1
|
Ahrens A, Batista GMF, Hammershøj HCD, Schwibinger EV, Nova A, Skrydstrup T. Unveiling the mechanism of triphos-Ru catalysed C-O bond disconnections in polymers. Nat Commun 2024; 15:5656. [PMID: 38969661 PMCID: PMC11226426 DOI: 10.1038/s41467-024-50083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
Ruthenium complexes with facially coordinating tripodal phosphine ligands are privileged catalysts for a broad range of (de-)hydrogenation-based transformations. Among these, C-O bond hydrogenolysis holds potential for the depolymerisation of both the biopolymer lignin and epoxy resins applied in wind turbine blades, aircrafts and more. However, this methodology is poorly understood in mechanistic terms. Here, we present a detailed investigation on the triphos-Ru catalysed C-O bond scission on a molecular level. A combination of experimental, spectroscopical and theoretical studies elucidates the reactivity of the ruthenium trimethylenemethane precatalyst, revealing the key roles of ruthenium phenolates in both catalyst activation as well as the catalytic cycle itself. Furthermore, a Ru(0)/Ru(II) oxidative addition into the C-O bond is disclosed, with a triphos-Ru(0) dihydrogen complex as entry point. With the molecular nature of the operating triphos-Ru species and the thermodynamics and kinetics of the catalysis unravelled, improvements of established methods as well as design of related transformations may become possible.
Collapse
Affiliation(s)
- Alexander Ahrens
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark.
| | | | - Hans Christian D Hammershøj
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Emil Vincent Schwibinger
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Ainara Nova
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences and Centre for Materials Science and Nanotechnology, University of Oslo, Oslo, Norway.
| | - Troels Skrydstrup
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
2
|
Gundekari S, Karmee SK. Catalytic Conversion of Levulinic Acid into 2-Methyltetrahydrofuran: A Review. Molecules 2024; 29:242. [PMID: 38202825 PMCID: PMC10780552 DOI: 10.3390/molecules29010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Biomass-derived furanics play a pivotal role in chemical industries, with 2-methyltetrahydrofuran (2-MTHF), a hydrogenated product of levulinic acid (LA), being particularly significant. 2-MTHF finds valuable applications in the fuel, polymer, and chemical sectors, serving as a key component in P-series biofuel and acknowledged as a renewable solvent for various chemical processes. Numerous research groups have explored catalytic systems to efficiently and selectively convert LA to 2-MTHF, using diverse metal-supported catalysts in different solvents under batch or continuous process conditions. This comprehensive review delves into the impact of metal-supported catalysts, encompassing co-metals and co-catalysts, on the synthesis of 2-MTHF from LA. The article also elucidates the influence of different reaction parameters, such as temperature, type and quantity of hydrogen source, and time. Furthermore, the review provides insights into reaction mechanisms for all documented catalytic systems.
Collapse
Affiliation(s)
- Sreedhar Gundekari
- Department of Engineering Chemistry, Koneru Lakshmaiah Education Foundation, KL (Deemed to be) University, R.V.S Nagar, Moinabad-Chilkur Rd, Aziznagar 500075, Telangana, India
| | - Sanjib Kumar Karmee
- The Odisha Renewable Energy Research Institute (ORERI), Subarnapur 767018, Odisha, India
| |
Collapse
|
3
|
Pothu R, Challa P, Rajesh R, Boddula R, Balaga R, Balla P, Perugopu V, Radwan AB, Abdullah AM, Al-Qahtani N. Vapour-Phase Selective Hydrogenation of γ-Valerolactone to 2-Methyltetrahydrofuran Biofuel over Silica-Supported Copper Catalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3414. [PMID: 36234542 PMCID: PMC9565284 DOI: 10.3390/nano12193414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
2-Methyltetrahydrofuran (MTHF) is a desirable biomass-based platform chemical with excellent potential as an ideal biofuel, green solvent, and raw material for synthesizing downstream chemicals. In this work, a series of copper nanoparticles encapsulated on SiO2 were prepared by the wet impregnation method and evaluated as efficient non-noble metal catalysts for the vapour-phase hydrogenation of γ-valerolactone (GVL) to MTHF in a fixed-bed reactor under mild reaction conditions. The obtained catalyst properties were determined by XRD, FE-SEM, TEM, UV-DRS, TPR, NH3-TPD, N2O decomposition and pore size distribution measurements. Meanwhile, the parameters/variables tuning their catalytic performance (activity, conversion, selectivity and stability) were examined. Various Cu loadings featured on the SiO2 support are essential for tuning the catalytic activity. Among the catalysts tested, a 5 wt% Cu/SiO2 catalyst showed a 97.2% MTHF selectivity with 71.9% GVL conversion, and showed a stability for 33 h time-on-stream, achieved at 260 °C and atmospheric pressure conditions. It was found that a huge dispersion of Cu metal in support, hydrogen activation ability, abundant acidic sites and surface area are all beneficial for improved MTHF selectivity.
