihezi University, Shihezi, Xinjiang 832000, P. R. China
| | - Xugen Wang
- School of Chemistry and Chemical Engineering of Shihezi University, Shihezi, Xinjiang 832000, P. R. China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi, Xinjiang 832000, P. R. China
| | - Mingyuan Zhu
- School of Chemistry and Chemical Engineering of Shihezi University, Shihezi, Xinjiang 832000, P. R. China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi, Xinjiang 832000, P. R. China
| | - Bin Dai
- School of Chemistry and Chemical Engineering of Shihezi University, Shihezi, Xinjiang 832000, P. R. China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi, Xinjiang 832000, P. R. China
| |
Collapse
|
6
|
He Z, Wang H, Yu T, Zuo L, Yan S, Bian T, Su S. Trimetallic Au@RhCu Core‐Shell Nanodendrites as Efficient Bifunctional Electrocatalysts toward Hydrogen and Oxygen Evolution Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202103472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zeyang He
- School of Energy and Power Jiangsu University of Science and Technology Zhenjiang 212003 People's Republic of China
| | - Haoquan Wang
- School of Energy and Power Jiangsu University of Science and Technology Zhenjiang 212003 People's Republic of China
| | - Tao Yu
- School of Energy and Power Jiangsu University of Science and Technology Zhenjiang 212003 People's Republic of China
| | - Linzhi Zuo
- School of Energy and Power Jiangsu University of Science and Technology Zhenjiang 212003 People's Republic of China
| | - Shitan Yan
- CEPREI (Nanjing) Institute of Industry and Technology Nanjing 211800 People's Republic of China
| | - Ting Bian
- School of Energy and Power Jiangsu University of Science and Technology Zhenjiang 212003 People's Republic of China
| | - Shichuan Su
- School of Energy and Power Jiangsu University of Science and Technology Zhenjiang 212003 People's Republic of China
| |
Collapse
|
7
|
Xu J, Ma Y, Xuan C, Ma C, Wang J. Three‐dimensional electrodes for oxygen electrocatalysis. ChemElectroChem 2021. [DOI: 10.1002/celc.202101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jinxiao Xu
- Qingdao Agricultural University College of Life Science CHINA
| | - Yingjun Ma
- Qingdao Agricultural University College of Life Science CHINA
| | - Cuijuan Xuan
- Qingdao Agricultural University College of Life Science CHINA
| | - Chuanli Ma
- Qingdao Agricultural University College of Life Science CHINA
| | - Jie Wang
- Qingdao Agricultural University 700#, Chengyang District 266109 Qingdao CHINA
| |
Collapse
|
8
|
Yan X, Ha Y, Wu R. Binder-Free Air Electrodes for Rechargeable Zinc-Air Batteries: Recent Progress and Future Perspectives. SMALL METHODS 2021; 5:e2000827. [PMID: 34927848 DOI: 10.1002/smtd.202000827] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/17/2020] [Indexed: 06/14/2023]
Abstract
Designing an efficient air electrode is of great significance for the performance of rechargeable zinc (Zn)-air batteries. However, the most widely used approach to fabricate an air electrode involves polymeric binders, which may increase the interface resistance and block electrocatalytic active sites, thus deteriorating the performance of the battery. Therefore, binder-free air electrodes have attracted more and more research interests in recent years. This article provides a comprehensive overview of the latest advancements in designing and fabricating binder-free air electrodes for electrically rechargeable Zn-air batteries. Beginning with the fundamentals of Zn-air batteries and recently reported bifunctional active catalysts, self-supported air electrodes for liquid-state and flexible solid-state Zn-air batteries are then discussed in detail. Finally, the conclusion and the challenges faced for binder-free air electrodes in Zn-air batteries are also highlighted.
Collapse
Affiliation(s)
- Xiaoxiao Yan
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yuan Ha
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Renbing Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
9
|
Wang N, Cao P, Sun S, Ma H, Lin M. Hollow Multiple Noble Metallic Nanoalloys by Mercury-Assisted Galvanic Replacement Reaction for Hydrogen Evolution. Inorg Chem 2021; 60:3471-3478. [PMID: 33591166 DOI: 10.1021/acs.inorgchem.1c00247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hollow multimetallic noble nanoalloys with high surface area/volume ratio, abundant active sites, and relatively effective catalytic activity have attracted considerable research interest. Traditional noble nanoalloys fabricated by hydro-/solvothermal methods usually involve harsh synthetic conditions such as high temperatures and intricate processing. We proposed a simple and mild strategy to synthesize platinum- and palladium-decorated hollow gold-based nanoalloys by the galvanic replacement reaction (GRR) at room temperature using hollow gold nanoparticles as templates and mercury as an intermediate. The hollow gold nanoparticles were essential for increasing the number of surface-active sites of the obtained multimetallic nanoalloys, and the introduction of mercury can eliminate the influence of the electrochemical potential of Pt/Pd with Au in the GRRs, increase alloying degrees, and maintain the nanoalloys that exhibit the hollow nanostructures. The structural characterizations of the hollow nanoalloys were studied by means of high-angle annular dark-field scanning transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. On the basis of the electrochemical catalytic measurements, the platinum-exposed nanoalloys were found to have excellent electrocatalytic activities. Especially in the presence of palladium, owing to the synergistic effect, the quaternary AuHgPdPt hollow nanoalloy displayed a low overpotential of 38 mV at 10 mA cm-2 with a small Tafel slope of 56.23 mV dec-1 for the alkaline hydrogen evolution reaction. In addition, this approach not only expands the application range of the galvanic replacement reaction but also provides new ideas for the preparation of multialloys and even high-entropy alloys at room temperature.
