1
|
Cai W, Wang C, Chu Y, Hu M, Wang Q, Xu J, Deng F. Unveiling the Brønsted acid mechanism for Meerwein-Ponndorf-Verley reduction in methanol conversion over ZSM-5. Nat Commun 2024; 15:8736. [PMID: 39384793 PMCID: PMC11464788 DOI: 10.1038/s41467-024-52999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
The conversion of methanol over zeolites offers a sustainable alternative for fuels and chemicals production. However, a complete understanding of the competing reaction pathways, particularly those leading to C-C bond formation, remains elusive. This work presents a novel mechanism for selective methanol conversion in ZSM-5 zeolites, involving a Brønsted acid site (BAS)-mediated Meerwein-Ponndorf-Verley (MPV) reduction pathway. Employing a multidimensional solid-state NMR spectroscopy combined with isotopic labeling and theoretical calculations, we identify this pathway for acetaldehyde reduction with methanol, directly contributing to ethene formation. This mechanism, involving carbenium ion intermediates like 1-hydroxyethane or 1-methoxyethane ions, contrasts with the well-established Lewis acid-catalyzed MPV process. Based on reactant adsorption modes, we propose two distinct reaction routes for BAS-MPV reduction, bridging the gap between direct and hydrocarbon pool mechanisms in methanol conversion. We further demonstrate the applicability of this pathway to acetone, highlighting its broader role in the early stages of the reaction.
Collapse
Affiliation(s)
- Wenjin Cai
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
2
|
Campbell E, Sazanovich IV, Towrie M, Watson MJ, Lezcano-Gonzalez I, Beale AM. Methanol-to-Olefins Studied by UV Raman Spectroscopy as Compared to Visible Wavelength: Capitalization on Resonance Enhancement. J Phys Chem Lett 2024; 15:6826-6834. [PMID: 38916593 PMCID: PMC11229064 DOI: 10.1021/acs.jpclett.4c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024]
Abstract
Resonance Raman spectroscopy can provide insights into complex reaction mechanisms by selectively enhancing the signals of specific molecular species. In this work, we demonstrate that, by changing the excitation wavelength, Raman bands of different intermediates in the methanol-to-hydrocarbons reactions can be identified. We show in particular how UV excitation enhances signals from short-chain olefins and cyclopentadienyl cations during the induction period, while visible excitation better detects later-stage aromatics. However, visible excitation is prone to fluorescence that can obscure Raman signals, and hence, we show how fast fluorescence rejection techniques like Kerr gating are necessary for extracting useful information from visible excitation measurements.
Collapse
Affiliation(s)
- Emma Campbell
- Cardiff
Catalysis Institute School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.
- Research
Complex at Harwell (RCaH), Harwell, Didcot, Oxfordshire OX11
0FA, U.K.
| | - Igor V. Sazanovich
- Central
Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratories, Harwell
Campus, Didcot OX11 0QX, U.K.
| | - Michael Towrie
- Central
Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratories, Harwell
Campus, Didcot OX11 0QX, U.K.
| | - Michael J. Watson
- Johnson
Matthey Technology Centre, P O Box 1, Belasis Avenue, Billingham TS23 1LB, U.K.
| | - Ines Lezcano-Gonzalez
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Research
Complex at Harwell (RCaH), Harwell, Didcot, Oxfordshire OX11
0FA, U.K.
| | - Andrew M. Beale
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Research
Complex at Harwell (RCaH), Harwell, Didcot, Oxfordshire OX11
0FA, U.K.
| |
Collapse
|
3
|
Liu Z, Mao M, Yangcheng R, Lv S. Investigating the Sole Olefin-Based Cycle in Small-Cage MCM-35-Catalyzed Methanol-to-Olefins Reactions. Molecules 2024; 29:2037. [PMID: 38731528 PMCID: PMC11085503 DOI: 10.3390/molecules29092037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Small-pore zeolites catalyze the methanol-to-olefins (MTO) reaction via a dual-cycle mechanism, encompassing both olefin- and aromatic-based cycles. Zeolite topology is crucial in determining both the catalytic pathway and the product selectivity of the MTO reaction. Herein, we investigate the mechanistic influence of MCM-35 zeolite on the MTO process. The structural properties of the as-synthesized MCM-35 catalyst, including its confined cages (6.19 Å), were characterized, confirming them as the catalytic centers. Then, the MTO reactions were systematically performed and investigated over a MCM-35 catalyst. Feeding pure methanol to the reactor yielded minimal MTO activity despite the formation of some aromatic species within the zeolite. The results suggest that the aromatic-based cycle is entirely suppressed in MCM-35, preventing the simultaneous occurrence of the olefin-based cycle. However, cofeeding a small amount of propene in methanol can obviously enhance the methanol conversion under the same studied reaction conditions. Thus, the exclusive operation of the olefin-based cycle in the MTO reaction, independent of the aromatic-based cycle, was demonstrated in MCM-35 zeolite.
Collapse
Affiliation(s)
- Zhaohui Liu
- Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | | | | | | |
Collapse
|
4
|
Chen Y, Ma X, Hack JH, Zhang S, Peng A, Dombrowski JP, Voth GA, Tokmakoff A, Kung MC, Kung HH. Molecular Tuning of Reactivity of Zeolite Protons in HZSM-5. J Am Chem Soc 2024; 146:10342-10356. [PMID: 38574341 DOI: 10.1021/jacs.3c12680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
In acidic HZSM-5 zeolite, the reactivity of a methanol molecule interacting with the zeolite proton is amenable to modification via coadsorbing a stochiometric amount of an electron density donor E to form the [(E)(CH3OH)(HZ)] complex. The rate of the methanol in this complex undergoing dehydration to dimethyl ether was determined for a series of E with proton affinity (PA) ranging from 659 kJ mol-1 for C6F6 to 825 kJ mol-1 for C4H8O and was found to follow the expression: Ln(Rate) - Ln(RateN2) = β(PA - PAN2)γ, where E = N2 is the reference and β and γ are constants. This trend is probably due to the increased stability of the solvated proton in the [(E)(CH3OH)(HZ)] complex with increasing PA. Importantly, this is also observed in steady-state flow reactions when stoichiometric quantities of E are preadsorbed on the zeolite. As demonstrated with E being D2O, the effect on methanol reactivity diminishes when E is present in excess of the [(E)(CH3OH)(HZ)] complex. It is proposed that the methanol dehydration reaction involves [(E)(CH3OH)(CH3OH)(HZ)] as the transition state, which is supported by the isotopologue distribution of the initial dimethyl ether formed when a flow of CH3OH was passed over ZSM-5 containing one CD3OH per zeolite proton. The implication of this on the mechanism of catalytic methanol dehydration on HZSM-5 is discussed.