Collapse
Affiliation(s)
- Ramyakrishna Pothu
- School of Physics and Electronics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Prathap Challa
- Energy & Environmental Engineering Department, CSIR−Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Rajendiran Rajesh
- Energy & Environmental Engineering Department, CSIR−Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Rajender Boddula
- Energy & Environmental Engineering Department, CSIR−Indian Institute of Chemical Technology, Hyderabad 500007, India
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar
| | - Ravi Balaga
- Energy & Environmental Engineering Department, CSIR−Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Putrakumar Balla
- Energy & Environmental Engineering Department, CSIR−Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Vijayanand Perugopu
- Energy & Environmental Engineering Department, CSIR−Indian Institute of Chemical Technology, Hyderabad 500007, India
| | | | | | - Noora Al-Qahtani
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar
| |
Collapse
|
4
|
Di Menno Di Bucchianico D, Cipolla A, Buvat JC, Mignot M, Casson Moreno V, Leveneur S. Kinetic Study and Model Assessment for n-Butyl Levulinate Production from Alcoholysis of 5-(Hydroxymethyl)furfural over Amberlite IR-120. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniele Di Menno Di Bucchianico
- INSA Rouen, UNIROUEN, Normandie Univ, LSPC, UR4704, 76000 Rouen, France
- Dipartimento di Ingegneria Chimica, Civile, Ambientale e dei Materiali, Alma Mater Studiorum─Università di Bologna, via Terracini 28, 40131 Bologna, Italy
| | - Antonella Cipolla
- INSA Rouen, UNIROUEN, Normandie Univ, LSPC, UR4704, 76000 Rouen, France
- Dipartimento di Ingegneria Chimica, Civile, Ambientale e dei Materiali, Alma Mater Studiorum─Università di Bologna, via Terracini 28, 40131 Bologna, Italy
| | | | - Mélanie Mignot
- COBRA UMR CNRS 6014, Normandie Université, INSA de Rouen, avenue de l’Université, Saint-Etienne-du-Rouvray 76800, France
| | - Valeria Casson Moreno
- Dipartimento di Ingegneria Chimica, Civile, Ambientale e dei Materiali, Alma Mater Studiorum─Università di Bologna, via Terracini 28, 40131 Bologna, Italy
| | | |
Collapse
|
5
|
Cooper SM, White AJP, Eykyn TR, Ma MT, Miller PW, Long NJ. N-Centered Tripodal Phosphine Re(V) and Tc(V) Oxo Complexes: Revisiting a [3 + 2] Mixed-Ligand Approach. Inorg Chem 2022; 61:8000-8014. [PMID: 35544683 PMCID: PMC9131457 DOI: 10.1021/acs.inorgchem.2c00693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
N-Triphos derivatives
(NP3R, R = alkyl, aryl)
and asymmetric variants (NP2RXR′, R′ = alkyl, aryl, X = OH, NR2, NRR′) are
an underexplored class of tuneable, tripodal ligands in relation to
the coordination chemistry of Re and Tc for biomedical applications.
Mixed-ligand approaches are a flexible synthetic route to obtain Tc
complexes of differing core structures and physicochemical properties.
Reaction of the NP3Ph ligand with the Re(V)
oxo precursor [ReOCl3(PPh3)2] generated
the bidentate complex [ReOCl3(κ2-NP2PhOHAr)], which possesses an unusual
AA’BB’XX’ spin system with a characteristic second-order
NMR lineshape that is sensitive to the bi- or tridentate nature of
the coordinating diphosphine unit. The use of the asymmetric NP2PhOHAr ligand resulted in the formation
of both bidentate and tridentate products depending on the presence
of base. The tridentate Re(V) complex [ReOCl2(κ3-NP2PhOAr)] has provided
the basis of a new reactive “metal-fragment” for further
functionalization in [3 + 2] mixed-ligand complexes. The synthesis
of [3 + 2] complexes with catechol-based π-donors could also
be achieved under one-pot, single-step conditions from Re(V) oxo precursors.
Analogous complexes can also be synthesized from suitable 99Tc(V) precursors, and these complexes have been shown to exhibit
highly similar structural properties through spectroscopic and chromatographic
analysis. However, a tendency for the {MVO}3+ core to undergo hydrolysis to the {MVO2}+ core has been observed both in the case of M = Re and markedly
for M = 99Tc complexes. It is likely that controlling this
pathway will be critical to the generation of further stable Tc(V)
derivatives. An N-centered tripodal heterofunctionalized
phosphine ligand
was used to generate a reactive “metal-fragment” based
on the {MVO}3+ (M = Re, 99Tc) core
for the formation of mixed-ligand [3 + 2] complexes. Characteristic
lineshapes arising from an AA’BB’XX’ spin system
are diagnostic of bidentate vs tridentate coordination modes of the
ligand.
Collapse
Affiliation(s)
- Saul M Cooper
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London W12 0BZ, UK.,School of Biomedical Engineering & Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London W12 0BZ, UK
| | - Thomas R Eykyn
- School of Biomedical Engineering & Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Michelle T Ma
- School of Biomedical Engineering & Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Philip W Miller
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London W12 0BZ, UK
| | - Nicholas J Long
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, White City Campus, London W12 0BZ, UK
| |
Collapse
|
6
|
Deng CQ, Liu J, Luo JH, Gan LJ, Deng J, Fu Y. Proton-Promoted Nickel-Catalyzed Asymmetric Hydrogenation of Aliphatic Ketoacids. Angew Chem Int Ed Engl 2022; 61:e202115983. [PMID: 35099846 DOI: 10.1002/anie.202115983] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/26/2022]
Abstract
A robust and highly active homogeneous chiral nickel-phosphine complex for the asymmetric hydrogenation of aliphatic γ- and δ-ketoacids has been discovered. The hydrogenation could proceed smoothly in the presence of 0.0133 mol% catalyst loading (S/C=7500). The coordination chemistry and catalytic behavior of Ni(OTf)2 with (S,S)-Ph-BPE were explored by 1 H NMR and HRMS. The mechanistic studies revealed that a proton promoted the activation of the substrate C=O bond and controlled the stereoselectivity through hydrogen bonds. A series of chiral γ- and δ-alkyl substituted lactones were obtained in high yields with excellent enantioselectivities (up to 98 % yield and 99 % ee). In addition, this catalytic system also demonstrated that levulinic acid produced from a biomass feedstock was converted into chiral γ-valerolactone without loss of ee value.
Collapse
Affiliation(s)
- Chen-Qiang Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiao Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jia-Hao Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Li-Jin Gan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jin Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
7
|
Deng C, Liu J, Luo J, Gan L, Deng J, Fu Y. Proton‐Promoted Nickel‐Catalyzed Asymmetric Hydrogenation of Aliphatic Ketoacids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chen‐Qiang Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Jiao Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Jia‐Hao Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Li‐Jin Gan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Jin Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
8
|
Taran OP, Sychev VV, Kuznetsov BN. γ-Valerolactone as a Promising Solvent and Basic Chemical Product: Catalytic Synthesis from Plant Biomass Components. CATALYSIS IN INDUSTRY 2021. [DOI: 10.1134/s2070050421030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Lluna‐Galán C, Izquierdo‐Aranda L, Adam R, Cabrero‐Antonino JR. Catalytic Reductive Alcohol Etherifications with Carbonyl-Based Compounds or CO 2 and Related Transformations for the Synthesis of Ether Derivatives. CHEMSUSCHEM 2021; 14:3744-3784. [PMID: 34237201 PMCID: PMC8518999 DOI: 10.1002/cssc.202101184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Indexed: 05/27/2023]
Abstract
Ether derivatives have myriad applications in several areas of chemical industry and academia. Hence, the development of more effective and sustainable protocols for their production is highly desired. Among the different methodologies reported for ether synthesis, catalytic reductive alcohol etherifications with carbonyl-based moieties (aldehydes/ketones and carboxylic acid derivatives) have emerged in the last years as a potential tool. These processes constitute appealing routes for the selective production of both symmetrical and asymmetrical ethers (including O-heterocycles) with an increased molecular complexity. Likewise, ester-to-ether catalytic reductions and hydrogenative alcohol etherifications with CO2 to dialkoxymethanes and other acetals, albeit in less extent, have undergone important advances, too. In this Review, an update of the recent progresses in the area of catalytic reductive alcohol etherifications using carbonyl-based compounds and CO2 have been described with a special focus on organic synthetic applications and catalyst design. Complementarily, recent progress made in catalytic acetal/ketal-to-ether or ester-to-ether reductions and other related transformations have been also summarized.