Collapse
Affiliation(s)
- Nan Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Pengfei Cao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shengjun Sun
- Shandong Provincial Key Laboratory of Oral Biomedicine, College of Stomatology, Shandong University, Jinan 250021, China
| | - Houyi Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Meng Lin
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
10
|
Shi J, Zhang X, Lei Y, Li J, Yang Z, Qu K, Cai W. N-Rich hetero-porous defective carbon induced by trace B-doping enables efficient oxygen reduction. Chem Commun (Camb) 2020; 56:12214-12217. [PMID: 32926015 DOI: 10.1039/d0cc04407e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile boron doping strategy to improve the nitrogen retention in carbon-based catalysts is developed toward efficient oxygen reduction reaction via offsetting the electron migration. By considering the hetero-porous structure at the same time, this B, N co-doped catalyst outperforms commercial Pt/C in terms of both activity and stability.
Collapse
Affiliation(s)
- Jiawei Shi
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.
| | - Xinlei Zhang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.
| | - Yun Lei
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.
| | - Jing Li
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.
| | - Zehui Yang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.
| | - Konggang Qu
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China
| | - Weiwei Cai
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
11
|
Xie Y, Yang Y, Muller DA, Abruña HD, Dimitrov N, Fang J. Enhanced ORR Kinetics on Au-Doped Pt–Cu Porous Films in Alkaline Media. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02690] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yunxiang Xie
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - David A. Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D. Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Nikolay Dimitrov
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
12
|
Abstract
Metal-organic frameworks (MOFs) have been at the center stage of material science in the recent past because of their structural properties and wide applications in catalysis. MOFs have also been used as hard templates for the preparation of catalysts. In this study, highly active CuPt/NC electrocatalyst was synthesized by pyrolyzing Cu-tpa MOF along with Pt precursor under flowing Ar-H2 atmosphere. The catalyst was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRD). Rotating disk electrode study was performed to determine the oxygen reduction reaction (ORR) activity for CuPt/NC in 0.1 M HClO4 at different revolutions per minute (400, 800, 1200, and 1600) and it was also compared with commercial Pt/C catalyst. Further the ORR performance was evaluated by K-L plots and Tafel slope. CuPt/NC shows excellent ORR performance with onset potential of 0.9 V (vs. RHE), which is comparable with commercial Pt/C. The ORR activity of CuPt/NC is demonstrated as an efficient electrocatalyst for fuel cell.
Collapse
|
13
|
Hollow PtCu octahedral nanoalloys: Efficient bifunctional electrocatalysts towards oxygen reduction reaction and methanol oxidation reaction by regulating near-surface composition. J Colloid Interface Sci 2020; 562:244-251. [DOI: 10.1016/j.jcis.2019.12.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 11/23/2022]
|
14
|
Qi H, Feng Y, Chi Z, Cui Y, Wang M, Liu J, Guo Z, Wang L, Feng S. In situ encapsulation of Co-based nanoparticles into nitrogen-doped carbon nanotubes-modified reduced graphene oxide as an air cathode for high-performance Zn-air batteries. NANOSCALE 2019; 11:21943-21952. [PMID: 31701977 DOI: 10.1039/c9nr07270e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exploring highly efficient catalysts for the oxygen reduction/evolution reaction (ORR/OER) is very important in rechargeable Zn-air batteries. N-doped carbon coupled with transition metal-based species are among the most promising cathode catalysts for Zn-air batteries. However, the aggregation of metal-based sites during the synthetic/cycling process is a serious drawback of these catalysts. Herein, in situ encapsulation of ultra-small Co/Co4N nanoparticles into N-doping carbon nanotubes (N-CNTs) anchored on reduced GO (Co/Co4N@N-CNTs/rGO) has been achieved through pyrolyzing a core-shell-structured ZIF-8@ZIF-67-modified GO (ZIF-8@ZIF-67/GO) precursor; the nanoparticles have been further applied as a bifunctional catalyst in Zn-air batteries. Benefitting from its uniform dispersion of Co-based particles, close contact of Co/Co4N species and N-CNTs, and high N content, Co/Co4N@N-CNTs/rGO shows outstanding catalytic activity/stability towards ORR and OER. Moreover, Zn volatilization and rGO introduction in Co/Co4N@N-CNTs/rGO can effectively promote the reactions of Zn-air cells. Hence, the Co/Co4N@N-CNTs/rGO-based conventional Zn-air battery exhibits a fantastic specific capacity of 783 mA h gZn-1, a continuous discharge platform over 6 days, a high-power density of ∼200 mW cm-2 and an ultra-long cycling life of 440 h with a small overpotential of ∼0.8 V. Moreover, a flexible Co/Co4N@N-CNTs/rGO-based Zn-air cell was also designed and revealed outstanding mechanical flexibility and good electrochemical performance, which suggests its potential application prospects in wearable electronic devices.
