1
|
Iizumi K, Yamaguchi J. Transformative reactions in nitroarene chemistry: C-N bond cleavage, skeletal editing, and N-O bond utilization. Org Biomol Chem 2025. [PMID: 39831336 DOI: 10.1039/d4ob01928h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Nitroarenes are highly versatile building blocks in organic synthesis, playing a pivotal role in various reactions. Common transformations involving nitroarenes include nucleophilic aromatic substitution (SNAr) reactions, where the nitro group functions both as a potent electron-withdrawing group that activates the aromatic ring and as a leaving group facilitating the substitution. Additionally, the direct transformation of nitro groups, such as reduction-driven syntheses of amines and carboxylic acids, as well as ipso-substitution SNAr reactions, have been extensively explored. Interactions between ortho-nitro groups and neighboring substituents also provide unique opportunities for selective transformations. However, beyond these well-established processes, direct transformations of nitro groups have been relatively limited. In recent years, significant advancements have been made in alternative methodologies for nitro group transformations. This review focuses on the latest progress in novel transformations of nitroarenes, with emphasis on three major categories: (i) functional group transformations involving C-N bond cleavage in nitroarenes, (ii) skeletal editing via nitrene intermediates generated by N-O bond cleavage, and (iii) the utilization of nitroarenes as an oxygen source through N-O bond cleavage. These developments under-score the expanding utility of nitroarenes in modern organic synthesis.
Collapse
Affiliation(s)
- Keiichiro Iizumi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.
| |
Collapse
|
2
|
Liu S, Gan Z, Jiang M, Liao Q, Lu Y, Wang H, Xue Z, Chen Z, Zhang Y, Yang X, Duan C, Jin Y. Selective Arene Photonitration via Iron-Complex β-Homolysis. JACS AU 2024; 4:4899-4909. [PMID: 39735909 PMCID: PMC11672136 DOI: 10.1021/jacsau.4c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/31/2024]
Abstract
Nitroaromatics, as an important member and source of nitrogen-containing aromatics, is bringing enormous economic benefits in fields of pharmaceuticals, dyes, pesticides, functional materials, fertilizers, and explosives. Nonetheless, the notoriously polluting nitration industry, which suffers from excessive discharge of fumes and waste acids, poor functional group tolerance, and tremendous purification difficulty, renders mild, efficient, and environmentally friendly nitration a formidable challenge. Herein, we develop a visible-light-driven biocompatible arene C-H nitration strategy with good efficiency and regioselectivity, marvelous substrate applicability and functional group tolerance, and wide application in scale-up synthesis, total synthesis, and late-stage functionalization. A nitryl radical delivered through unusual β-homolysis of a photoexcited ferric-nitrate complex is proposed to be the key nitrification reagent in this system.
Collapse
Affiliation(s)
- Shuyang Liu
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ziyu Gan
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Min Jiang
- College
of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Qian Liao
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yusheng Lu
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Hongyao Wang
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhiyan Xue
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ziyang Chen
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yongqiang Zhang
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Xiaobo Yang
- Institute
of Catalysis for Energy and Environment, College of Chemistry and
Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Chunying Duan
- State
Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China
| | - Yunhe Jin
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Qian CW, Li X, Gu MQ. Visible-Light-Induced Multi-Component Nitrooxylation Reactions of α-Diazoesters, Cyclic Ethers, and Tert-Butyl Nitrite Leading to Organic Nitrate Esters. Chemistry 2024; 30:e202402304. [PMID: 39044322 DOI: 10.1002/chem.202402304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
A simple and efficient strategy has been developed for the synthesis of organic nitrate esters via visible-light-induced multi-component nitrooxylation reactions of α-diazoesters, cyclic ethers, and tert-butyl nitrite under open air atmosphere. This transformation could be conducted under mild and metal-free conditions to provide a number of organic nitrate esters in moderate to good yields using air as the green oxidant.
Collapse
Affiliation(s)
- Cun-Wei Qian
- School of Chemical & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| | - Xian Li
- School of Chemical & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| | - Meng-Qing Gu
- School of Chemical & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| |
Collapse
|
4
|
Das TK, Ghosh P, Ghosh S, Das S. Palladium-Catalyzed, Site-Selective C(sp 2)8-H Halogenation and Nitration of 4-Quinolone Derivatives. J Org Chem 2024; 89:11467-11479. [PMID: 39088747 DOI: 10.1021/acs.joc.4c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Selective installation of halo and nitro groups in heterocyclic backbone through a transition-metal-catalyzed C-H bond activation strategy is immensely alluring to access high-value scaffolds. Here in, we disclosed N-pyrimidyl-directed assisted palladium(II)-catalyzed C(sp2)8-H halogenation and nitration of substituted 4-quinolone derivatives in the presence of N-halosuccinimide and tert-butyl nitrite, respectively, offering structurally diversified 8-halo/nitro-embedded 4-quinolone frameworks in high yields. Mechanistic studies indicated that the reaction follows an organometallic pathway with a reversible C-H metalation step. This operationally simple protocol is scalable with a broad substrate scope and excellent functional group compatibility. Moreover, the postdiversifications of the synthesized derivatives are also showcased to ensure the synthetic versatility of the methodology.