Collapse
Affiliation(s)
- Carles Lluna‐Galán
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Luis Izquierdo‐Aranda
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Rosa Adam
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Jose R. Cabrero‐Antonino
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| |
Collapse
|
10
|
Ngumbu DM, Kapfunde TA, Oklu NK, Makhubela BCE. Transformation of bio‐derived levulinic acid to gamma‐valerolactone by cyclopentadienone ruthenium(0) catalyst precursors bearing simple supporting ligands. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Denis M. Ngumbu
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences University of Johannesburg Auckland Park 2006 South Africa
| | - Tsitsi A. Kapfunde
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences University of Johannesburg Auckland Park 2006 South Africa
| | - Novisi K. Oklu
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences University of Johannesburg Auckland Park 2006 South Africa
| | - Banothile C. E. Makhubela
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences University of Johannesburg Auckland Park 2006 South Africa
| |
Collapse
|
11
|
Dutta S, Bhat NS. Recent Advances in the Value Addition of Biomass‐Derived Levulinic Acid: A Review Focusing on its Chemical Reactivity Patterns. ChemCatChem 2021. [DOI: 10.1002/cctc.202100032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Saikat Dutta
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore 575025 India
| | - Navya Subray Bhat
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore 575025 India
| |
Collapse
|
12
|
Omoruyi U, Page SJ, Apps SL, White AJ, Long NJ, Miller PW. Synthesis and characterisation of a range of Fe, Co, Ru and Rh triphos complexes and investigations into the catalytic hydrogenation of levulinic acid. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Karanwal N, Sibi MG, Khan MK, Myint AA, Chan Ryu B, Kang JW, Kim J. Trimetallic Cu–Ni–Zn/H-ZSM-5 Catalyst for the One-Pot Conversion of Levulinic Acid to High-Yield 1,4-Pentanediol under Mild Conditions in an Aqueous Medium. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04216] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Neha Karanwal
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong
Gi-Do 16419, Republic of Korea
| | - Malayil Gopalan Sibi
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
| | - Muhammad Kashif Khan
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
| | - Aye Aye Myint
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
| | - Beom Chan Ryu
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Jeong Won Kang
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Jaehoon Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong
Gi-Do 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
| |
Collapse
|
14
|
Xu WY, Zhuo KF, Gong TJ, Fu Y. Transition-Metal-Free Valorization of Biomass-derived Levulinic Acid Derivatives: Synthesis of Curcumene and Xanthorrhizol. CHEMSUSCHEM 2021; 14:884-891. [PMID: 33090706 DOI: 10.1002/cssc.202002167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Levulinic acid (LA) is acknowledged one of the most promising biomass-derived platform molecules and can be transformed into various value-added chemicals. Here, we report a new reaction process for the valorization of LA derivatives under transition-metal-free condition. The protocol combined with the conversion of the levulinate to tosylhydrazone and base promoted arylation, acylation, and etherification cross-coupling. Moreover, our method was applied to synthesize three biologically active molecules, rac-curcumene, rac-xanthorrhizol and rac-4,7-dimethyl-l-tetralone. This reaction discloses a new avenue for the high-value utilization of platform molecules.
Collapse
Affiliation(s)
- Wen-Yan Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Kai-Feng Zhuo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Tian-Jun Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, 230026, P. R. China
- Hefei Institute of Energy, Hefei, P. R. China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
15
|
Roa DA, Garcia JJ. Mild reduction with silanes and reductive amination of levulinic acid using a simple manganese catalyst. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Banz Chung EMJ, Stones MK, Latifi E, Moore C, Sutton AD, Umphrey G, Soldatov D, Schlaf M. Ruthenium triphos complexes [Ru(X(CH 2PPh 2) 3- κ3-P)(NCCH 3) 3](OTf) 2; X = H 3C-C, N) as catalysts for the conversion of furfuryl acetate to 1,4-pentanediol and cyclopentanol in aqueous medium. CAN J CHEM 2021. [DOI: 10.1139/cjc-2019-0374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ruthenium complexes [Ru(H3CC(CH2PPh2)3-κ3-P)(NCCH3)3](OTf)2 (1, (H3CC(CH2PPh2)3 = triphos) and [Ru(N(CH2PPh2)3-κ3-P)(NCCH3)3](OTf)2 (2, N(CH2PPh2)3 = N-triphos) have been evaluated as homogeneous ionic hydrogenation catalysts for the catalytic hydrodeoxygenation of furfuryl alcohol and furfuryl acetate to 1,4-pentanediol and cyclopentanol in aqueous media reaction mixtures. For furfuryl alcohol, only marginal yields of 1,4-pentanediol could be achieved with mass balance deficiencies due to humin formation ranging from 67% to 90%. Attempts to improve the catalytic activity of 2 by enhancing its water solubility by nitrogen protonation and (or) methylation failed. Employing the less self-reactive furfuryl acetate as the substrate substantially diminishes humin formation, yielding up to 43% of 1,4-pentanediol and 19% of cyclopentanol (via Piancatelli rearrangement) with 1 and up to 33% of 1,4-pentanediol and 5% of cyclopentanol with 2. A design of experiments study was used to determine and compare the yield responses of the multiple parallel reaction channels with 1,4-pentanediol, cyclopentanol, and humins as a function of reaction temperature, time, catalyst load, and substrate concentration. This explores the correlations between these parameters and their impact on the reaction outcome and suggests an extremely complex overall reaction cascade of interdependent pathways of both acid- and metal-catalyzed steps with some significant differences emerging between the two catalysts.