Collapse
Affiliation(s)
- Haocheng Qi
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Deng K, Xu Y, Dai Z, Yu H, Yin S, Wang Z, Li X, Wang L, Wang H. Enhanced Oxygen Reduction and Methanol Oxidation Electrocatalysis over Bifunctional PtPdIr Mesoporous Hollow Nanospheres. Chem Asian J 2019; 14:3868-3874. [DOI: 10.1002/asia.201901098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/05/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology Hangzhou Zhejiang 310014 P.R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology Hangzhou Zhejiang 310014 P.R. China
| | - Zechuan Dai
- State Key Laboratory Breeding Base of Green-Chemical Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology Hangzhou Zhejiang 310014 P.R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology Hangzhou Zhejiang 310014 P.R. China
| | - Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology Hangzhou Zhejiang 310014 P.R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology Hangzhou Zhejiang 310014 P.R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology Hangzhou Zhejiang 310014 P.R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology Hangzhou Zhejiang 310014 P.R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology Hangzhou Zhejiang 310014 P.R. China
| |
Collapse
|
16
|
Lyu YP, Lin YM, Lee CL. Palladium/copper concave nanocube as an oxygen reduction catalyst. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Nosheen F, Anwar T, Siddique A, Hussain N. Noble Metal Based Alloy Nanoframes: Syntheses and Applications in Fuel Cells. Front Chem 2019; 7:456. [PMID: 31334215 PMCID: PMC6616278 DOI: 10.3389/fchem.2019.00456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/07/2019] [Indexed: 01/10/2023] Open
Abstract
Noble metal nanostructures are being used broadly as catalysts for energy conversion in fuel cells. To overcome the future energy crises, fuel cells are anticipated as clean energy sources because they can be operated at low temperature, their energy conversion is high and their carbon release is almost zero. However, an active and stable electrocatalyst is essential for the electrochemical reactions in fuel cells. Therefore, properties of the nanostructures greatly depend on the shape of the nanostructures. Individual as well as interaction properties are greatly affected by changes in the surface area of the nanostructures. By shape controlled synthesis, properties of the nanostructures could be further enhanced by increasing the surface area or active sites for electrocatalysts. Therefore, an efficient approach is needed for the fabrication of nanostructures to increase their efficiency, activity, or durability in fuel cells by reducing the usage of noble metals. Different types of hollow nanostructures until now have been prepared including nanoboxes, nanocages, nanoshells, nanoframes (NFs), etc. NFs are the hollow unique three-dimensional structure which have no walls-they only contain corners or edges so they have large surface area. In electrocatalytic reactions, the molecules involved in the reaction can easily reach the inner surface of the nanoframes, thus noble metals' utilization efficiency increases. NFs usually have high surface area, greater morphological and compositional stabilities, allowing them to withstand harsh environmental conditions. By considering the current challenges in fabrication of noble metal based alloy NFs as electrocatalysts, this review paper will highlight recent progress, design, and fabrication of noble metal alloy NFs through different strategies-mainly photocatalytic template, electrodeposition, Kirkendall effect, galvanic replacement, chemical/oxidative etching, combination of both and other methods. Then, electrochemical applications of NFs in fuel cells toward formic acid, methanol, ethanol, oxygen reduction reaction as well as bifunctional catalyst will also be highlighted. Finally, we will summarize different challenges in the fabrication of highly proficient nanocatalysts for the fuel cells with low cost, high efficiency and high durability, which are the major issues for the highly commercial use of fuel cells in the future.
Collapse
Affiliation(s)
- Farhat Nosheen
- Department of Chemistry, University of Education, Jauharabad, Pakistan
| | - Tauseef Anwar
- Department of Physics, The University of Lahore, Lahore, Pakistan
| | - Ayesha Siddique
- Sulaiman bin Abdullah Aba Al-Khail-Centre for Interdisciplinary Research in Basic Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Naveed Hussain
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Huang XY, You LX, Zhang XF, Feng JJ, Zhang L, Wang AJ. -proline assisted solvothermal preparation of Cu-rich rhombic dodecahedral PtCu nanoframes as advanced electrocatalysts for oxygen reduction and hydrogen evolution reactions. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Abstract
Low-noble metal electrocatalysts are attracting massive attention for anode and cathode reactions in fuel cells. Pt transition metal alloy nanostructures have demonstrated their advantages in high performance low-noble metal electrocatalysts due to synergy effects. The basic of designing this type of catalysts lies in understanding structure-performance correlation at the atom and electron level. Herein, design threads of highly active and durable Pt transition metal alloy nanocatalysts are summarized, with highlighting their synthetic realization. Microscopic and electron structure characterization methods and their prospects will be introduced. Recent progress will be discussed in high active and durable Pt transition metal alloy nanocatalysts towards oxygen reduction and methanol oxidation, with their structure-performance correlations illustrated. Lastly, an outlook will be given on promises and challenges in future developing of Pt transition metal alloy nanostructures towards fuel cells catalysis uses.