Collapse
Affiliation(s)
- Yaxin Chen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| | - Xinyou Ma
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - John H Hack
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shuhao Zhang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| | - Anyang Peng
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| | - James P Dombrowski
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Mayfair C Kung
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| | - Harold H Kung
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| |
Collapse
|
5
|
Bols ML, Ma J, Rammal F, Plessers D, Wu X, Navarro-Jaén S, Heyer AJ, Sels BF, Solomon EI, Schoonheydt RA. In Situ UV-Vis-NIR Absorption Spectroscopy and Catalysis. Chem Rev 2024; 124:2352-2418. [PMID: 38408190 DOI: 10.1021/acs.chemrev.3c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This review highlights in situ UV-vis-NIR range absorption spectroscopy in catalysis. A variety of experimental techniques identifying reaction mechanisms, kinetics, and structural properties are discussed. Stopped flow techniques, use of laser pulses, and use of experimental perturbations are demonstrated for in situ studies of enzymatic, homogeneous, heterogeneous, and photocatalysis. They access different time scales and are applicable to different reaction systems and catalyst types. In photocatalysis, femto- and nanosecond resolved measurements through transient absorption are discussed for tracking excited states. UV-vis-NIR absorption spectroscopies for structural characterization are demonstrated especially for Cu and Fe exchanged zeolites and metalloenzymes. This requires combining different spectroscopies. Combining magnetic circular dichroism and resonance Raman spectroscopy is especially powerful. A multitude of phenomena can be tracked on transition metal catalysts on various supports, including changes in oxidation state, adsorptions, reactions, support interactions, surface plasmon resonances, and band gaps. Measurements of oxidation states, oxygen vacancies, and band gaps are shown on heterogeneous catalysts, especially for electrocatalysis. UV-vis-NIR absorption is burdened by broad absorption bands. Advanced analysis techniques enable the tracking of coking reactions on acid zeolites despite convoluted spectra. The value of UV-vis-NIR absorption spectroscopy to catalyst characterization and mechanistic investigation is clear but could be expanded.
Collapse
Affiliation(s)
- Max L Bols
- Laboratory for Chemical Technology (LCT), University of Ghent, Technologiepark Zwijnaarde 125, 9052 Ghent, Belgium
| | - Jing Ma
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Fatima Rammal
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Dieter Plessers
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Xuejiao Wu
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Sara Navarro-Jaén
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Alexander J Heyer
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bert F Sels
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert A Schoonheydt
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
6
|
Zhou H, Gong X, Abou-Hamad E, Ye Y, Zhang X, Ma P, Gascon J, Chowdhury AD. Tracking the Impact of Koch-Carbonylated Organics During the Zeolite ZSM-5 Catalyzed Methanol-to-Hydrocarbons Process. Angew Chem Int Ed Engl 2024; 63:e202318250. [PMID: 38253820 DOI: 10.1002/anie.202318250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
A methanol-based economy offers an efficient solution to current energy transition challenges, where the zeolite-catalyzed methanol-to-hydrocarbons (MTH) process would be a key enabler in yielding synthetic fuels/chemicals from renewable sources. Despite its original discovery over half a century ago over the zeolite ZSM-5, the practical application of this process in a CO2 -neutral scenario has faced several obstacles. One prominent challenge has been the intricate mechanistic complexities inherent in the MTH process over the zeolite ZSM-5, impeding its widespread adoption. This work takes a significant step forward by providing critical insights that bridge the gap in our understanding of the MTH process. It accomplishes this by connecting the (Koch-carbonylation-led) direct and dual cycle mechanisms, which operate during the early and steady-state phases of MTH catalysis, respectively. To unravel these mechanistic intricacies, we have performed catalytic and operando (i.e., UV/Vis coupled with an online mass spectrometer) and solid-state NMR spectroscopic-based investigations on the MTH process, involving co-feeding methanol and acetone (cf. a key Koch-carbonylated species), including selective isotope-labeling studies. Our iterative research approach revealed that (Koch-)carbonyl group selectively promotes the side-chain mechanism within the arene cycle of the dual cycle mechanism, impacting the preferential formation of BTX fraction (i.e., benzene-toluene-xylene) primarily.
Collapse
Affiliation(s)
- Hexun Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Edy Abou-Hamad
- Imaging and Characterization Department, KAUST Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Xin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Pandong Ma
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| |
Collapse
|
7
|
Jiang H, Yuan L, Li D, Chen Y. Mathematical Model for the Industrial SMTO Reactor with a SAPO-34 Catalyst. ACS OMEGA 2023; 8:9630-9643. [PMID: 36936341 PMCID: PMC10018698 DOI: 10.1021/acsomega.3c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The methanol-to-olefins (MTO) technology creates a new non-oil route to produce light olefins. This paper reports a 14-lump MTO kinetic model for SAPO-34 catalyst, combined with the hydrodynamic model for the fast fluidized bed reactor of the industrial SMTO process. Selective deactivation is considered to quantify the product selectivity and abrupt catalytic activity change. Moreover, referring to the parallel compartment (PC) model, the activity difference between the circulating spent catalyst and the regenerated catalyst is considered. The validation results with the optimized kinetic parameters showed good agreement between the calculated value and the actual value. Sensitivity analysis of the industrial SMTO process was performed. According to the results, the established mathematical model can provide guidance for industrial production operations.