Collapse
Affiliation(s)
- Elise M.-J. Banz Chung
- Guelph–Waterloo Centre for Graduate Work in Chemistry (GWC), Department of Chemistry, University of Guelph, Guelph, ON, Canada
| | - Maryanne K. Stones
- Guelph–Waterloo Centre for Graduate Work in Chemistry (GWC), Department of Chemistry, University of Guelph, Guelph, ON, Canada
| | - Elnaz Latifi
- Guelph–Waterloo Centre for Graduate Work in Chemistry (GWC), Department of Chemistry, University of Guelph, Guelph, ON, Canada
| | - Cameron Moore
- Chemistry Division, Los Alamos National Laboratory, MS K558, Los Alamos NM 87545, USA
| | - Andrew D. Sutton
- Chemistry Division, Los Alamos National Laboratory, MS K558, Los Alamos NM 87545, USA
| | - Gary Umphrey
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, Canada
| | - Dmitriy Soldatov
- Guelph–Waterloo Centre for Graduate Work in Chemistry (GWC), Department of Chemistry, University of Guelph, Guelph, ON, Canada
| | - Marcel Schlaf
- Guelph–Waterloo Centre for Graduate Work in Chemistry (GWC), Department of Chemistry, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
17
|
Page SJ, Rogers-Simmonds D, White AJ, Miller PW. Synthesis and crystallographic characterisation of a homologous series of bis-tridentate phosphine oxide NP3O3 Fe(II), Co(II), Ni(II) and Cu(II) complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Date NS, Hengne AM, Huang K, Chikate RC, Rode CV. One Pot Hydrogenation of Furfural to 2‐Methyl Tetrahydrofuran over Supported Mono‐ and Bi‐metallic Catalysts. ChemistrySelect 2020. [DOI: 10.1002/slct.202002322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nandan S. Date
- Chemical Engineering and process development DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008
- Department of ChemistryMES's Abasaheb Garware College Karve Road Pune 411004
| | - Amol M. Hengne
- Catalysis Centre and Division of Physical Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - K.‐W. Huang
- Catalysis Centre and Division of Physical Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rajeev C. Chikate
- Department of ChemistryMES's Abasaheb Garware College Karve Road Pune 411004
| | - Chandrashekhar V. Rode
- Chemical Engineering and process development DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008
| |
Collapse
|
19
|
Abstract
Our planet urgently needs sustainable solutions to alleviate the anthropogenic global warming and climate change. Homogeneous catalysis has the potential to play a fundamental role in this process, providing novel, efficient, and at the same time eco-friendly routes for both chemicals and energy production. In particular, pincer-type ligation shows promising properties in terms of long-term stability and selectivity, as well as allowing for mild reaction conditions and low catalyst loading. Indeed, pincer complexes have been applied to a plethora of sustainable chemical processes, such as hydrogen release, CO2 capture and conversion, N2 fixation, and biomass valorization for the synthesis of high-value chemicals and fuels. In this work, we show the main advances of the last five years in the use of pincer transition metal complexes in key catalytic processes aiming for a more sustainable chemical and energy production.
Collapse
|
20
|
Erickson JD, Preston AZ, Linehan JC, Wiedner ES. Enhanced Hydrogenation of Carbon Dioxide to Methanol by a Ruthenium Complex with a Charged Outer-Coordination Sphere. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02268] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeremy D. Erickson
- Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Andrew Z. Preston
- Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - John C. Linehan
- Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Eric S. Wiedner
- Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
21
|
Abstract
In this review key processes for the synthesis of greener or more sustainable solvents derived from renewable sources (saccharides, lignocellulose and triglycerides) are discussed. It is shown that a series of platform chemicals such as glycerol, levulinic acid and furans can be converted into a variety of solvents through catalytic
transformations that include hydrolysis, esterification, reduction and etherification reactions. It was also considered several aspects of each class of solvent regarding performance within the context of the reactions or extractions for which it is employed.
Collapse
|
22
|
|
23
|
Stones MK, Sullivan RJ, Soldatov DV, Schlaf M. Synthesis and characterization of novel tetradentate ruthenium complexes of a pyridine-o-phenylenediamine based chelate ligand. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Zhuo KF, Yu SH, Gong TJ, Fu Y. Regioselective β-Arylation of α-Angelica Lactone through Isomerization/Addition under Mild Conditions. CHEMSUSCHEM 2020; 13:693-697. [PMID: 31821717 DOI: 10.1002/cssc.201902761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Indexed: 06/10/2023]
Abstract
The conversion of biomass-based platform molecules into various high-value chemicals greatly promotes the utilization of renewable biomass resources. Herein, an example of Rh-catalyzed β-arylation of levulinic-acid-derived α-angelica lactone was reported, providing the γ-lactone-structure products with high regioselectivity. Both arylboronic and alkenylboronic acids could be applied in this transformation. This reaction tolerated a variety of synthetically important functional groups. Moreover, the obtained γ-lactone products could be readily converted to high-value products such as 1,4-diols and γ-methoxy-carboxylates.