Collapse
|
20
|
Wang K, Du H, Sriphathoorat R, Shen PK. Vertex-Type Engineering of Pt-Cu-Rh Heterogeneous Nanocages for Highly Efficient Ethanol Electrooxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1804074. [PMID: 30252952 DOI: 10.1002/adma.201804074] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Mastery over the architecture and elemental distribution of metal nanocrystals at the nanoscale can effectively tailor and improve their catalytic properties. Herein, the vertex-type-selective growth of metallic nanohorns on a central nanocrystal is constructed via a one-pot solvothermal synthesis, despite the fact that the site-selective epitaxy of the second phase proceeds on all the vertices of the seeds. The prepared vertex-type-selective Pt-Cu-Rh heterogeneous nanocages (HNCs) are composed of a Rh-decorated Pt-Cu rhombic dodecahedral nanocage and six Pt-Cu-Rh nanohorns protruding from the {100} rather than the {111} vertices of rhombic dodecahedron. Impressively, the Pt-Cu-Rh HNCs exhibit 8.1 times higher specific and 6.8 times higher mass activity toward the ethanol oxidation reaction under acidic conditions than commercial Pt/C catalysts. Besides, the peak potential for CO oxidation on Pt-Cu-Rh HNCs (370.4 mV vs SCE) is 182.0 mV more negative than that on Pt/C, indicating the dramatically enhanced CO tolerance. The excellent electrocatalytic property is attributed to the synergistic effect between Pt, Cu, and Rh components, high specific surface area of nanocages and nanohorns, as well as abundant concave/convex sites and various high-index facets around the surface.
Collapse
Affiliation(s)
- Kai Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- Collaborative Innovation Center of Sustainable Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Hongyu Du
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Rinrada Sriphathoorat
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Pei Kang Shen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- Collaborative Innovation Center of Sustainable Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
21
|
Li X, Xu H. Nitrogen and Sulfur Co-Doped Porous Carbon Derived from Sophora Flower as an Efficient Oxygen Reduction Electrocatalyst for Zinc-Air Battery. ChemistrySelect 2018. [DOI: 10.1002/slct.201802053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiangji Li
- Roll Forging Institute of Jilin University; Changchun 130025 PR China
| | - Hong Xu
- Key Laboratory of automobile Materials, Ministry of Education, and College of Materials Science and Engineering; Jilin University Renmin Rd.; Changchun 130025 PR China
| |
Collapse
|
22
|
Bhattacharyya S, Das C, Maji TK. MOF derived carbon based nanocomposite materials as efficient electrocatalysts for oxygen reduction and oxygen and hydrogen evolution reactions. RSC Adv 2018; 8:26728-26754. [PMID: 35541061 PMCID: PMC9083249 DOI: 10.1039/c8ra05102j] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/16/2018] [Indexed: 11/21/2022] Open
Abstract
The escalating global energy demands and the formidable risks posed by fossil fuels coupled with their rapid depletion have inspired researchers to embark on a quest for sustainable clean energy. Electrochemistry based technologies, e.g., fuel cells, Zn-air batteries or water splitting, are some of the frontrunners of this green energy revolution. The primary concern of such sustainable energy technologies is the efficient conversion and storage of clean energy. Most of these technologies are based on half-cell reactions like oxygen reduction, oxygen and hydrogen evolution reactions, which in turn depend on noble metal based catalysts for their efficient functioning. In order to make such green energy technologies economically viable, the need of the hour is to develop new noble metal free catalysts. Porous carbon, with some assistance from heteroatoms like N or S or earth abundant transition metal or metal oxide nanoparticles, has shown excellent potential in the catalysis of such electrochemical reactions. Metal-organic frameworks (MOFs) containing metal nodes and organic linkers in an ordered morphology with inherent porosity are ideal self-sacrificial templates for such carbon materials. There has been a recent spurt in reports on such MOF-derived carbon based materials as electrocatalysts. In this review, we have presented some of this research work and also discussed the practical reasons behind choosing MOFs for this purpose. Different approaches for synthesizing such carbonaceous materials with unique morphologies and doping, targeted towards superior electrochemical activity, have been documented in this review.