Collapse
Affiliation(s)
- Tapas Kumar Das
- TCG Lifesciences Pvt. Ltd., BN-7, Sector-V, Salt Lake City, Kolkata 700091, India
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Prasanjit Ghosh
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Shibaji Ghosh
- Department of Chemistry, CSIR Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India
| | - Sajal Das
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| |
Collapse
|
5
|
Liu H, Yan Q, Zeng Y, Hou X, Wang Y, Li L, Li Z. Metal-free nitro/azido cyclization of 1-acryloyl-2-cyanoindoles to access NO 2/N 3-featuring pyrrolo[1,2- a] indolediones. Org Biomol Chem 2024; 22:6490-6494. [PMID: 39072684 DOI: 10.1039/d4ob01001a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
An H2O/heating or [bis(trifluoroacetoxy)iodo]benzene promoted radical cascade nitro/azide cyclization of 1-acryloyl-2-cyanoindoles with tert-butyl nitrite/azidotrimethylsilane was accomplished, which offered a series of nitro/azide-featuring pyrrolo[1,2-a]indolediones in good yields. Meanwhile, some scale-up experiments and substituent transformations were performed to test the synthetic value. In addition, the corresponding radical intermediates were successfully detected by HRMS to support the possible reaction pathway.
Collapse
Affiliation(s)
- Huaqing Liu
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Qinqin Yan
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Yanzhao Zeng
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Xinyi Hou
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Ying Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Lijun Li
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Zejiang Li
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei, 071002, P. R. China.
| |
Collapse
|
6
|
Iwanami A, Komori S, Ura Y. Alkyl nitrite-enabled palladium-catalyzed terminal selective oxidative cyclization of 4-penten-1-ols. Chem Commun (Camb) 2024; 60:7495-7498. [PMID: 38946406 DOI: 10.1039/d4cc02451f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Oxidative cyclization of 4-penten-1-ols using a Pd catalyst and n-BuONO or n-BuONO/p-benzoquinone afforded 3-hydroxy- and 3-methoxytetrahydropyrans via terminal selective nucleophilic attack. The radicals formed from n-BuONO and O2 operate as critical oxidants and ligands for Pd.
Collapse
Affiliation(s)
- Ayaka Iwanami
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan.
| | - Saki Komori
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan.
| | - Yasuyuki Ura
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan.
| |
Collapse
|
7
|
Guo C, Li L, Yan Q, Chen J, Liu ZQ, Li QX, Ni SF, Li Z. Radical Three-Component Nitro Spiro-Cyclization of Unsaturated Sulfonamides/Amides to Access NO 2-Featured 4-Azaspiro[4.5]decanes. Org Lett 2024; 26:3069-3074. [PMID: 38557118 DOI: 10.1021/acs.orglett.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Free radical three-component nitration/spirocyclization of unsaturated sulfonamides/amides with tert-butyl nitrite was developed for the construction of diverse NO2-revised 4-azaspiro[4.5]decanes. This tandem system featured metal-free participation, simple operation, good selectivity/yields, and a green/low-cost O source. Meanwhile, one nitro-containing complex molecule and a scaled-up operation were performed well to test the synthetic potential of the cascade reaction. Isotopic labeling, radical inhibition experiments, and DFT analysis were carried out to gain insight into the reaction process.
Collapse
Affiliation(s)
- Changyou Guo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Lijun Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Qinqin Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Jingyi Chen
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Quan-Xin Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Zejiang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
8
|
Banerjee S, Punniyamurthy T. Palladium-Catalyzed Weak-Chelation-Assisted C4-Nitration of Indoles with tert-Butyl Nitrite: Formal Access to Aminated Indoles. Org Lett 2024; 26:988-993. [PMID: 38277494 DOI: 10.1021/acs.orglett.3c03921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Palladium-catalyzed weak-chelation-assisted C4-selective nitration of indoles has been accomplished employing tert-butyl nitrite in the presence of oxone under molecular oxygen at a moderate temperature. Aerobic conditions, C4-selectivity, substrate scope, conversion to valuable aminated indoles, and late-stage natural product modifications are the important practical features.