Collapse
Affiliation(s)
- Hongbo Jiang
- Research
Institute of Petroleum Processing, East
China University of Science and Technology, Shanghai 200237, China
| | - Linzhi Yuan
- Research
Institute of Petroleum Processing, East
China University of Science and Technology, Shanghai 200237, China
| | - Defei Li
- Petro-CyberWorks
Information Technology Co., Ltd., Shanghai 200050, China
| | - Yushi Chen
- Petro-CyberWorks
Information Technology Co., Ltd., Shanghai 200050, China
| |
Collapse
|
8
|
Liutkova A, Zhang H, Simons JFM, Mezari B, Mirolo M, Garcia GA, Hensen EJM, Kosinov N. Ca Cations Impact the Local Environment inside HZSM-5 Pores during the Methanol-to-Hydrocarbons Reaction. ACS Catal 2023; 13:3471-3484. [PMID: 36970466 PMCID: PMC10028611 DOI: 10.1021/acscatal.3c00059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Indexed: 02/25/2023]
Abstract
The methanol-to-hydrocarbons (MTH) process is an industrially relevant method to produce valuable light olefins such as propylene. One of the ways to enhance propylene selectivity is to modify zeolite catalysts with alkaline earth cations. The underlying mechanistic aspects of this type of promotion are not well understood. Here, we study the interaction of Ca2+ with reaction intermediates and products formed during the MTH reaction. Using transient kinetic and spectroscopic tools, we find strong indications that the selectivity differences between Ca/ZSM-5 and HZSM-5 are related to the different local environment inside the pores due to the presence of Ca2+. In particular, Ca/ZSM-5 strongly retains water, hydrocarbons, and oxygenates, which occupy as much as 10% of the micropores during the ongoing MTH reaction. This change in the effective pore geometry affects the formation of hydrocarbon pool components and in this way directs the MTH reaction toward the olefin cycle.
Collapse
Affiliation(s)
- Anna Liutkova
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Hao Zhang
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jérôme F. M. Simons
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Brahim Mezari
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Marta Mirolo
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble, Cedex 9, France
| | - Gustavo A. Garcia
- Synchrotron SOLEIL, L’Orme des Merisiers, St Aubin, B.P. 48, 91192 Gif sur Yvette, France
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Nikolay Kosinov
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
9
|
Gao FE, Liu JY. Synergistic effect of Brønsted/Lewis acid in olefin aromatization during MTO over Zn modified H-SAPO-34 zeolite: A periodic DFT study. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Wang C, Yang L, Gao M, Shao X, Dai W, Wu G, Guan N, Xu Z, Ye M, Li L. Directional Construction of Active Naphthalenic Species within SAPO-34 Crystals toward More Efficient Methanol-to-Olefin Conversion. J Am Chem Soc 2022; 144:21408-21416. [DOI: 10.1021/jacs.2c10495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chang Wang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Liu Yang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Mingbin Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Xue Shao
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Weili Dai
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Guangjun Wu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Naijia Guan
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Zhaochao Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Mao Ye
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Landong Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P.R. China
- Key Laboratory of Advanced Energy Materials Chemistry of the Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
11
|
Fan S, Wang H, He S, Yuan K, Wang P, Li J, Wang S, Qin Z, Dong M, Fan W, Wang J. Formation and Evolution of Methylcyclohexene in the Initial Period of Methanol to Olefins over H-ZSM-5. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sheng Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Han Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shipei He
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kai Yuan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengfei Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
| | - Junfen Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
| | - Zhangfeng Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
| | - Mei Dong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
| | - Jianguo Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Gong X, Çağlayan M, Ye Y, Liu K, Gascon J, Dutta Chowdhury A. First-Generation Organic Reaction Intermediates in Zeolite Chemistry and Catalysis. Chem Rev 2022; 122:14275-14345. [PMID: 35947790 DOI: 10.1021/acs.chemrev.2c00076] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Zeolite chemistry and catalysis are expected to play a decisive role in the next decade(s) to build a more decentralized renewable feedstock-dependent sustainable society owing to the increased scrutiny over carbon emissions. Therefore, the lack of fundamental and mechanistic understanding of these processes is a critical "technical bottleneck" that must be eliminated to maximize economic value and minimize waste. We have identified, considering this objective, that the chemistry related to the first-generation reaction intermediates (i.e., carbocations, radicals, carbenes, ketenes, and carbanions) in zeolite chemistry and catalysis is highly underdeveloped or undervalued compared to other catalysis streams (e.g., homogeneous catalysis). This limitation can often be attributed to the technological restrictions to detect such "short-lived and highly reactive" intermediates at the interface (gas-solid/solid-liquid); however, the recent rise of sophisticated spectroscopic/analytical techniques (including under in situ/operando conditions) and modern data analysis methods collectively compete to unravel the impact of these organic intermediates. This comprehensive review summarizes the state-of-the-art first-generation organic reaction intermediates in zeolite chemistry and catalysis and evaluates their existing challenges and future prospects, to contribute significantly to the "circular carbon economy" initiatives.
Collapse
Affiliation(s)
- Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Mustafa Çağlayan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Kun Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | | |
Collapse
|
13
|
Temperature and dilution effects on MTO process with a SAPO-34-based catalyst in fluidized bed reactor. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Zeng S, Zhang W, Li J, Lin S, Xu S, Wei Y, Liu Z. Revealing the Roles of Hydrocarbon Pool Mechanism in Ethanol-to-Hydrocarbons Reaction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Chen W, Yi X, Liu Z, Tang X, Zheng A. Carbocation chemistry confined in zeolites: spectroscopic and theoretical characterizations. Chem Soc Rev 2022; 51:4337-4385. [PMID: 35536126 DOI: 10.1039/d1cs00966d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acid-catalyzed reactions inside zeolites are one type of broadly applied industrial reactions, where carbocations are the most common intermediates of these reaction processes, including methanol to olefins, alkene/aromatic alkylation, and hydrocarbon cracking/isomerization. The fundamental research on these acid-catalyzed reactions is focused on the stability, evolution, and lifetime of carbocations under the zeolite confinement effect, which greatly affects the efficiency, selectivity and deactivation of zeolite catalysts. Therefore, a profound understanding of the carbocations confined in zeolites is not only beneficial to explain the reaction mechanism but also drive the design of new zeolite catalysts with ideal acidity and cages/channels. In this review, we provide both an in-depth understanding of the stabilization of carbocations by the pore confinement effect and summary of the advanced characterization methods to capture carbocations in zeolites, including UV-vis spectroscopy, solid-state NMR, fluorescence microscopy, IR spectroscopy and Raman spectroscopy. Also, we clarify the relationship between the activity and stability of carbocations in zeolite-catalyzed reactions, and further highlight the role of carbocations in various hydrocarbon conversion reactions inside zeolites with diverse frameworks and varying acidic properties.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
16
|
He S, Wang S, Fan S, Luo L, Yuan K, Qin Z, Dong M, Wang J, Fan W. Improvement of the catalytic performance of ITQ-13 zeolite in methanol to olefins via Ce modification. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
17
|
Usman M. Recent Progress of SAPO-34 Zeolite Membranes for CO2 Separation: A Review. MEMBRANES 2022; 12:membranes12050507. [PMID: 35629833 PMCID: PMC9147644 DOI: 10.3390/membranes12050507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023]
Abstract
In the zeolite family, the silicoaluminophosphate (SAPO)-34 zeolite has a unique chemical structure, distinctive pore size, adsorption characteristics, as well as chemical and thermal stability, and recently, has attracted much research attention. Increasing global carbon dioxide (CO2) emissions pose a serious environmental threat to humans, animals, plants, and the entire environment. This mini-review summarizes the role of SAPO-34 zeolite membranes, including mixed matrix membranes (MMMs) and pure SAPO-34 membranes in CO2 separation. Specifically, this paper summarizes significant developments in SAPO-34 membranes for CO2 removal from air and natural gas. Consideration is given to a variety of successes in SAPO-34 membranes, and future ideas are described in detail to foresee how SAPO-34 could be employed to mitigate greenhouse gas emissions. We hope that this study will serve as a detailed guide to the use of SAPO-34 membranes in industrial CO2 separation.