Collapse
Affiliation(s)
- Sohini Bhattacharyya
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore India
| | - Chayanika Das
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore India
| |
Collapse
|
23
|
Ban J, Xu G, Zhang L, Xu G, Yang L, Sun Z, Jia D. Efficient Co-N/PC@CNT bifunctional electrocatalytic materials for oxygen reduction and oxygen evolution reactions based on metal-organic frameworks. NANOSCALE 2018; 10:9077-9086. [PMID: 29718034 DOI: 10.1039/c8nr01457d] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cobalt-based, nitrogen-doped porous carbon materials with in situ grown carbon nanotubes (CNTs) were synthesized by the facile carbonization of porous 3D Bio-MOF-11 [Co2(ad)2(CH3COO)2]·2DMF·0.5H2O (ad = adenine). Co-N/PC@CNT-Ts inherit the octahedral shape from the precursor, and have a porous structure with in situ grown CNTs catalyzed by Co particles. Co-N/PC@CNT-T materials have excellent activities as bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in 0.1 M KOH electrolyte. Among the Co-N/PC@CNT-Ts, Co-N/PC@CNT-700 has the highest electrocatalytic activity. For ORR, Co-N/PC@CNT-700 has a higher onset potential of 0.92 V vs. reversible hydrogen electrode (RHE), high stability and methanol tolerance, which are even better than that of Pt/C. For OER, it has a low potential of 1.63 V at a current density of 10 mA cm-2. In addition, Co-N/PC@CNT-700 affords a low reversible overvoltage (bifunctional performance parameter) of 0.862 V between ORR and OER compared to the current advancing bifunctional catalysts. The superb bifunctional activity can be attributed to uniform CoNx active sites embedded in graphitized carbon, unique in situ grown CNT structure and ordered mesoporous structure. The synergistic effect enlarged the contact surface, exposed more active centers and provided many pathways, thereby boosting the electrocatalytic performance. In conclusion, this study provides a novel avenue for the application of stable transition metal-based, nitrogen-doped carbon materials as extremely efficient electrocatalysts for ORR and OER.
Collapse
Affiliation(s)
- Jinjin Ban
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Kwon H, Kabiraz MK, Park J, Oh A, Baik H, Choi SI, Lee K. Dendrite-Embedded Platinum-Nickel Multiframes as Highly Active and Durable Electrocatalyst toward the Oxygen Reduction Reaction. NANO LETTERS 2018; 18:2930-2936. [PMID: 29634282 DOI: 10.1021/acs.nanolett.8b00270] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pt-based nanoframe catalysts have been explored extensively due to their superior activity toward the oxygen reduction reaction (ORR). Herein, we report the synthesis of Pt-Ni multiframes, which exhibit the unique structure of tightly fused multiple nanoframes and reinforced by an embedded dendrite. Rapid reduction and deposition of Ni atoms on Pt-Ni nanodendrites induce the alloying/dealloying of Pt and Ni in the overall nanostructures. After chemical etching of Ni, the newly formed dendrite-embedded Pt-Ni multiframes show an electrochemically active surface area (ECSA) of 73.4 m2 gPt-1 and a mass ORR activity of 1.51 A mgPt-1 at 0.93 V, which is 30-fold higher than that of the state-of-the-art Pt/C catalyst. We suggest that high ECSA and ORR performances of dendrite-embedded Pt-Ni multiframes/C can be attributed to the porous nanostructure and numerous active sites exposed on surface grain boundaries and high-indexed facets.
Collapse
Affiliation(s)
- Hyukbu Kwon
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | - Mrinal Kanti Kabiraz
- Department of Chemistry and Green-Nano Materials Research Center , Kyungpook National University , Daegu 41566 , Korea
| | - Jongsik Park
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | - Aram Oh
- Department of Chemistry , Korea University , Seoul 02841 , Korea
- Korea Basic Science Institute (KBSI) , Seoul 02841 , Korea
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI) , Seoul 02841 , Korea
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center , Kyungpook National University , Daegu 41566 , Korea
| | - Kwangyeol Lee
- Department of Chemistry , Korea University , Seoul 02841 , Korea
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science (IBS) , Seoul 02841 , Korea
| |
Collapse
|
25
|
Tao L, Yu D, Zhou J, Lu X, Yang Y, Gao F. Ultrathin Wall (1 nm) and Superlong Pt Nanotubes with Enhanced Oxygen Reduction Reaction Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704503. [PMID: 29717803 DOI: 10.1002/smll.201704503] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/22/2018] [Indexed: 05/24/2023]
Abstract
The synthesis of Pt nanotubes catalysts remains a substantial challenge, especially for those with both sub-nanometer wall thickness and micrometer-scale length characteristics. Combining techniques of insulin fibril template with Pd nanowire template, numerous Pt nanotubes with diameter of 5.5 nm, tube-length of several micrometers, and ultrathin wall thickness of 1 nm are assembled. These tubular catalysts with both open ends deliver electrochemical active surface area (ECSA) of 91.43 m2 gpt-1 which results from multiple Pt atoms exposed on the inner and outer surfaces that doubled Pt atoms can participate in catalytic reactions, further with enhanced electrocatalytic performance for oxygen reduction reaction (ORR). The ultrafine Pt nanotubes represent a class of hollow nanostructure with increased Pt-utilization and large ECSA, which is regarded as a type of cost-effective catalysts for ORR.