Collapse
Affiliation(s)
- Sonbidya Banerjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
9
|
Göttemann LT, Wiesler S, Sarpong R. Oxidative cleavage of ketoximes to ketones using photoexcited nitroarenes. Chem Sci 2023; 15:213-219. [PMID: 38131093 PMCID: PMC10732129 DOI: 10.1039/d3sc05414d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
The methoxime group has emerged as a versatile directing group for a variety of C-H functionalizations. Despite its importance as a powerful functional handle, conversion of methoximes to the parent ketone, which is often desired, usually requires harsh and functional group intolerant reaction conditions. Therefore, the application of methoximes and their subsequent conversion to the corresponding ketone in a late-stage context can be problematic. Here, we present an alternative set of conditions to achieve mild and functional group tolerant conversion of methoximes to the parent ketones using photoexcited nitroarenes. The utility of this methodology is showcased in its application in the total synthesis of cephanolide D. Furthermore, mechanistic insight into this transformation obtained using isotope labeling studies as well as the analysis of reaction byproducts is provided.
Collapse
Affiliation(s)
- Lucas T Göttemann
- Department of Chemistry, Latimer Hall, University of California Berkeley California 94720 USA
| | - Stefan Wiesler
- Department of Chemistry, Latimer Hall, University of California Berkeley California 94720 USA
| | - Richmond Sarpong
- Department of Chemistry, Latimer Hall, University of California Berkeley California 94720 USA
| |
Collapse
|
10
|
Abstract
The development of a new N-nitro type compound, dinitro-5,5-dimethylhydantoin (DNDMH), has been reported as an arene nitration reagent. The exploration demonstrated that arene nitration with DNDMH exhibited good tolerance with diverse functional groups. It is notable that, among the two N-nitro units of DNDMH, only the N-nitro unit on N1 was delivered to the nitroarene products. The N-nitro type compound with a single N-nitro unit on N2 cannot promote the arene nitration.
Collapse
Affiliation(s)
- Fuqiang Jia
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi'an 710127, China
| | - Ao Li
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi'an 710127, China
| | - Xiangdong Hu
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi'an 710127, China
| |
Collapse
|
11
|
Li Y, Li L, Guo C, Yan Q, Zhou H, Wang Y, Liu ZQ, Li Z. Nitro-Spirocyclization of Biaryl Ynones with tert-Butyl Nitrite: Access to NO 2-Substituted Spiro[5,5]trienones. J Org Chem 2023; 88:4854-4862. [PMID: 36947717 DOI: 10.1021/acs.joc.3c00087] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
A metal/peroxide-free involved simple cascade 6-exo-trig spirocyclization of tert-butyl nitrite with biaryl ynones has been finished, which resulted in various NO2-modified spiro[5,5]trienones with good regioselectivity/yields. A variety of scaled-up experiments, reduction/epoxidation operations, and mechanistic studies were performed to verify the merits and spirocyclization process of this radical system. Finally, the structure of the spirocycles was confirmed by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Lijun Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Changyou Guo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Qinqin Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Hongxun Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Ying Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Zejiang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| |
Collapse
|
12
|
Chen XH, Ma DD, Gao X, Li YM, Jiang DB, Ma C, Cui HL. Nitration of Pyrrolo[2,1- a]isoquinolines. J Org Chem 2023; 88:4649-4661. [PMID: 36947692 DOI: 10.1021/acs.joc.3c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
We have successfully modified a series of pyrrolo[2,1-a]isoquinolines via direct nitration under mild reaction conditions. Easily accessible nitrates including CAN, Cu(NO3)2·H2O, and Fe(NO3)3·9H2O all can serve as effective nitrating reagents for functionalizing pyrrolo[2,1-a]isoquinolines. Various nitro-bearing pyrrolo[2,1-a]isoquinolines have been efficiently prepared in acceptable to good yields.
Collapse
Affiliation(s)
- Xiao-Hui Chen
- Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| | - Dan-Dan Ma
- Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Xin Gao
- Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| | - Yun-Meng Li
- Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| | - Da-Bo Jiang
- Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| | - Chao Ma
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062, Hubei, P. R. China
| | - Hai-Lei Cui
- Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| |
Collapse
|
13
|
Shigeno M, Kajima A, Toyama E, Korenaga T, Yamakoshi H, Nozawa-Kumada K, Kondo Y. LiHMDS-Mediated Deprotonative Coupling of Toluenes with Ketones. Chemistry 2023; 29:e202203549. [PMID: 36479733 DOI: 10.1002/chem.202203549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
We demonstrate that lithium hexamethyldisilazide (LiHMDS) acts as an effective base for deprotonative coupling reactions of toluenes with ketones to afford stilbenes. Various functionalities (halogen, OCF3 , amide, Me, aryl, alkenyl, alkynyl, SMe, and SPh) are allowed on the toluenes. Notably, this system proved successful with low-reactive toluenes bearing a large pKa value compared to that of the conjugate acid of LiHMDS (hexamethyldisilazane, 25.8, THF), as demonstrated by 4-phenyltoluene (38.57, THF) and toluene itself (∼43, DMSO).