Collapse
Affiliation(s)
- Muhammad Usman
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
18
|
Zapater D, Lasobras J, Soler J, Herguido J, Menéndez M. Comparison of Conventional and Two-Zone Fluidized Bed Reactors for Methanol to Olefins. Effect of Reaction Conditions and the Presence of Water in the Feed. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Diego Zapater
- Catalysis, Molecular Separations and Reaction Engineering Group, Department of Chemical and Environmental Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza 50018, Spain
- Multiscale Reaction Engineering, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Javier Lasobras
- Catalysis, Molecular Separations and Reaction Engineering Group, Department of Chemical and Environmental Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza 50018, Spain
| | - Jaime Soler
- Catalysis, Molecular Separations and Reaction Engineering Group, Department of Chemical and Environmental Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza 50018, Spain
| | - Javier Herguido
- Catalysis, Molecular Separations and Reaction Engineering Group, Department of Chemical and Environmental Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza 50018, Spain
| | - Miguel Menéndez
- Catalysis, Molecular Separations and Reaction Engineering Group, Department of Chemical and Environmental Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza 50018, Spain
| |
Collapse
|
19
|
Huang F, Li L, Guan M, Hong Z, Miao L, Zhao G, Zhu Z. A Review of the Process on Vapor Phase Methylation of Phenol with Methanol. Catal Letters 2022. [DOI: 10.1007/s10562-022-04011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
A strategy combining the catalytic cracking of C6-C8 olefins and methanol to olefins (MTO) reaction through SAPO-34 pre-coking. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Usman M, Ghanem AS, Niaz Ali Shah S, Garba MD, Yusuf Khan M, Khan S, Humayun M, Laeeq Khan A. A Review on SAPO-34 Zeolite Materials for CO 2 Capture and Conversion. CHEM REC 2022; 22:e202200039. [PMID: 35474280 DOI: 10.1002/tcr.202200039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/13/2022] [Indexed: 12/15/2022]
Abstract
Among several known zeolites, silicoaluminophosphate (SAPO)-34 zeolite exhibits a distinct chemical structure, unique pore size distribution, and chemical, thermal, and ion exchange capabilities, which have recently attracted considerable research attention. Global carbon dioxide (CO2 ) emissions are a serious environmental issue. Current atmospheric CO2 level exceeds 414 parts per million (ppm), which greatly influences humans, fauna, flora, and the ecosystem as a whole. Zeolites play a vital role in CO2 removal, recycling, and utilization. This review summarizes the properties of the SAPO-34 zeolite and its role in CO2 capture and separation from air and natural gas. In addition, due to their high thermal stability and catalytic nature, CO2 conversions into valuable products over single metal, bi-metallic, and tri-metallic catalysts and their oxides supported on SAPO-34 were also summarized. Considering these accomplishments, substantial problems related to SAPO-34 are discussed, and future recommendations are offered in detail to predict how SAPO-34 could be employed for greenhouse gas mitigation.
Collapse
Affiliation(s)
- Muhammad Usman
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261,', Saudi Arabia
| | - Akram S Ghanem
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Syed Niaz Ali Shah
- Center for Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Mustapha D Garba
- Department of Chemistry, University of Glasgow, G12 8QQ, Glasgow, United Kingdom
| | - Mohd Yusuf Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261,', Saudi Arabia
| | - Sikandar Khan
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Humayun
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 45550, Islamabad, Pakistan
| |
Collapse
|
22
|
Yang L, Wang C, Dai W, Wu G, Guan N, Li L. Progressive steps and catalytic cycles in methanol-to-hydrocarbons reaction over acidic zeolites. FUNDAMENTAL RESEARCH 2022; 2:184-192. [PMID: 38933155 PMCID: PMC11197791 DOI: 10.1016/j.fmre.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022] Open
Abstract
Understanding the complete reaction network and mechanism of methanol-to-hydrocarbons remains a key challenge in the field of zeolite catalysis and C1 chemistry. Inspired by the identification of the reactive surface methoxy species on solid acids, several direct mechanisms associated with the formation of the first C-C bond in methanol conversion have been recently disclosed. Identifying the stepwise involvement of the initial intermediates containing the first C-C bond in the whole reaction process of methanol-to-hydrocarbons conversion becomes possible and attractive for the further development of this important reaction. Herein, several initial unsaturated aldehydes/ketones containing the C-C bond are identified via complementary spectroscopic techniques. With the combination of kinetic and spectroscopic analyses, a complete roadmap of the zeolite-catalyzed methanol-to-hydrocarbons conversion from the initial C-C bonds to the hydrocarbon pool species via the oxygen-containing unsaturated intermediates is clearly illustrated. With the participation of both Brønsted and Lewis acid sites in H-ZSM-5 zeolite, an initial aldol-cycle is proposed, which can be closely connected to the well-known dual-cycle mechanism in the methanol-to-hydrocarbons conversion.