Collapse
Affiliation(s)
- Lu Tao
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Dan Yu
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Junshuang Zhou
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Xiong Lu
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Yunxia Yang
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Faming Gao
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| |
Collapse
|
26
|
Wang J, Chen F, Jin Y, Johnston RL. Gold-Copper Aerogels with Intriguing Surface Electronic Modulation as Highly Active and Stable Electrocatalysts for Oxygen Reduction and Borohydride Oxidation. CHEMSUSCHEM 2018; 11:1354-1364. [PMID: 29438594 DOI: 10.1002/cssc.201800052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/06/2018] [Indexed: 06/08/2023]
Abstract
We, for the first time, report the successful synthesis of self-assembled AuCu aerogels by a one-pot kinetically controlled approach. A startling electronic modulation effect of Cu on Au was observed across the entire alloy composition range, for which the optimal upshift of the d-band center for the highest activities was 0.24 eV. Owing to the combination of a nanoporous architecture and a robust electronic effect, the Au52 Cu48 aerogels exhibited better catalytic performance for the oxygen reduction reaction (ORR) and the direct borohydride oxidation reaction (BOR) than commercial Pt/C catalysts. The specific and mass ORR activities were 4.5 and 6.3 times higher, respectively, on the Au52 Cu48 aerogels than on Pt/C with negligible activity decay even after 10 000 cycles and a duration of 40 000 s. For the BOR, the Au52 Cu48 aerogels also exhibited far better selectivity and activity than Pt/C. The new AuCu aerogels show great potential as a promising alternative for Pt-based catalysts in fuel cells.
Collapse
Affiliation(s)
- Jiali Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Fuyi Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Yachao Jin
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Roy L Johnston
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
27
|
Pan J, Xu YY, Yang H, Dong Z, Liu H, Xia BY. Advanced Architectures and Relatives of Air Electrodes in Zn-Air Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700691. [PMID: 29721418 PMCID: PMC5908379 DOI: 10.1002/advs.201700691] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/20/2017] [Indexed: 05/19/2023]
Abstract
Zn-air batteries are becoming the promising power sources for portable and wearable electronic devices and hybrid/electric vehicles because of their high specific energy density and the low cost for next-generation green and sustainable energy technologies. An air electrode integrated with an oxygen electrocatalyst is the most important component and inevitably determines the performance and cost of a Zn-air battery. This article presents exciting advances and challenges related to air electrodes and their relatives. After a brief introduction of the Zn-air battery, the architectures and oxygen electrocatalysts of air electrodes and relevant electrolytes are highlighted in primary and rechargeable types with different configurations, respectively. Moreover, the individual components and major issues of flexible Zn-air batteries are also highlighted, along with the strategies to enhance the battery performance. Finally, a perspective for design, preparation, and assembly of air electrodes is proposed for the future innovations of Zn-air batteries with high performance.
Collapse
Affiliation(s)
- Jing Pan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)Hubei Key Laboratory of Material Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringWuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST)1037 Luoyu RoadWuhan430074P. R. China
| | - Yang Yang Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)Hubei Key Laboratory of Material Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringWuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST)1037 Luoyu RoadWuhan430074P. R. China
| | - Huan Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)Hubei Key Laboratory of Material Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringWuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST)1037 Luoyu RoadWuhan430074P. R. China
| | - Zehua Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)Hubei Key Laboratory of Material Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringWuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST)1037 Luoyu RoadWuhan430074P. R. China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)Hubei Key Laboratory of Material Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringWuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST)1037 Luoyu RoadWuhan430074P. R. China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)Hubei Key Laboratory of Material Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringWuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST)1037 Luoyu RoadWuhan430074P. R. China
- Shenzhen Institute of Huazhong University of Science and TechnologyShenzhen518000P. R. China
| |
Collapse
|
28
|
Kashyap V, Kurungot S. Zirconium-Substituted Cobalt Ferrite Nanoparticle Supported N-doped Reduced Graphene Oxide as an Efficient Bifunctional Electrocatalyst for Rechargeable Zn–Air Battery. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03823] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Varchaswal Kashyap
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| | - Sreekumar Kurungot
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| |
Collapse
|
29
|
Wang J, Chen F, Jin Y, Lei Y. Dilute Au-Containing Ag Nanosponges as a Highly Active and Durable Electrocatalyst for Oxygen Reduction and Alcohol Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6276-6287. [PMID: 29380590 DOI: 10.1021/acsami.7b17066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Zero-dimensional nanoparticles (NPs) have been demonstrated as the promising class of catalysts for various chemical and electrochemical reactions. However, the emerging Au-Ag NP catalysts suffer from single functionality, limited activity enhancement, and unsatisfactory stability problems. Here, we report a facile kinetically controlled solution method to prepare a new class of Au-Ag nanoporous sponges (NSs) composed of three-dimensional networks without using additional stabilizing agents at room temperature. The unexpected shift of the d-band center in our Au-Ag NSs was observed for the first time in Au-Ag bimetallic systems, which effectively activates the Au-Ag NSs for electrochemical reactions. The robust electronic effect coupled with abundant accessible active sites from the hierarchically porous architecture make the bare Au-Ag NSs a superior multifunctional catalyst for oxygen reduction, ethylene glycol (EG) oxidation, and glucose oxidation reactions compared to the commercial Pt/C electrocatalyst in alkaline medium. The optimized AuAg3.2 NSs deliver a mass activity of 1.26 A mgAu-1 toward oxygen reduction reaction, which is ∼8.2 times as high as that of the Pt/C electrocatalyst, simultaneously showing outstanding stability with negligible activity decay after 10 000 cycles. For the anodic reactions, these AuAg3.2 NSs show extremely high activity and stability toward both EG and glucose catalytic oxidation reactions with a higher mass activity of 7.58 and 1.48 A mgAu-1, about 3- and 18.5-fold enhancement than Pt/C, respectively. This work provides important insights into the structural design, performance optimization, and cost reduction to promote the practical applications of liquid fuel cells.