Collapse
Affiliation(s)
- Kai-Feng Zhuo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Shang-Hai Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Tian-Jun Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, 230026, P.R. China
| |
Collapse
|
25
|
Stones MK, Banz Chung EMJ, da Cunha IT, Sullivan RJ, Soltanipanah P, Magee M, Umphrey GJ, Moore CM, Sutton AD, Schlaf M. Conversion of Furfural Derivatives to 1,4-Pentanediol and Cyclopentanol in Aqueous Medium Catalyzed by trans-[(2,9-Dipyridyl-1,10-phenanthroline)(CH 3CN) 2Ru](OTf) 2. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maryanne K. Stones
- The Guelph-Waterloo-Centre for Graduate Work in Chemistry (GWC)2, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Elise M.-J. Banz Chung
- The Guelph-Waterloo-Centre for Graduate Work in Chemistry (GWC)2, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Igor Tadeu da Cunha
- The Guelph-Waterloo-Centre for Graduate Work in Chemistry (GWC)2, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Ryan J. Sullivan
- The Guelph-Waterloo-Centre for Graduate Work in Chemistry (GWC)2, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Parnian Soltanipanah
- The Guelph-Waterloo-Centre for Graduate Work in Chemistry (GWC)2, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Megan Magee
- The Guelph-Waterloo-Centre for Graduate Work in Chemistry (GWC)2, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Gary J. Umphrey
- Department of Mathematics and Statistics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Cameron M. Moore
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, United States
| | - Andrew D. Sutton
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, United States
| | - Marcel Schlaf
- The Guelph-Waterloo-Centre for Graduate Work in Chemistry (GWC)2, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
26
|
Saito A, Yoshioka S, Naruto M, Saito S. Catalytic Hydrogenation of N‐protected α‐Amino Acids Using Ruthenium Complexes with Monodentate Phosphine Ligands. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Akari Saito
- Department of Chemistry, Graduate School of ScienceNagoya University, Chikusa Nagoya 464-8602 Japan
| | - Shota Yoshioka
- Department of Chemistry, Graduate School of ScienceNagoya University, Chikusa Nagoya 464-8602 Japan
| | - Masayuki Naruto
- Department of Chemistry, Graduate School of ScienceNagoya University, Chikusa Nagoya 464-8602 Japan
| | - Susumu Saito
- Department of Chemistry, Graduate School of ScienceNagoya University, Chikusa Nagoya 464-8602 Japan
- Research Center for Materials ScienceNagoya University, Chikusa Nagoya 464-8602 Japan
| |
Collapse
|
27
|
Anjali K, Venkatesha NJ, Christopher J, Sakthivel A. Rhodium porphyrin molecule-based catalysts for the hydrogenation of biomass derived levulinic acid to biofuel additive γ-valerolactone. NEW J CHEM 2020. [DOI: 10.1039/d0nj01180k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RhTPP and RhTCPP were prepared and utilized for the conversion of levulinic acid to γ-valerolactone and the reaction mechanism was proposed.
Collapse
Affiliation(s)
- Kaiprathu Anjali
- Inorganic Materials & Heterogeneous Catalysis Laboratory
- Department of Chemistry
- School of Physical Sciences
- Central University of Kerala
- Kasaragod–671316
| | | | | | - Ayyamperumal Sakthivel
- Inorganic Materials & Heterogeneous Catalysis Laboratory
- Department of Chemistry
- School of Physical Sciences
- Central University of Kerala
- Kasaragod–671316
| |
Collapse
|
28
|
Zhuang D, Rouf AM, Li Y, Dai C, Zhu J. Aromaticity‐promoted CO
2
Capture by P/N‐Based Frustrated Lewis Pairs: A Theoretical Study. Chem Asian J 2019; 15:266-272. [DOI: 10.1002/asia.201901415] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/24/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Danling Zhuang
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (iChem)Fujian Provincial Key Laboratory of Theoretical Computational ChemistryDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Alvi Muhammad Rouf
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (iChem)Fujian Provincial Key Laboratory of Theoretical Computational ChemistryDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Yuanyuan Li
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (iChem)Fujian Provincial Key Laboratory of Theoretical Computational ChemistryDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (iChem)Fujian Provincial Key Laboratory of Theoretical Computational ChemistryDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (iChem)Fujian Provincial Key Laboratory of Theoretical Computational ChemistryDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
29
|
Production of n-butyl levulinate over modified KIT-6 catalysts: comparison of the activity of KIT-SO3H and Al-KIT-6 catalysts. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01677-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Westhues N, Belleflamme M, Klankermayer J. Base‐Free Hydrogenation of Carbon Dioxide to Methyl Formate with a Molecular Ruthenium‐Phosphine Catalyst. ChemCatChem 2019. [DOI: 10.1002/cctc.201900627] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niklas Westhues
- Institut für Technische und Makromolekulare ChemieRWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Maurice Belleflamme
- Institut für Technische und Makromolekulare ChemieRWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Jürgen Klankermayer
- Institut für Technische und Makromolekulare ChemieRWTH Aachen University Worringerweg 2 52074 Aachen Germany
| |
Collapse
|
31
|
Apps SL, Miller PW, Long NJ. Cobalt(-i) triphos dinitrogen complexes: activation and silyl-functionalisation of N 2. Chem Commun (Camb) 2019; 55:6579-6582. [PMID: 31112153 DOI: 10.1039/c9cc01496a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cobalt dinitrogen complexes [{(EP3Ph)Co(μ-N2)}2Mg(THF)4], with triphos ligand scaffolds (EP3Ph, E = N or CMe), were prepared via two electron reductions of the Co(i) precursors [CoCl(EP3Ph)]. Both complexes showed high degrees of N2 activation owing to the formation of a rare M-NN-Mg-NN-M bridging-magnesium core. These systems showed further N2 functionalisation reactivity by silylation, forming silyldiazenido complexes [(EP3Ph)Co(NNSiMe3)].
Collapse
Affiliation(s)
- Samantha L Apps
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK.
| | | | | |
Collapse
|
32
|
Gowda RR, Chen EYX. Regioselective Hydrogenation of Itaconic Acid to γ-Isovalerolactone by Transition-Metal Nanoparticle Catalysts. CHEMSUSCHEM 2019; 12:973-977. [PMID: 30637972 DOI: 10.1002/cssc.201802878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Current methods for hydrogenation of bio-derived itaconic acid (IA) lead to a mixture of isomeric lactone products. Transition-metal nanoparticles (TM-NPs), in situ-generated through thermolysis of TM(0) (Ru, Fe, W, Cr) carbonyls, in particular Ru-NPs, were found to catalyze regioselective hydrogenation of IA by syngas (2 H2 /CO) into γ-isovalerolactone (GiVL) in approximately 70 % isolated yield. Key sustainability features of this new route include: a one-pot direct transformation of bio-renewable IA into value-added GiVL selectively, use of inexpensive and renewable syngas in aqueous solution, and development of a supported recyclable NP catalyst system, Al2 O3 -Ru-NPs.