Collapse
Affiliation(s)
- Liu Yang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chang Wang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weili Dai
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guangjun Wu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Naijia Guan
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- Frontiers Science Center for New Organic Matter and Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Landong Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- Frontiers Science Center for New Organic Matter and Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
23
|
Luo M, Hu B, Mao G, Wang B. Trace Compounds Confined in SAPO-34 and a Probable Evolution Route of Coke in the MTO Process. ACS OMEGA 2022; 7:3277-3283. [PMID: 35128239 PMCID: PMC8811923 DOI: 10.1021/acsomega.1c05336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Confined compounds in SAPO-34 cages are important to understand the activation and deactivation mechanisms of the methanol-to-olefin process. In this work, gas chromatography-mass spectrometry (GC-MS) chromatograms of CCl4-extracted samples of used SAPO-34 were denoised by subtracting signals of air compounds and stationary phase bleeding of the chromatographic column, which enhanced the identification of trace compounds. In addition to the generally noted methyl aromatics, this work also identified alkanes, cycloalkanes, alkyl (ethyl, propyl, and butyl) compounds, partially saturated compounds, and bridged compounds. These novel identified trace compounds favor the evolution route depiction of monocyclic, bicyclic, tricyclic, tetracyclic, and multicore hydrocarbons in the SAPO-34 cage. Confined compounds should grow via step-by-step alkylation, cyclization, and aromatization processes. C2+ side chains, especially C3+, favor the growth of rings. Alkyldihydroindenes should be key intermediates between monocyclic and bicyclic aromatics. Bridged soluble compounds provide evidence that insoluble coke is formed across cages in the SAPO-34 crystal.
Collapse
|
24
|
Yao J, Rong Y, Gao Z, Tang X, Zha F, Tian H, Chang Y, Guo X. Metal–organic framework-assisted synthesis of Zr-modified SAPO-34 zeolites with hierarchical porous structure for the catalytic transformation of methanol to olefins. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01838h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zr-Modified SAPO-34 zeolites with hierarchical porous structure were synthesized in the presence of UiO-66. The Zr0.50-SAPO-34 zeolites exhibited long lifetimes (>1500 min) and excellent selectivity for light olefins (98.66%) in the MTO reaction.
Collapse
Affiliation(s)
- Jihui Yao
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Yuzi Rong
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Zeyan Gao
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Xiaohua Tang
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Fei Zha
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Haifeng Tian
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Yue Chang
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Lanzhou 730070, Gansu, China
| | - Xiaojun Guo
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| |
Collapse
|
25
|
Minova IB, Bühl M, Matam SK, Catlow CRA, Frogley MD, Cinque G, Wright PA, Howe RF. Carbene-like reactivity of methoxy groups in a single crystal SAPO-34 MTO catalyst. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02361f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In situ synchrotron infrared microspectroscopy on single crystals of SAPO-34 reveals that a carbene insertion mechanism is responsible for the first carbon–carbon bond formation from surface methoxy groups.
Collapse
Affiliation(s)
- Ivalina B. Minova
- EastCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, UK
| | - Michael Bühl
- EastCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, UK
| | - Santhosh K. Matam
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, OX11 0FA, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - C. Richard A. Catlow
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, OX11 0FA, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
- Department of Chemistry, University College London, London WC1E 6BT, UK
| | - Mark D. Frogley
- MIRIAM beamline B22, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Gianfelice Cinque
- MIRIAM beamline B22, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Paul A. Wright
- EastCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, UK
| | | |
Collapse
|
26
|
Liang T, Chen J, Wang S, Wang P, Qin Z, Jin F, Dong M, Wang J, Fan W. Conversion of methanol to hydrocarbons over H-MCM-22 zeolite: deactivation behaviours related to acid density and distribution. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01270g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The deactivation of H-MCM-22 zeolites with different Si/Al ratios can be roughly divided into three stages: first the rapid deactivation of the supercages, the second reaction with slow coking and the deactivation stage with rapid coking mainly on the external pockets.
Collapse
Affiliation(s)
- Tingyu Liang
- Key Laboratory for Green Chemical Process of Ministry of Education, and, Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jialing Chen
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
| | - Pengfei Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
| | - Zhangfeng Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
| | - Fang Jin
- Key Laboratory for Green Chemical Process of Ministry of Education, and, Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Mei Dong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
| | - Jianguo Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China
| |
Collapse
|
27
|
Wang C, Chu Y, Hu M, Cai W, Wang Q, Qi G, Li S, Xu J, Deng F. Insight into Carbocation‐Induced Noncovalent Interactions in the Methanol‐to‐Olefins Reaction over ZSM‐5 Zeolite by Solid‐State NMR Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenjin Cai
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guodong Qi
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shenhui Li
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
28
|
Wang C, Chu Y, Hu M, Cai W, Wang Q, Qi G, Li S, Xu J, Deng F. Insight into Carbocation-Induced Noncovalent Interactions in the Methanol-to-Olefins Reaction over ZSM-5 Zeolite by Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2021; 60:26847-26854. [PMID: 34636120 DOI: 10.1002/anie.202112948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/06/2022]
Abstract
Carbocations such as cyclic carbenium ions are important intermediates in the zeolite-catalyzed methanol-to-olefins (MTO) reaction. The MTO reaction propagates through a complex hydrocarbon pool process. Understanding the carbocation-involved hydrocarbon pool reaction on a molecular level still remains challenging. Here we show that electron-deficient cyclopentenyl cations stabilized in ZSM-5 zeolite are able to capture the alkanes, methanol, and olefins produced during MTO reaction via noncovalent interactions. Intermolecular spatial proximities/interactions are identified by using two-dimensional 13 C-13 C correlation solid-state NMR spectroscopy. Combined NMR experiments and theoretical analysis suggests that in addition to the dispersion and CH/π interactions, the multiple functional groups in the cyclopentenyl cations produce strong attractive force via cation-induced dipole, cation-dipole and cation-π interactions. These carbocation-induced noncovalent interactions modulate the product selectivity of hydrocarbon pool reaction.
Collapse
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenjin Cai
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guodong Qi
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shenhui Li
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
29
|
Full life cycle characterization strategies for spatiotemporal evolution of heterogeneous catalysts. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63786-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Alshafei FH, Park Y, Zones SI, Davis ME. Methanol-to-olefins catalysis on ERI-type molecular sieves: towards enhancing ethylene selectivity. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Wang C, Zhao X, Hu M, Qi G, Wang Q, Li S, Xu J, Deng F. Unraveling Hydrocarbon Pool Boosted Propane Aromatization on Gallium/ZSM-5 Zeolite by Solid-State Nuclear Magnetic Resonance Spectroscopy. Angew Chem Int Ed Engl 2021; 60:23630-23634. [PMID: 34490714 DOI: 10.1002/anie.202111111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/04/2021] [Indexed: 11/08/2022]
Abstract
Propane aromatization on metal-modified zeolites provides a promising route to produce valuable chemicals such as benzene, toluene and xylene via non-petroleum feedstocks. The mechanistic understanding of propane conversion to aromatics is still challenging due to the complexity of the aromatization process. Herein, by using solid-state NMR spectroscopy and GC-MS, it is shown that cyclopentenyl cations are formed as active intermediates during propane aromatization on Ga/ZSM-5 zeolite. Autocatalysis of propane to aromatics is identified in the induction period. The cyclopentenyl cations serve as key hydrocarbon pool species to co-catalyze propane conversion and promote aromatics formation, revealing a dominant hydrocarbon pool process in propane aromatization.