Collapse
Affiliation(s)
- Jiali Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University , Xi'an 710072, China
| | - Fuyi Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University , Xi'an 710072, China
| | - Yachao Jin
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University , Xi'an 710072, China
| | - Yimin Lei
- School of Advanced Materials and Nanotechnology, Xidian University , Xi'an 710126, China
| |
Collapse
|
30
|
Pt–Pd and Pt–Pd–(Cu or Fe or Co)/graphene nanoribbon nanocomposites as efficient catalysts toward the oxygen reduction reaction. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.06.160] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Ascorbic acid-tailored synthesis of carbon-wrapped nanocobalt encapsulated in graphene aerogel as electrocatalysts for highly effective oxygen-reduction reaction. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3705-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Bu L, Shao Q, E B, Guo J, Yao J, Huang X. PtPb/PtNi Intermetallic Core/Atomic Layer Shell Octahedra for Efficient Oxygen Reduction Electrocatalysis. J Am Chem Soc 2017; 139:9576-9582. [PMID: 28657302 DOI: 10.1021/jacs.7b03510] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although explosive studies on pursuing high-performance Pt-based nanomaterials for fuel cell reactions have been carried out, the combined controls of surface composition, exposed facet, and interior structure of the catalyst remains a formidable challenge. We demonstrate herein a facile chemical approach to realize a new class of intermetallic Pt-Pb-Ni octahedra for the first time. Those nanostructures with unique intermetallic core, active surface composition, and the exposed facet enhance oxygen reduction electrocatalysis with the optimized PtPb1.12Ni0.14 octahedra exhibiting superior specific and mass activities (5.16 mA/cm2 and 1.92 A/mgPt) for oxygen reduction reaction (ORR) that are ∼20 and ∼11 times higher than the commercial Pt/C, respectively. Moreover, the PtPb1.12Ni0.14 octahedra can endure at least 15 000 cycles with negligible activity decay, showing a new class of Pt-based electrocatalysts with enhanced performance for fuel cells and beyond.
Collapse
Affiliation(s)
- Lingzheng Bu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Jiangsu 215123, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Jiangsu 215123, China
| | - Bin E
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Jiangsu 215123, China
| | - Jun Guo
- Testing & Analysis Center, Soochow University , Jiangsu 215123, China
| | - Jianlin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Jiangsu 215123, China
| | - Xiaoqing Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Jiangsu 215123, China
| |
Collapse
|
33
|
Liu Q, Wang Y, Dai L, Yao J. Scalable Fabrication of Nanoporous Carbon Fiber Films as Bifunctional Catalytic Electrodes for Flexible Zn-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:3000-6. [PMID: 26914270 DOI: 10.1002/adma.201506112] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/06/2016] [Indexed: 05/24/2023]
Abstract
A flexible nanoporous carbon-fiber film for wearable electronics is prepared by a facile and scalable method through pyrolysis of electrospun polyimide. It exhibits excellent bifunctional electrocatalytic activities for oxygen reduction and oxygen evolution. Flexible rechargeable zinc-air batteries based on the carbon-fiber film show high round-trip efficiency and mechanical stability.
Collapse
Affiliation(s)
- Qin Liu
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yaobing Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Liming Dai
- Center of Advanced Science and Engineering for Carbon (Case 4Carbon), Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
34
|
Zhou KY, Chen GY, Liu JA, Zhang ZP, Sun P, Zhang WZ, Niu F, Zhang WX, Liang JC. Cobalt nanoparticles encapsulated in N-doped graphene nanoshells as an efficient cathode electrocatalyst for a mechanical rechargeable zinc–air battery. RSC Adv 2016. [DOI: 10.1039/c6ra18733a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Air-cathodes with properties of efficiency, durability and low cost are essential for high performance metal–air batteries and fuel cells for practical applications.