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan.,JST, PRESTO, Kawaguchi, Saitama, 332-0012, Japan
| | - Akihisa Kajima
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Eito Toyama
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Toshinobu Korenaga
- Department of Chemistry and Biological Sciences Faculty of Science and Engineering, Iwate University Ueda, Morioka, 020-8551, Japan.,Soft-Path Science and Engineering Research Center (SPERC), Iwate University, Ueda, Morioka, 020-8551, Japan
| | - Hiroyuki Yamakoshi
- Central Analytical Center, Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| |
Collapse
|
14
|
Ghotekar GS, Shinde RA, Saswade SS, Muthukrishnan M. Palladium-Catalyzed Oxidative Cyclization of α-Allenols in the Presence of TBN: Access to 3(2 H)-Furanones. J Org Chem 2023; 88:4112-4122. [PMID: 36912461 DOI: 10.1021/acs.joc.2c02457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
A new palladium-catalyzed oxidative cyclization of α-allenols is described. The readily accessible α-allenols participate in intra-molecular oxidative cyclization in the presence of TBN to grant access to multisubstituted 3(2H)-furanones, which are common motifs in several biologically important natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Ganesh S Ghotekar
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ravi A Shinde
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sagar S Saswade
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - M Muthukrishnan
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
15
|
Song B, Guo X, Yang L, Yu H, Zong X, Liu X, Wang H, Xu Z, Lin Z, Yang W. Rhodium(III)-Catalyzed C-H/O 2 Dual Activation and Macrocyclization: Synthesis and Evaluation of Pyrido[2,1-a]isoindole Grafted Macrocyclic Inhibitors for Influenza H1N1. Angew Chem Int Ed Engl 2023; 62:e202218886. [PMID: 36788706 DOI: 10.1002/anie.202218886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The development of environment-friendly, step economic couplings to generate structurally diverse macrocyclic compounds is highly desirable but poses a marked challenge. Inspired by the C-H oxidation mechanism of cytochromes P450, an unprecedented and practical RhIII -catalyzed acylmethylation macrocyclization via C-H/O2 dual activation has been developed by us. The process of macrocyclization is facilitated by a synergic coordination from pyridine and ester group. Interestingly, the reaction mode derives from a three-component coupling which differs from established olefination and alkylation paths. Density functional theory (DFT) calculations and control experiments revealed the mechanism of this unique C-H/O2 dual activation. The newly achieved acylmethylation macrocyclic products and their derivatives showed a potent anti-H1N1 bioactivity, which may provide an opportunity for the discovery of novel anti-H1N1 macrocyclic leading compounds.
Collapse
Affiliation(s)
- Bichao Song
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueying Guo
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, China
| | - Li Yang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyue Yu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinlei Zong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Xiujuan Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Hao Wang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongliang Xu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, China
| | - Weibo Yang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210000, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
16
|
Zhang LY, Wang NX, Yan Z, Wu YH, Gao XW, Feng K, Lucan D, Xing Y. Efficient Aerobic Oxidative Coupling of Methyl Heteroarenes with Indoles. Chemistry 2023; 29:e202202240. [PMID: 36345123 DOI: 10.1002/chem.202202240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Direct oxidative coupling of inert C(sp3 )-H bond has been a great challenge. Herein, an environmentally friendly aerobic oxidative coupling of α-methyl substituted N-heteroarenes with indoles is reported. A variety of diheteroaryl ketones were prepared in good yields (up to 72 %). This protocol features simple operation and broad substrates scope (26 examples). Significantly, a plausible mechanism about catalytic cycle was proposed, and two key intermediates were confirmed by high resolution mass spectrometry.
Collapse
Affiliation(s)
- Lei-Yang Zhang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Nai-Xing Wang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Zhan Yan
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Yue-Hua Wu
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xue-Wang Gao
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Ke Feng
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Dumitra Lucan
- Technical Sciences Academy of Romania ASTR, Dacia Avenue no.26, Bucharest, Romania
| | - Yalan Xing
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, USA
| |
Collapse
|
17
|
Yang T, Li X, Deng S, Qi X, Cong H, Cheng HG, Shi L, Zhou Q, Zhuang L. From N-H Nitration to Controllable Aromatic Mononitration and Dinitration-The Discovery of a Versatile and Powerful N-Nitropyrazole Nitrating Reagent. JACS AU 2022; 2:2152-2161. [PMID: 36186553 PMCID: PMC9516713 DOI: 10.1021/jacsau.2c00413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Nitroaromatics are tremendously valuable organic compounds with a long history of being used as pharmaceuticals, agrochemicals, and explosives as well as vital intermediates to a wide variety of chemicals. Consequently, the exploration of aromatic nitration has become an important endeavor in both academia and industry. Herein, we report the identification of a powerful nitrating reagent, 5-methyl-1,3-dinitro-1H-pyrazole, from the N-nitro-type reagent library constructed using a practical N-H nitration method. This nitrating reagent behaves as a controllable source of the nitronium ion, enabling mild and scalable nitration of a broad range of (hetero)arenes with good functional group tolerance. Of note, our nitration method could be controlled by manipulating the reaction conditions to furnish mononitrated or dinitrated product selectively. The value of this method in medicinal chemistry has been well established by its efficient late-stage C-H nitration of complex biorelevant molecules. Density functional theory (DFT) calculations and preliminary mechanistic studies reveal that the powerfulness and versatility of this nitrating reagent are due to the synergistic "nitro effect" and "methyl effect".