Collapse
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingling Zhao
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang, 261061, China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guodong Qi
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shenhui Li
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
32
|
Wang C, Zhao X, Hu M, Qi G, Wang Q, Li S, Xu J, Deng F. Unraveling Hydrocarbon Pool Boosted Propane Aromatization on Gallium/ZSM‐5 Zeolite by Solid‐State Nuclear Magnetic Resonance Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xingling Zhao
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
- College of Chemistry & Chemical and Environmental Engineering Weifang University Weifang 261061 China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Guodong Qi
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shenhui Li
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
33
|
Omojola T, Logsdail AJ, van Veen AC, Nastase SAF. A quantitative multiscale perspective on primary olefin formation from methanol. Phys Chem Chem Phys 2021; 23:21437-21469. [PMID: 34569573 DOI: 10.1039/d1cp02551a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of the first C-C bond and primary olefins from methanol over zeolite and zeotype catalysts has been studied for over 40 years. Over 20 mechanisms have been proposed for the formation of the first C-C bond. In this quantitative multiscale perspective, we decouple the adsorption, desorption, mobility, and surface reactions of early species through a combination of vacuum and sub-vacuum studies using temporal analysis of products (TAP) reactor systems, and through studies with atmospheric fixed bed reactors. These results are supplemented with density functional theory calculations and data-driven physical models, using partial differential equations, that describe the temporal and spatial evolution of species. We consider the effects of steam, early degradation species, and product masking due to the inherent autocatalytic nature of the process, which all complicate the observation of the primary olefin(s). Although quantitative spectroscopic determination of the lifetimes, surface mobility, and reactivity of adspecies is still lacking in the literature, we observe that reaction barriers are competitive with adsorption enthalpies and/or activation energies of desorption, while facile diffusion occurs in the porous structures of the zeolite/zeotype catalysts. Understanding the various processes allows for quantitative evaluation of their competing energetics, which leads to molecular insights as to what governs the catalytic activity during the conversion of methanol to primary olefins over zeolite/zeotype catalysts.
Collapse
Affiliation(s)
- Toyin Omojola
- Department of Chemical Engineering, Claverton Down, University of Bath, Bath BA2 7AY, UK. .,School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| | - André C van Veen
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Stefan Adrian F Nastase
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| |
Collapse
|
34
|
Yang L, Wang C, Zhang L, Dai W, Chu Y, Xu J, Wu G, Gao M, Liu W, Xu Z, Wang P, Guan N, Dyballa M, Ye M, Deng F, Fan W, Li L. Stabilizing the framework of SAPO-34 zeolite toward long-term methanol-to-olefins conversion. Nat Commun 2021; 12:4661. [PMID: 34341350 PMCID: PMC8329068 DOI: 10.1038/s41467-021-24403-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/15/2021] [Indexed: 11/20/2022] Open
Abstract
As a commercial MTO catalyst, SAPO-34 zeolite exhibits excellent recyclability probably due to its intrinsic good hydrothermal stability. However, the structural dynamic changes of SAPO-34 catalyst induced by hydrocarbon pool (HP) species and the water formed during the MTO conversion as well as its long-term stability after continuous regenerations are rarely investigated and poorly understood. Herein, the dynamic changes of SAPO-34 framework during the MTO conversion were identified by 1D 27Al, 31P MAS NMR, and 2D 31P-27Al HETCOR NMR spectroscopy. The breakage of T-O-T bonds in SAPO-34 catalyst during long-term continuous regenerations in the MTO conversion could be efficiently suppressed by pre-coking. The combination of catalyst pre-coking and water co-feeding is established to be an efficient strategy to promote the catalytic efficiency and long-term stability of SAPO-34 catalysts in the commercial MTO processes, also sheds light on the development of other high stable zeolite catalyst in the commercial catalysis. Stability of zeolite catalysts is a highly desirable property for commercial methanol to olefins conversion but extremely challenging to achieve. Here, the authors combine the catalyst pre-coking and water co-feeding to develop an efficient strategy to enhance the long-term stability of SAPO-34 catalyst.
Collapse
Affiliation(s)
- Liu Yang
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tianjin, P.R. China
| | - Chang Wang
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tianjin, P.R. China
| | - Lina Zhang
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tianjin, P.R. China
| | - Weili Dai
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tianjin, P.R. China. .,Key Laboratory of Advanced Energy Materials Chemistry of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, P.R. China.