Collapse
Affiliation(s)
- Kai-Yuan Zhou
- School of Automotive Engineering
- State Key Laboratory of Structural Analysis for Industrial Equipment
- Dalian University of Technology
- Dalian
- China
| | - Guang-Yi Chen
- School of Automotive Engineering
- State Key Laboratory of Structural Analysis for Industrial Equipment
- Dalian University of Technology
- Dalian
- China
| | - Jia-Ang Liu
- School of Automotive Engineering
- State Key Laboratory of Structural Analysis for Industrial Equipment
- Dalian University of Technology
- Dalian
- China
| | - Zhi-Peng Zhang
- School of Automotive Engineering
- State Key Laboratory of Structural Analysis for Industrial Equipment
- Dalian University of Technology
- Dalian
- China
| | - Peng Sun
- School of Automotive Engineering
- State Key Laboratory of Structural Analysis for Industrial Equipment
- Dalian University of Technology
- Dalian
- China
| | - Wen-Zhuo Zhang
- School of Automotive Engineering
- State Key Laboratory of Structural Analysis for Industrial Equipment
- Dalian University of Technology
- Dalian
- China
| | - Fu Niu
- School of Automotive Engineering
- State Key Laboratory of Structural Analysis for Industrial Equipment
- Dalian University of Technology
- Dalian
- China
| | - Wan-Xi Zhang
- School of Automotive Engineering
- State Key Laboratory of Structural Analysis for Industrial Equipment
- Dalian University of Technology
- Dalian
- China
| | - Ji-Cai Liang
- School of Automotive Engineering
- State Key Laboratory of Structural Analysis for Industrial Equipment
- Dalian University of Technology
- Dalian
- China
| |
Collapse
|
35
|
Han LN, Wei X, Zhang B, Li XH, Zhu QC, Wang KX, Chen JS. Trapping oxygen in hierarchically porous carbon nano-nets: graphitic nitrogen dopants boost the electrocatalytic activity. RSC Adv 2016. [DOI: 10.1039/c6ra08815e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Graphitic-nitrogen doped hierarchically porous carbon nano-nets exhibited excellent ORR and OER activities for constructing rechargeable two-electrode Zn–air batteries.
Collapse
Affiliation(s)
- Li-Na Han
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xiao Wei
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Bing Zhang
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xin-Hao Li
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Qian-Cheng Zhu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Kai-Xue Wang
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
36
|
Singh SK, Dhavale VM, Kurungot S. Surface-Tuned Co3O4 Nanoparticles Dispersed on Nitrogen-Doped Graphene as an Efficient Cathode Electrocatalyst for Mechanical Rechargeable Zinc-Air Battery Application. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21138-21149. [PMID: 26376490 DOI: 10.1021/acsami.5b04865] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The most vital component of the fuel cells and metal-air batteries is the electrocatalyst, which can facilitate the oxygen reduction reaction (ORR) at a significantly reduced overpotential. The present work deals with the development of surface-tuned cobalt oxide (Co3O4) nanoparticles dispersed on nitrogen-doped graphene as a potential ORR electrocatalyst possessing some unique advantages. The thermally reduced nitrogen-doped graphene (NGr) was decorated with three different morphologies of Co3O4 nanoparticles, viz., cubic, blunt edged cubic, and spherical, by using a simple hydrothermal method. We found that the spherical Co3O4 nanoparticle supported NGr catalyst (Co3O4-SP/NGr-24h) has acquired a significant activity makeover to display the ORR activity closely matching with the state-of-the-art Pt supported carbon (PtC) catalyst in alkaline medium. Subsequently, the Co3O4-SP/NGr-24h catalyst has been utilized as the air electrode in a Zn-air battery, which was found to show comparable performance to the system derived from PtC. Co3O4-SP/NGr-24h catalyst has shown several hours of flat discharge profile at the discharge rates of 10, 20, and 50 mA/cm(2) with a specific capacity and energy density of ~590 mAh/g-Zn and ~840 Wh/kg-Zn, respectively, in the primary Zn-air battery system. In conjunction, Co3O4-SP/NGr-24h has outperformed as an air electrode in mechanical rechargeable Zn-air battery as well, which has shown consistent flat discharge profile with minimal voltage loss at a discharge rate of 50 mA/cm(2). The present results, thus demonstrate that the proper combination of the tuned morphology of Co3O4 with NGr will be a promising and inexpensive material for efficient and ecofriendly cathodes for Zn-air batteries.
Collapse
Affiliation(s)
- Santosh K Singh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, Anusandhan Bhawan , 2 Rafi Marg, New Delhi 110 001, India
| | - Vishal M Dhavale
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, Anusandhan Bhawan , 2 Rafi Marg, New Delhi 110 001, India
| | - Sreekumar Kurungot
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, Anusandhan Bhawan , 2 Rafi Marg, New Delhi 110 001, India
| |
Collapse
|
37
|
|
38
|
Zhu C, Du D, Eychmüller A, Lin Y. Engineering Ordered and Nonordered Porous Noble Metal Nanostructures: Synthesis, Assembly, and Their Applications in Electrochemistry. Chem Rev 2015; 115:8896-943. [DOI: 10.1021/acs.chemrev.5b00255] [Citation(s) in RCA: 502] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chengzhou Zhu
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920, United States
| | - Dan Du
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920, United States
- Key
Laboratory of Pesticide and Chemical Biology of the Ministry of Education,
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | | | - Yuehe Lin
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920, United States
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|