Collapse
Affiliation(s)
- Tao Yang
- The
Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan 430072, China
| | - Xiaoqian Li
- Sauvage
Center for Molecular Sciences, Engineering Research Center of Organosilicon
Compounds & Materials (Ministry of Education), Hubei Key Lab on
Organic and Polymeric OptoElectronic Materials, College of Chemistry
and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, China
| | - Shuang Deng
- Sauvage
Center for Molecular Sciences, Engineering Research Center of Organosilicon
Compounds & Materials (Ministry of Education), Hubei Key Lab on
Organic and Polymeric OptoElectronic Materials, College of Chemistry
and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, China
| | - Xiaotian Qi
- Sauvage
Center for Molecular Sciences, Engineering Research Center of Organosilicon
Compounds & Materials (Ministry of Education), Hubei Key Lab on
Organic and Polymeric OptoElectronic Materials, College of Chemistry
and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, China
| | - Hengjiang Cong
- Sauvage
Center for Molecular Sciences, Engineering Research Center of Organosilicon
Compounds & Materials (Ministry of Education), Hubei Key Lab on
Organic and Polymeric OptoElectronic Materials, College of Chemistry
and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, China
| | - Hong-Gang Cheng
- Sauvage
Center for Molecular Sciences, Engineering Research Center of Organosilicon
Compounds & Materials (Ministry of Education), Hubei Key Lab on
Organic and Polymeric OptoElectronic Materials, College of Chemistry
and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, China
| | - Liangwei Shi
- CAS
Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qianghui Zhou
- The
Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan 430072, China
- Sauvage
Center for Molecular Sciences, Engineering Research Center of Organosilicon
Compounds & Materials (Ministry of Education), Hubei Key Lab on
Organic and Polymeric OptoElectronic Materials, College of Chemistry
and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, China
- TaiKang
Center for Life and Medical Sciences, Wuhan
University, 430072 Wuhan, China
- State
Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling
Road, Shanghai 200032, China
| | - Lin Zhuang
- The
Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan 430072, China
- Sauvage
Center for Molecular Sciences, Engineering Research Center of Organosilicon
Compounds & Materials (Ministry of Education), Hubei Key Lab on
Organic and Polymeric OptoElectronic Materials, College of Chemistry
and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, China
| |
Collapse
|
18
|
Synthesis, antimicrobial and thermal studies of nitropyridine-substituted double armed benzo-15-crown-5 ligands; alkali (Na+ and K+) and transition metal (Ag+) complexes; reduction of nitro compounds. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Iqbal Z, Joshi A, De SR. Ceric Ammonium Nitrate (CAN) Promoted Highly Chemo‐ and Regioselective Ortho‐Nitration of Anilines Under Mild Conditions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zafar Iqbal
- NIT Uttarakhand: National Institute of Technology Uttarakhand Chemistry INDIA
| | - Asha Joshi
- NIT Uttarakhand: National Institute of Technology Uttarakhand Chemistry Srinagar GarhwalSrinagar 246174 Srinagar INDIA
| | - Saroj Ranjan De
- National Institute of Technology Uttarakhand Dept. of Chemistry Srinagar Garhwal 246174 Srinagar INDIA
| |
Collapse
|
20
|
Sanjeam H, Kuhakarn C, Leowanawat P, Reutrakul V, Soorukram D. Nitration of N-acetyl anilides using silver(I) nitrate/persulfate combination. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2081924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hathaichanok Sanjeam
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pawaret Leowanawat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Vichai Reutrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Darunee Soorukram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
21
|
Yu C, Huang R, Patureau FW. Direct Dehydrogenative Access to Unsymmetrical Phenones. Angew Chem Int Ed Engl 2022; 61:e202201142. [PMID: 35128810 PMCID: PMC9314079 DOI: 10.1002/anie.202201142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/09/2022]
Abstract
The first non-directed dehydrogenative phenone coupling method of methylarenes with aromatic C-H bonds, displaying a large substrate scope, is herein reported. This reaction represents a far more direct atom- and step-efficient alternative to the classical Friedel-Crafts or Suzuki-Miyaura derived acylation reactions. The method can be carried out on a gram scale and was successfully applied to the synthesis of several Ketoprofen drug analogues.