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Guangjun Wu
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tianjin, P.R. China
| | - Mingbin Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Wenjuan Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Zhaochao Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Pengfei Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, P. R. China
| | - Naijia Guan
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tianjin, P.R. China.,Key Laboratory of Advanced Energy Materials Chemistry of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, P.R. China
| | - Michael Dyballa
- Institute of Chemical Technology, University of Stuttgart, Stuttgart, Germany
| | - Mao Ye
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, P. R. China
| | - Landong Li
- School of Materials Science and Engineering, and National Institute for Advanced Materials, Nankai University, Tianjin, P.R. China.,Key Laboratory of Advanced Energy Materials Chemistry of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, P.R. China
| |
Collapse
|
35
|
Abstract
ConspectusZeolites, accompanied by their initial discovery as natural mines and the subsequent large-scale commercial production, have played indispensable roles in various fields such as petroleum refining and the chemical industry. Understanding the characteristics of zeolites, in contrast to their counterparts with similar chemical compositions and the origin thereof, is always a hot and challenging topic. Zeolites are known as intrinsic confined systems with ordered channels on the molecular scale, and structural confinement has been proposed to explain the unique chemical behaviors of zeolites. Generally, the channels of zeolites can regulate the diffusion of molecules, leading to a visible difference in molecular transportation and the ultimate shape-selective catalysis. On the other hand, the local electric field within the zeolite channels or cages can act on the guest molecules and change their energy levels. Confinement can be simply interpreted from both spatial and electronic issues; however, the nature of zeolite confinement is ambiguous and needs to be clarified.In this Account, we make a concise summary and analysis of the topics of confinement in a zeolite and zeolite catalysis from two specific views of spatial constraint and a local electric field to answer two basic questions of why zeolites and what else can we do with zeolites. First, it is shown how to construct functional sites including Brønsted acid sites, Lewis acid sites, extraframework cation sites, and entrapped metal or oxide aggregates in zeolites via confinement and how to understand the specific role of confinement in their reactivity. Second, the multiple impacts of confinement in zeolite-catalyzed reactions are discussed, which rationally lead to several unique processes, namely, Brønsted acid catalysis confined in zeolites, Lewis acid catalysis confined in zeolites, catalysis by zeolite-confined coordinatively unsaturated cation sites, and a cascade reaction within the confined space of zeolites. Overall, confinement effects do exist in zeolite systems and have already played extremely important roles in adsorption and catalysis. Although confinement might exist in many systems, the confinement by zeolites is more straightforward thanks to their well-ordered and rigid structure, deriving unique chemical behaviors within the confined space of zeolites. A zeolite is a fantastic scaffold for constructing isolated sites spatially and electrostatically confined in its matrix. Furthermore, zeolites containing well-defined transition-metal sites can be treated as inorganometallic complexes (i.e., a zeolite framework as the ligand of transition-metal ions) and can catalyze reactions resembling organometallic complexes or even metalloenzymes. The local electric field within the confined space of zeolites is strong enough to induce or assist the activation of small molecules, following the working fashion of frustrated Lewis pairs. The tactful utilization of structural confinement, both spatially and electronically, becomes the key to robust zeolites for adsorption and catalysis.
Collapse
Affiliation(s)
- Yuchao Chai
- School of Materials Science and Engineering, Nankai University, 38# Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Weili Dai
- School of Materials Science and Engineering, Nankai University, 38# Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Guangjun Wu
- School of Materials Science and Engineering, Nankai University, 38# Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Naijia Guan
- School of Materials Science and Engineering, Nankai University, 38# Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Landong Li
- School of Materials Science and Engineering, Nankai University, 38# Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
- Frontiers Science Center for New Organic Matter & Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, 94# Weijin Road, Nankai District, Tianjin 300071, P. R. China
| |
Collapse
|
36
|
Wang S, Li Z, Qin Z, Dong M, Li J, Fan W, Wang J. Catalytic roles of the acid sites in different pore channels of H-ZSM-5 zeolite for methanol-to-olefins conversion. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63732-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Yao J, Jiao J, Liu R, Zha F, Guo X, Tang X, Tian H, Chang Y. Template-assisted preparation of metal-modified SAPO-34 molecular sieves for the catalysis of methanol-to-olefins. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0793-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Zachariou A, Hawkins AP, Suwardiyanto, Collier P, Barrow N, Howe RF, Parker SF, Lennon D. New Spectroscopic Insight into the Deactivation of a ZSM‐5 Methanol‐to‐Hydrocarbons Catalyst. ChemCatChem 2021. [DOI: 10.1002/cctc.202100286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andrea Zachariou
- School of Chemistry University of Glasgow Joseph Black Building Glasgow G12 8QQ UK
- UK Catalysis Hub Research Complex at Harwell STFC Rutherford Appleton Laboratory Chilton, Oxon OX11 0FA UK
| | - Alexander P. Hawkins
- School of Chemistry University of Glasgow Joseph Black Building Glasgow G12 8QQ UK
- UK Catalysis Hub Research Complex at Harwell STFC Rutherford Appleton Laboratory Chilton, Oxon OX11 0FA UK
| | - Suwardiyanto
- Department of Chemistry University of Jember Jember 68121 East Java Indonesia
| | - Paul Collier
- Johnson Matthey Plc. Johnson Matthey Technology Centre Blounts Court Sonning Common Reading RG4 9NH UK
| | - Nathan Barrow
- Johnson Matthey Plc. Johnson Matthey Technology Centre Blounts Court Sonning Common Reading RG4 9NH UK
| | - Russell F. Howe
- Department of Chemistry University of Aberdeen Meston Building Aberdeen AB24 3UE UK
| | - Stewart F. Parker
- School of Chemistry University of Glasgow Joseph Black Building Glasgow G12 8QQ UK
- UK Catalysis Hub Research Complex at Harwell STFC Rutherford Appleton Laboratory Chilton, Oxon OX11 0FA UK
- ISIS Neutron and Muon Source ISIS Facility STFC Rutherford Appleton Laboratory Chilton, Oxon OX11 0QX UK
| | - David Lennon
- School of Chemistry University of Glasgow Joseph Black Building Glasgow G12 8QQ UK
| |
Collapse
|
39
|
Wen M, Ren L, Zhang J, Jiang J, Xu H, Guan Y, Wu P. Designing SAPO-18 with energetically favorable tetrahedral Si ions for an MTO reaction. Chem Commun (Camb) 2021; 57:5682-5685. [PMID: 33977951 DOI: 10.1039/d1cc01140e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The silicon site location in silicoaluminophosphate zeolites has significant influences on their acidic and catalytic properties. Herein, AEI analogue silicoaluminophosphates with controlled tetrahedral silicon centers (T sites) were synthesized using specially designed amines as expected organic structure-directing agents (OSDAs). DFT calculations show that the OSDAs with different electronegativity can direct Si atoms into the T sites with more favorable energy advantages. Their catalytic performances in a methanol-to-olefin (MTO) reaction also reflected that OSDAs controlled the Si location in the framework, and the T3 sites had better performance than T1 sites. This finding provides evidence that OSDAs are capable of guiding the Si ions into more favorable T sites, achieving desirable catalytic properties as solid acid catalysts.