Collapse
Affiliation(s)
- Ravikumar R Gowda
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523-1872, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523-1872, United States
| |
Collapse
|
33
|
Krommyda K, Panopoulou C, Moustani C, Anagnostopoulou E, Makripidi K, Papadogianakis G. A Remarkable Effect of Aluminum on the Novel and Efficient Aqueous-Phase Hydrogenation of Levulinic Acid into γ-Valerolactone Using Water-Soluble Platinum Catalysts Modified with Nitrogen-Containing Ligands. Catal Letters 2019. [DOI: 10.1007/s10562-019-02707-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Novodárszki G, Solt HE, Valyon J, Lónyi F, Hancsók J, Deka D, Tuba R, Mihályi MR. Selective hydroconversion of levulinic acid to γ-valerolactone or 2-methyltetrahydrofuran over silica-supported cobalt catalysts. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00168a] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Levulinic acid can be hydrodeoxygenated either to γ-valerolactone or to 2-methyltetrahydrofuran over the Co/SiO2 catalyst. Selectivity was controlled by the hydrogenation activity of the catalyst.
Collapse
Affiliation(s)
- Gyula Novodárszki
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest H-1117
- Hungary
| | - Hanna E. Solt
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest H-1117
- Hungary
| | - József Valyon
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest H-1117
- Hungary
| | - Ferenc Lónyi
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest H-1117
- Hungary
| | - Jenő Hancsók
- Institute of Chemical and Process Engineering
- University of Pannonia
- Veszprém H-8201
- Hungary
| | - Dhanapati Deka
- Biomass Conversion Laboratory
- Department of Energy
- Tezpur University
- Tezpur-784028
- India
| | - Róbert Tuba
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest H-1117
- Hungary
| | - Magdolna R. Mihályi
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest H-1117
- Hungary
| |
Collapse
|
35
|
Siebert M, Seibicke M, Siegle AF, Kräh S, Trapp O. Selective Ruthenium-Catalyzed Transformation of Carbon Dioxide: An Alternative Approach toward Formaldehyde. J Am Chem Soc 2018; 141:334-341. [DOI: 10.1021/jacs.8b10233] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Max Siebert
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Max Seibicke
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Alexander F. Siegle
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Sabrina Kräh
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Oliver Trapp
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| |
Collapse
|
36
|
Martins LMDRS, Wanke R, Silva TFS, Pombeiro AJL, Servin P, Laurent R, Caminade AM. Novel Methinic Functionalized and Dendritic C-Scorpionates. Molecules 2018; 23:E3066. [PMID: 30477102 PMCID: PMC6321409 DOI: 10.3390/molecules23123066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 11/16/2022] Open
Abstract
The study of chelating ligands is undoubtedly one of the most significant fields of research in chemistry. The present work is directed to the synthesis of new functionalized derivatives of tripodal C-scorpionate compounds. Tris-2,2,2-(1-pyrazolyl)ethanol, HOCH₂C(pz)₃ (1), one of the most important derivatives of hydrotris(pyrazolyl)methane, was used as a building block for the synthesis of new functionalized C-scorpionates, aiming to expand the scope of this unexplored class of compounds. The first dendritic C-scorpionate was successfully prepared and used in the important industrial catalytic reactions, Sonogashira and Heck C-C cross-couplings.
Collapse
Affiliation(s)
- Luísa M D R S Martins
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Riccardo Wanke
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Telma F S Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Paul Servin
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, F-31077 Toulouse CEDEX 4, France.
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse, France.
| | - Régis Laurent
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, F-31077 Toulouse CEDEX 4, France.
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse, France.
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, F-31077 Toulouse CEDEX 4, France.
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse, France.
| |
Collapse
|
37
|
Mizugaki T, Kaneda K. Development of High Performance Heterogeneous Catalysts for Selective Cleavage of C-O and C-C Bonds of Biomass-Derived Oxygenates. CHEM REC 2018; 19:1179-1198. [PMID: 30230196 DOI: 10.1002/tcr.201800075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/27/2018] [Indexed: 12/18/2022]
Abstract
The environmental impact of CO2 emissions via the use of fossil resources as chemical feedstock and fuels has stimulated research to utilize renewable biomass feedstock. The biogenic compounds such as polyols are highly oxygenated and their valorization requires the new methods to control the oxygen to carbon ratio of the chemicals. The catalytic cleavage of C-O bonds and C-C bonds is promising methods, but the conventional catalyst systems encounter the difficulty to obtain the high yields of the desired products. This review describes our recent development of the high performance heterogeneous catalysts for the valorization of the biogenic chemicals such as glycerol, furfural, and levulinic acid via selective cleavage of C-O bonds and C-C bonds in the liquid-phase. Selective C-O bond cleavage by hydrogenolysis enables production of various diols useful as engineering plastics, antifreeze, and cosmetics in high yields. The success of the selective C-C bond scission of levulinic acid can be applied to a wide range of the biogenic oxygenates such as carboxylic acids, esters, lactones, and primary alcohols, in which the selective C-C bond scission at adjacent to the oxygen functional groups are achieved. Furthermore, valorization of glycerol by selective acetylation and acetalization, and of levulinic acid by hydrogenation is described. Our catalysts show excellent performance compared to the reported catalysts in the aforementioned valorization.
Collapse
Affiliation(s)
- Tomoo Mizugaki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Kiyotomi Kaneda
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
38
|
Apps SL, White AJP, Miller PW, Long NJ. Synthesis and reactivity of an N-triphos Mo(0) dinitrogen complex. Dalton Trans 2018; 47:11386-11396. [PMID: 30062342 DOI: 10.1039/c8dt02471e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation and reactivity of a novel molybdenum dinitrogen complex supported by a nitrogen-centred tripodal phosphine ligand (N-triphos, N(CH2PPh2)3, NP3Ph) are reported. Reaction of N-triphos with [MoX3(THF)3] (X = Cl, Br, I) gave the Mo(iii) complex [MoX3(κ2-NP3Ph)(THF)] (1), where bidentate N-triphos coordination was observed. Reduction of this complex in the presence of dppm (bis(diphenylphosphino)methane) gave the dinitrogen complex [Mo(N2)(dppm)(κ3-NP3Ph)] (2), which exhibits moderate dinitrogen activation. An additional hydride complex, [Mo(H)2(dppm)(κ3-NP3Ph)] (4), was produced either as a minor side product during the reduction step, or as a major product by direct hydrogenation of the dinitrogen complex 2. The reactivity of the dinitrogen complex 2 with a range of Lewis acids was also investigated. At low temperatures, protic or borane Lewis acids (H+, BBr3 and tris(pentafluorophenyl)borane (BCF)) were found to coordinate to the apical nitrogen atom of the N-triphos ligand, with no conclusive evidence of any functionalisation of the dinitrogen ligand. Alkali metal Lewis acid addition to 2 resulted in the unexpected rearrangement of the N-triphos ligand to form [Mo(dppm)(PMePh2)(PCP)][B(C6F5)4] (7), where PCP, [Ph2PCNHCH2PPh2] is the carbenic ligand formed upon rearrangement from the reaction of 2 with M[B(C6F5)4] (M = Li, Na or K). Single crystal X-ray diffraction of complexes 1, 2, 4 and 7 provided structural confirmation of the N-triphos molybdenum complexes described.