Collapse
Affiliation(s)
- Congjun Yu
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Raolin Huang
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Frederic W. Patureau
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
22
|
Yu C, Huang R, Patureau FW. Direkter Dehydrierender Zugang zu unsymmetrischen Phenonen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Congjun Yu
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Raolin Huang
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Frederic W. Patureau
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| |
Collapse
|
23
|
Li WP, Cheng G, Li SY, Lin CZ, Guan XY, Bing DX, Cao J, Zhu D, Deng QH. Acid-Free Copper-Catalyzed Electrophilic Nitration of Electron-Rich Arenes with Guanidine Nitrate. J Org Chem 2022; 87:3834-3840. [PMID: 35168320 DOI: 10.1021/acs.joc.1c03020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A practical copper-catalyzed nitration of electron-rich arenes with trimethylsilyl chloride and guanidine nitrate is reported. A variety of nitrated products were generated in moderate to excellent yields (32-99%) at ambient temperature under acid-free, open-flask, and operationally simple conditions.
Collapse
Affiliation(s)
- Wen-Pei Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Guo Cheng
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Si-Yuan Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Cheng-Zhou Lin
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xiao-Yu Guan
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - De-Xian Bing
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Jing Cao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Di Zhu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Qing-Hai Deng
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
24
|
Wang H, Ge G, Gao W, Luo J, Tang K. Selective C3–H nitration of 2-sulfanilamidopyridines with tert-butyl nitrite. Org Chem Front 2022. [DOI: 10.1039/d2qo00679k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A selective C3–H nitration of bioactive 2-sulfanilamidopyridine derivatives, including corticosteroid 11-β-dehydrogenase isozyme, secretory phospholipase A2 inhibitor and human neutrophil elastase inhibitor, has been reported.
Collapse
Affiliation(s)
- Huifang Wang
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Guoping Ge
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Wenqing Gao
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Junfei Luo
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Keqi Tang
- Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| |
Collapse
|
25
|
Seth K. Recent progress in rare-earth metal-catalyzed sp 2 and sp 3 C–H functionalization to construct C–C and C–heteroelement bonds. Org Chem Front 2022. [DOI: 10.1039/d1qo01859k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The review presents rare-earth metal-catalyzed C(sp2/sp3)–H functionalization accessing C–C/C–heteroatom bonds and olefin (co)polymerization, highlighting substrate scope, mechanistic realization, and origin of site-, enantio-/diastereo-selectivity.
Collapse
Affiliation(s)
- Kapileswar Seth
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) – Guwahati, Sila Katamur, Changsari, Kamrup 781101, Assam, India
| |
Collapse
|
26
|
Palladium-catalyzed aryl group transfer from triarylphosphines to arylboronic acids. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Joshi A, Iqbal Z, Jat JL, De SR. Pd(II)‐Catalyzed Chelation‐Induced C(sp
2
)‐H Acylation of (Hetero)Arenes Using Toluenes as Aroyl Surrogate. ChemistrySelect 2021. [DOI: 10.1002/slct.202103003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Asha Joshi
- Department of Chemistry National Institute of Technology Srinagar Garhwal, Uttarakhand 246174 India
| | - Zafar Iqbal
- Department of Chemistry National Institute of Technology Srinagar Garhwal, Uttarakhand 246174 India
| | - Jawahar L. Jat
- Department of Chemistry School of Physical and Decision Sciences Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow 226025 India
| | - Saroj R. De
- Department of Chemistry National Institute of Technology Srinagar Garhwal, Uttarakhand 246174 India
| |
Collapse
|
28
|
Moon J, Ji HK, Ko N, Oh H, Park MS, Kim S, Ghosh P, Mishra NK, Kim IS. Site-selective and metal-free C-H nitration of biologically relevant N-heterocycles. Arch Pharm Res 2021; 44:1012-1023. [PMID: 34664211 PMCID: PMC8685193 DOI: 10.1007/s12272-021-01351-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/09/2021] [Indexed: 11/30/2022]
Abstract
The site-selective and metal-free C-H nitration reaction of quinoxalinones and pyrazinones as biologically important N-heterocycles with t-butyl nitrite is described. A wide range of quinoxalinones were efficiently applied in this transformation, providing C7-nitrated quinoxalinones without undergoing C3-nitration. From the view of mechanistic point, the radical addition reaction exclusively occurred at the electron-rich aromatic region beyond electron-deficient N-heterocycle ring. This is a first report on the C7-H functionalization of quinoxalinones under metal-free conditions. In contrast, the nitration reaction readily takes place at the C3-position of pyrazinones. This transformation is characterized by the scale-up compatibility, mild reaction conditions, and excellent functional group tolerance. The applicability of the developed method is showcased by the selective reduction of NO2 functionality on the C7-nitrated quinoxalinone product, providing aniline derivatives. Combined mechanistic investigations aided the elucidation of a plausible reaction mechanism.