Collapse
Affiliation(s)
- Meiting Wen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Li Ren
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Jingyan Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Jingang Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Hao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Yejun Guan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Peng Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
40
|
Valecillos J, Hita I, Sastre E, Aguayo AT, Castaño P. Implications of Co‐Feeding Water on the Growth Mechanisms of Retained Species on a SAPO‐18 Catalyst during the Methanol‐to‐Olefins Reaction. ChemCatChem 2021. [DOI: 10.1002/cctc.202100124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- José Valecillos
- Department of Chemical Engineering University of the Basque Country (UPV/EHU) P.O. Box 644 Bilbao 48080 Spain
| | - Idoia Hita
- Multiscale Reaction Engineering KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Enrique Sastre
- Instituto de Catálisis y Petroleoquímica (CSIC) C/Marie Curie, 2 28049 Madrid Spain
| | - Andrés T. Aguayo
- Department of Chemical Engineering University of the Basque Country (UPV/EHU) P.O. Box 644 Bilbao 48080 Spain
| | - Pedro Castaño
- Department of Chemical Engineering University of the Basque Country (UPV/EHU) P.O. Box 644 Bilbao 48080 Spain
- Multiscale Reaction Engineering KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
41
|
|
42
|
Yu M, Tormene N, Bolshakov A, Mezari B, Liutkova A, Kosinov N, Hensen EJM. Selective methanethiol-to-olefins conversion over HSSZ-13 zeolite. Chem Commun (Camb) 2021; 57:3323-3326. [PMID: 33725046 DOI: 10.1039/d1cc00397f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A methanethiol-to-olefins (MtTO) equivalent of methanol-to-olefins (MTO) chemistry is demonstrated. CH3SH can be converted to ethylene and propylene in a similar manner as CH3OH over SSZ-13 zeolite involving a hydrocarbon pool mechansim. Methylated aromatic intermediates were identified by 13C NMR analysis. Comparison of MtTO and MTO chemistry provides clues about the mechanism of C-C bond formation and catalyst deactivation.
Collapse
Affiliation(s)
- Miao Yu
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld 14, 5600 MB, Eindhoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
43
|
Shi Z, Bhan A. Tuning the ethylene-to-propylene ratio in methanol-to-olefins catalysis on window-cage type zeolites. J Catal 2021. [DOI: 10.1016/j.jcat.2021.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Zapater D, Lasobras J, Soler J, Herguido J, Menéndez M. Counteracting SAPO-34 catalyst deactivation in MTO process using a two zone fluidized bed reactor: Reactor testing and process viability. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Wang S, Zhang L, Zhang W, Wang P, Qin Z, Yan W, Dong M, Li J, Wang J, He L, Olsbye U, Fan W. Selective Conversion of CO2 into Propene and Butene. Chem 2020. [DOI: 10.1016/j.chempr.2020.09.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Low-cost synthesis of nanoaggregate SAPO-34 and its application in the catalytic alcoholysis of furfuryl alcohol. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63604-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Jia Y, Wang J, Zhang K, Ding C. Highly shape‐selective Zn‐P/HZSM‐5 zeolite catalyst for methanol conversion to light aromatics. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yanming Jia
- Department of Chemistry Taiyuan Normal University Daxue Street Jinzhong 030619 China
| | - Junwen Wang
- College of Chemistry and Chemical Engineering Taiyuan University of Technology Yingze Street Taiyuan 030024 China
| | - Kan Zhang
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry of CAS Taoyuan South Road Taiyuan 030001 China
| | - Chuanmin Ding
- College of Chemistry and Chemical Engineering Taiyuan University of Technology Yingze Street Taiyuan 030024 China
| |
Collapse
|
48
|
Identifying correlations in Fischer-Tropsch synthesis and CO2 hydrogenation over Fe-based ZSM-5 catalysts. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101290] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
49
|
Lezcano-Gonzalez I, Campbell E, Hoffman AEJ, Bocus M, Sazanovich IV, Towrie M, Agote-Aran M, Gibson EK, Greenaway A, De Wispelaere K, Van Speybroeck V, Beale AM. Insight into the effects of confined hydrocarbon species on the lifetime of methanol conversion catalysts. NATURE MATERIALS 2020; 19:1081-1087. [PMID: 32929250 DOI: 10.1038/s41563-020-0800-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The methanol-to-hydrocarbons reaction refers collectively to a series of important industrial catalytic processes to produce either olefins or gasoline. Mechanistically, methanol conversion proceeds through a 'pool' of hydrocarbon species. For the methanol-to-olefins process, these species can be delineated broadly into 'desired' lighter olefins and 'undesired' heavier fractions that cause deactivation in a matter of hours. The crux in further catalyst optimization is the ability to follow the formation of carbonaceous species during operation. Here, we report the combined results of an operando Kerr-gated Raman spectroscopic study with state-of-the-art operando molecular simulations, which allowed us to follow the formation of hydrocarbon species at various stages of methanol conversion. Polyenes are identified as crucial intermediates towards formation of polycyclic aromatic hydrocarbons, with their fate determined largely by the zeolite topology. Notably, we provide the missing link between active and deactivating species, which allows us to propose potential design rules for future-generation catalysts.
Collapse
Affiliation(s)
- I Lezcano-Gonzalez
- Chemistry Department, University College London, London, UK.
- UK Catalysis Hub, Research Complex at Harwell, Didcot, UK.
| | - E Campbell
- Chemistry Department, University College London, London, UK
- UK Catalysis Hub, Research Complex at Harwell, Didcot, UK
| | - A E J Hoffman
- Center for Molecular Modeling, Ghent University, Zwijnaarde, Belgium
| | - M Bocus
- Center for Molecular Modeling, Ghent University, Zwijnaarde, Belgium
| | - I V Sazanovich
- Central Laser Facility, STFC, Research Complex at Harwell, Didcot, UK
| | - M Towrie
- Central Laser Facility, STFC, Research Complex at Harwell, Didcot, UK
| | - M Agote-Aran
- Chemistry Department, University College London, London, UK
- UK Catalysis Hub, Research Complex at Harwell, Didcot, UK
| | - E K Gibson
- Chemistry Department, University College London, London, UK
- UK Catalysis Hub, Research Complex at Harwell, Didcot, UK
- School of Chemistry, University of Glasgow, Glasgow, UK
| | - A Greenaway
- Chemistry Department, University College London, London, UK
- UK Catalysis Hub, Research Complex at Harwell, Didcot, UK
| | - K De Wispelaere
- Center for Molecular Modeling, Ghent University, Zwijnaarde, Belgium
| | - V Van Speybroeck
- Center for Molecular Modeling, Ghent University, Zwijnaarde, Belgium.
| | - A M Beale
- Chemistry Department, University College London, London, UK.
- UK Catalysis Hub, Research Complex at Harwell, Didcot, UK.
| |
Collapse
|
50
|
Yu B, Lou C, Zhang W, Xu S, Han J, Yu Z, Wei Y, Liu Z. Insight into the Dual Cycle Mechanism of Methanol-to-Olefins Reaction over SAPO-34 Molecular Sieve by Isotopic Tracer Studies. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0216-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|