Collapse
Affiliation(s)
- Samantha L Apps
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
39
|
Li F, Li Z, France LJ, Mu J, Song C, Chen Y, Jiang L, Long J, Li X. Highly Efficient Transfer Hydrogenation of Levulinate Esters to γ-Valerolactone over Basic Zirconium Carbonate. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00712] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fukun Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhangmin Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Liam John France
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiali Mu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Changhua Song
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuan Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lilong Jiang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, P. R. China
| | - Jinxing Long
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xuehui Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
40
|
Hussain SK, Velisoju VK, Rajan NP, Kumar BP, Chary KVR. Synthesis of γ-Valerolactone from Levulinic Acid and Formic Acid over Mg-Al Hydrotalcite Like Compound. ChemistrySelect 2018. [DOI: 10.1002/slct.201800536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- SK. Hussain
- Inorganic and Physical chemistry Division; CSIR- Indian Institute of Chemical Technology; Hyderabad - 500007 India
| | - Vijay Kumar Velisoju
- Inorganic and Physical chemistry Division; CSIR- Indian Institute of Chemical Technology; Hyderabad - 500007 India
| | - N. Pethan Rajan
- Inorganic and Physical chemistry Division; CSIR- Indian Institute of Chemical Technology; Hyderabad - 500007 India
| | - Balla Putra Kumar
- Inorganic and Physical chemistry Division; CSIR- Indian Institute of Chemical Technology; Hyderabad - 500007 India
| | - Komandur V. R. Chary
- Inorganic and Physical chemistry Division; CSIR- Indian Institute of Chemical Technology; Hyderabad - 500007 India
| |
Collapse
|
41
|
Cui J, Tan J, Zhu Y, Cheng F. Aqueous Hydrogenation of Levulinic Acid to 1,4-Pentanediol over Mo-Modified Ru/Activated Carbon Catalyst. CHEMSUSCHEM 2018; 11:1316-1320. [PMID: 29460443 DOI: 10.1002/cssc.201800038] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Indexed: 05/26/2023]
Abstract
A highly efficient and green process was developed for direct conversion of levulinic acid into 1,4-pentanediol over Mo-modified Ru/activated carbon (AC) catalyst in a continuous fixed-bed reactor. The Ru-MoOx /AC catalyst was found to be efficient for the aqueous-phase hydrogenation of levulinic acid to 1,4-pentanediol, whereby a high yield (96.7 mol %) of 1,4-pentanediol was obtained under mild reaction conditions (70 °C, 4 MPa H2 ).
Collapse
Affiliation(s)
- Jinglei Cui
- State Environmental Protection Key Laboratory of Efficient Utilization Technology of Coal Waste Resources, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Jingjing Tan
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan, 030006, P. R. China
| | - Yulei Zhu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Fangqin Cheng
- State Environmental Protection Key Laboratory of Efficient Utilization Technology of Coal Waste Resources, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| |
Collapse
|
42
|
Tiong YW, Yap CL, Gan S, Yap WSP. Conversion of Biomass and Its Derivatives to Levulinic Acid and Levulinate Esters via Ionic Liquids. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00273] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yong Wei Tiong
- Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Malaysia
| | - Chiew Lin Yap
- Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Malaysia
| | - Suyin Gan
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Malaysia
| | - Winnie Soo Ping Yap
- Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Malaysia
| |
Collapse
|
43
|
Zhang K, Li XL, Chen SY, Xu HJ, Deng J, Fu Y. Selective Hydrogenolysis of Furfural Derivative 2-Methyltetrahydrofuran into Pentanediol Acetate and Pentanol Acetate over Pd/C and Sc(OTf) 3 Cocatalytic System. CHEMSUSCHEM 2018; 11:726-734. [PMID: 29372624 DOI: 10.1002/cssc.201702073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/30/2017] [Indexed: 05/16/2023]
Abstract
It is of great significance to convert platform molecules and their derivatives into high value-added alcohols, which have multitudinous applications. This study concerns systematic conversion of 2-methyltetrahydrofuran (MTHF), which is obtained from furfural, into 1-pentanol acetate (PA) and 1,4-pentanediol acetate (PDA). Reaction parameters, such as the Lewis acid species, reaction temperature, and hydrogen pressure, were investigated in detail. 1 H NMR spectroscopy and reaction dynamics study were also conducted to help clarify the reaction mechanism. Results suggested that cleavage of the primary alcohol acetate was less facile than that of the secondary alcohol acetate, with the main product being PA. A PA yield of 91.8 % (150 °C, 3 MPa H2 , 30 min) was achieved by using Pd/C and Sc(OTf)3 as a cocatalytic system and an 82 % yield of PDA was achieved (150 °C, 30 min) by using Sc(OTf)3 catalyst. Simultaneously, the efficient conversion of acetic esters into alcohols by simple saponification was carried out and led to a good yield.