Collapse
Affiliation(s)
- Junghyea Moon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun Ku Ji
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Nayoung Ko
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Harin Oh
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Min Seo Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suho Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Neeraj Kumar Mishra
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
29
|
Wang CY, Tian R, Zhu YM. Ni-catalyzed C–S bond cleavage of aryl 2-pyridyl thioethers coupling with alkyl and aryl thiols. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Tang C, Qiu X, Cheng Z, Jiao N. Molecular oxygen-mediated oxygenation reactions involving radicals. Chem Soc Rev 2021; 50:8067-8101. [PMID: 34095935 DOI: 10.1039/d1cs00242b] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Molecular oxygen as a green, non-toxic and inexpensive oxidant has displayed lots of advantages compared with other oxidants towards more selective, sustainable, and environmentally benign organic transformations. The oxygenation reactions which employ molecular oxygen or ambient air as both an oxidant and an oxygen source provide an efficient route to the synthesis of oxygen-containing compounds, and have been demonstrated in practical applications such as pharmaceutical synthesis and late-stage functionalization of complex molecules. This review article introduces the recent advances of radical processes in molecular oxygen-mediated oxygenation reactions. Reaction scopes, limitations and mechanisms are discussed based on reaction types and catalytic systems. Conclusions and perspectives are also given in the end.
Collapse
Affiliation(s)
- Conghui Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China.
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. and State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
31
|
Majee D, Goud SB, Guin S, Rathor SS, Patel AK, Samanta S. Reversal Reactivity of β‐Alkylnitroalkenes as 1,3‐Binucleophiles: Application to Nitroarenes using Organocatalysis. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Debashis Majee
- Department Chemistry Indian Institute of Technology Indore Simrol 453552 Indore India
| | - S Banuprakash Goud
- Department Chemistry Indian Institute of Technology Indore Simrol 453552 Indore India
| | - Soumitra Guin
- Department Chemistry Indian Institute of Technology Indore Simrol 453552 Indore India
| | - Shikha S. Rathor
- Department Chemistry Indian Institute of Technology Indore Simrol 453552 Indore India
| | - Ashvani K. Patel
- Department Chemistry Indian Institute of Technology Indore Simrol 453552 Indore India
| | - Sampak Samanta
- Department Chemistry Indian Institute of Technology Indore Simrol 453552 Indore India
| |
Collapse
|
32
|
Huang F, Wang F, Hu Q, Tang L, Xu D, Fang Y, Zhang W. Monodisperse CuPd alloy nanoparticles as efficient and reusable catalyst for the C (sp
2
)–H bond activation. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fei Huang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials, College of Chemistry and Materials Science Anhui Normal University Wuhu PR China
- School of Chemistry and Chemical Engineering Huangshan University Huangshan PR China
| | - Feifan Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials, College of Chemistry and Materials Science Anhui Normal University Wuhu PR China
| | - Qiyan Hu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials, College of Chemistry and Materials Science Anhui Normal University Wuhu PR China
| | - Lin Tang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials, College of Chemistry and Materials Science Anhui Normal University Wuhu PR China
| | - Dongping Xu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials, College of Chemistry and Materials Science Anhui Normal University Wuhu PR China
| | - Yang Fang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials, College of Chemistry and Materials Science Anhui Normal University Wuhu PR China
| | - Wu Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials, College of Chemistry and Materials Science Anhui Normal University Wuhu PR China
| |
Collapse
|
33
|
Yun L, Zhao J, Tang X, Ma C, Yu Z, Meng Q. Selective Oxidation of Benzylic sp3 C–H Bonds using Molecular Oxygen in a Continuous-Flow Microreactor. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lei Yun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - Jingnan Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - Xiaofei Tang
- Xi’an Modern Chemistry Research Institute, Xi’an, Shanxi 710065, P.R. China
| | - Cunfei Ma
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - Zongyi Yu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - QingWei Meng
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P.R. China
| |
Collapse
|
34
|
Sarkar T, Shah TA, Maharana PK, Talukdar K, Das BK, Punniyamurthy T. Transition-Metal-Catalyzed Directing Group Assisted (Hetero)aryl C-H Functionalization: Construction of C-C/C-Heteroatom Bonds. CHEM REC 2021; 21:3758-3778. [PMID: 34164920 DOI: 10.1002/tcr.202100143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
Transition-metal-catalyzed C-H functionalization is one of the fascinating scientific fronts in organic synthesis for the formation of conjugated arenes and has emerged as a benchmark to revolutionize the synthetic enterprise since past decades. In this realm, chelation-guided functionalization of C-H bonds using an exogenous directing group has received considerable attention recently for the expedient regioselective construction of C-C and C-heteroatom bonds as an efficient and sustainable alternative. This article outlines our contribution towards a wide variety of transformations that have been achieved by the directed C-H functionalization through the fine tuning of catalytic systems.