Collapse
Affiliation(s)
- Kun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui, Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Xing-Long Li
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui, Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shi-Yan Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui, Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Hua-Jian Xu
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Jin Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui, Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui, Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
44
|
Lu Q, Song J, Zhang M, Wei J, Li C. A theoretical study on the mechanism of hydrogenation of carboxylic acids catalyzed by the Saito catalyst. Dalton Trans 2018; 47:2460-2469. [PMID: 29383347 DOI: 10.1039/c7dt04447j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The mechanism of the ruthenium carboxylate-catalyzed hydrogenation of carboxylic acids was investigated by using density functional theory (DFT) calculations. The novel mechanism including two hydrogenation cycles was proposed for this reaction. The first cycle is the hydrogenation of the carboxylic acid to an aldehyde, while the second cycle is the hydrogenation of the aldehyde to an alcohol. These two catalytic cycles share similar elementary steps, including H2 heterolysis, hydride migration of the carboxylic acid or aldehyde, and catalyst regeneration. In this hydrogenation mechanism, the carboxylic acid is not only a reactant, but also an important proton source. Furthermore, the noncovalent interaction (e.g. hydrogen bonding interaction) between the ligand and carboxylic acid substrate could promote the hydrogenation of the carboxylic acid through stabilizing the transition state of the most energy-demanding step (i.e., hydride migration in the first catalytic cycle). Besides, the strong electron-donating ability of the dppb ligand could also facilitate the hydride migration.
Collapse
Affiliation(s)
- Qianqian Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | | | | | | | | |
Collapse
|
45
|
Lima CGS, Monteiro JL, de Melo Lima T, Weber Paixão M, Corrêa AG. Angelica Lactones: From Biomass-Derived Platform Chemicals to Value-Added Products. CHEMSUSCHEM 2018; 11:25-47. [PMID: 28834397 DOI: 10.1002/cssc.201701469] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Indexed: 06/07/2023]
Abstract
The upgrading of biomass-derived compounds has arisen in recent years as a very promising research field in both academia and industry. In this sense, a lot of new processes and products have been developed, often involving levulinic acid as a starting material or intermediate. In the last few years, though, other scaffolds have been receiving growing attention, especially, angelica lactones. Considering these facts and the emergent applications of said molecules, in this review we will discuss their preparation and applications; the use of these frameworks as starting materials in organic synthesis to produce potential bioactive compounds will be covered, as will their use as a foundation to highly regarded compounds such as liquid alkanes with prospective use as fuels and polymers.
Collapse
Affiliation(s)
- Carolina G S Lima
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos-UFSCar, Via Washington Luís, km 235-SP-310, São Carlos, São Paulo, 13565-905, Brazil
| | - Julia L Monteiro
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos-UFSCar, Via Washington Luís, km 235-SP-310, São Carlos, São Paulo, 13565-905, Brazil
| | - Thiago de Melo Lima
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos-UFSCar, Via Washington Luís, km 235-SP-310, São Carlos, São Paulo, 13565-905, Brazil
| | - Marcio Weber Paixão
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos-UFSCar, Via Washington Luís, km 235-SP-310, São Carlos, São Paulo, 13565-905, Brazil
| | - Arlene G Corrêa
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos-UFSCar, Via Washington Luís, km 235-SP-310, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
46
|
Servin P, Laurent R, Tristany M, Romerosa A, Peruzzini M, Garcia-Maroto F, Majoral JP, Caminade AM. Dual properties of water-soluble Ru-PTA complexes of dendrimers: Catalysis and interaction with DNA. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.04.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Cen Y, Zhu S, Guo J, Chai J, Jiao W, Wang J, Fan W. Supported cobalt catalysts for the selective hydrogenation of ethyl levulinate to various chemicals. RSC Adv 2018; 8:9152-9160. [PMID: 35541863 PMCID: PMC9078606 DOI: 10.1039/c8ra01316k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 02/26/2018] [Indexed: 11/21/2022] Open
Abstract
Biomass-derived ethyl levulinate can flexibly convert to GVL, EHP, 1,4-PDO and 2-MTHF with excellent selectivity on a supported cobalt catalyst.
Collapse
Affiliation(s)
- Youliang Cen
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- PR China
| | - Shanhui Zhu
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- PR China
| | - Jing Guo
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- PR China
| | - Jiachun Chai
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- PR China
| | - Weiyong Jiao
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- PR China
| | - Jianguo Wang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- PR China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- PR China
| |
Collapse
|
48
|
Amenuvor G, Darkwa J, Makhubela BCE. Homogeneous polymetallic ruthenium(ii)^zinc(ii) complexes: robust catalysts for the efficient hydrogenation of levulinic acid to γ-valerolactone. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00265g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New Ru(ii) complexes (1 and 2) have been synthesized and reacted with Zn(OAc)2 to form hexanuclear complexes (3 and 4) containing four Ru(ii) and two Zn(ii) centres. The latter are highly active and recyclable catalyst for the conversion of levulinic acid to GVL.
Collapse
Affiliation(s)
- Gershon Amenuvor
- Department of Chemistry
- University of Johannesburg
- Auckland Park
- South Africa
| | - James Darkwa
- Department of Chemistry
- University of Johannesburg
- Auckland Park
- South Africa
| | | |
Collapse
|
49
|
Lv J, Rong Z, Sun L, Liu C, Lu AH, Wang Y, Qu J. Catalytic conversion of biomass-derived levulinic acid into alcohols over nanoporous Ru catalyst. Catal Sci Technol 2018. [DOI: 10.1039/c7cy01838j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,4-pentanediol or monohydric alcohol were achieved with high selectivity from levulinic acid under relatively mild conditions using nanoporous Ru.
Collapse
Affiliation(s)
- Jinkun Lv
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Zeming Rong
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Liming Sun
- Petrochemical Research Institute
- PetroChina Company Limited
- Beijing 102206
- P.R. China
| | - Chengyun Liu
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Yue Wang
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| |
Collapse
|
50
|
van Slagmaat CAMR, De Wildeman SMA. A Comparative Study of Structurally Related Homogeneous Ruthenium and Iron Catalysts for the Hydrogenation of Levulinic Acid to γ-Valerolactone. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700938] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christian A. M. R. van Slagmaat
- Aachen Maastricht Institute for Biobased Materials (AMIBM); Faculty of Humanities and Sciences; Maastricht University; Brightlands Chemelot Campus 6167 RD Geleen The Netherlands
| | - Stefaan M. A. De Wildeman
- Aachen Maastricht Institute for Biobased Materials (AMIBM); Faculty of Humanities and Sciences; Maastricht University; Brightlands Chemelot Campus 6167 RD Geleen The Netherlands
| |
Collapse
|