Collapse
Affiliation(s)
- Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039
| | - Tariq A Shah
- Department of Chemistry, University of Kashmir, Srinagar, 190006, India
| | | | - Kangkan Talukdar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039
| | - Bijay Ketan Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039
| | | |
Collapse
|
35
|
Qian YE, Zheng L, Xiang HY, Yang H. Recent progress in the nitration of arenes and alkenes. Org Biomol Chem 2021; 19:4835-4851. [PMID: 34017966 DOI: 10.1039/d1ob00384d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nitro compounds are a predominant class of synthetic intermediates and building blocks for the preparation of a wide range of nitrogen-containing compounds in the chemical industry. As such, impressive progress has been currently made in the nitration of aromatics and olefins with excellent functional group tolerance and site-selectivity. In this mini review, we intend to highlight the regiospecific nitration of arenes and alkenes in various reaction systems. The involved mechanisms are discussed as well.
Collapse
Affiliation(s)
- Yu-En Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Lan Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| |
Collapse
|
36
|
Yuan Y, Zhang S, Sun Z, Su Y, Ma Q, Yuan Y, Jia X. Oxidation of the inert sp 3 C-H bonds of tetrahydroisoquinolines through C-H activation relay (CHAR): construction of functionalized isoquinolin-1-ones. Chem Commun (Camb) 2021; 57:3347-3350. [PMID: 33659968 DOI: 10.1039/d1cc00550b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A TBN/O2-initiated oxidation of the relatively inert 3,4-C-H bonds of THIQs was accomplished, in which the existence of an α-phosphoric ester group is crucial to enable dioxygen trapping and intramolecular HAT (C-H activation relay, CHAR), realizing the synthesis of a series of isoquinolin-1-ones in high yields. The mechanistic study confirmed that the formation of the 3,4-double bond is mediated by the CHAR process. This work provides a new strategy to achieve remote C-H bond activation.
Collapse
Affiliation(s)
- Yuan Yuan
- School of Chemistry & Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu 225002, China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Dai WC, Yang B, Xu SH, Wang ZX. Nickel-Catalyzed Cross-Coupling of Aryl 2-Pyridyl Ethers with Organozinc Reagents: Removal of the Directing Group via Cleavage of the Carbon-Oxygen Bonds. J Org Chem 2021; 86:2235-2243. [PMID: 33442977 DOI: 10.1021/acs.joc.0c02389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reaction of aryl 2-pyridyl ethers with arylzinc reagents under catalysis of NiCl2(PCy3)2 affords aryl-aryl cross-coupling products via selective cleavage of CAr-OPy bonds. The reaction features a wide substrate range and good compatibility of functional groups. β-H-free alkylzinc reagents are also applicable as the nucleophiles in the transformation, whereas β-H-containing alkylzinc reagents lead to a mixture of cross-coupling and hydrogenation products.
Collapse
Affiliation(s)
- Wei-Can Dai
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bo Yang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shi-He Xu
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| |
Collapse
|
38
|
Sun X, Dong X, Liu H, Liu Y. Recent Progress in Palladium‐Catalyzed Radical Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001315] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xi Sun
- School of Chemistry Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Xu Dong
- School of Chemistry Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Hui Liu
- School of Chemistry Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Yuying Liu
- School of Chemistry Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| |
Collapse
|
39
|
Ag-catalyzed decarboxylative acylation of pyridazines using α-keto acids in aqueous media. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Guo J, Guo C, Chen L, Peng X. Modified mesoporous Y zeolite catalyzed nitration of azobenzene using NO 2 as the nitro source combined with density functional theory studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj04398f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modified mesoporous Y zeolite (Fe–Y) is developed for high ortho regioselective nitration of azobenzene under a NO2–O2 system.
Collapse
Affiliation(s)
- Jiaming Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chuanzhou Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lei Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinhua Peng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
41
|
Maiti S, Mandal T, Dash BP, Dash J. Site-Selective Aerobic C–H Monoacylation of Carbazoles Using Palladium Catalysis. J Org Chem 2020; 86:1396-1407. [DOI: 10.1021/acs.joc.0c01746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Subhadip Maiti
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Tirtha Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Barada Prasanna Dash
- Department of Chemistry, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
42
|
Li B, Han YQ, Yang X, Shi BF. Palladium-Catalyzed C(sp3)–H Nitrooxylation with tert-Butyl Nitrite and Molecular Oxygen. Org Lett 2020; 22:9719-9723. [DOI: 10.1021/acs.orglett.0c03794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bo Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Ye-Qiang Han
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Xu Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People’s Republic of China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
43
|
Kianmehr E, Seifinoferest B, Afaridoun H. Palladium-Catalyzed Regioselective Acylation of Diazines with Toluenes: A New Approach to the Synthesis of ortho
-Diacylbenzenes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ebrahim Kianmehr
- School of Chemistry; College of Science; University of Tehran; Tehran Iran
| | | | - Hadi Afaridoun
- School of Chemistry; College of Science; University of Tehran; Tehran Iran
| |
Collapse
|
44
|
Affiliation(s)
- Kei Muto
- Waseda Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Toshimasa Okita
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
45
|
Chen W, Tang H, Wang W, Fu Q, Luo J. Catalytic Aerobic Dehydrogenatin of
N
‐Heterocycles by
N
‐Hydoxyphthalimide. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Weidong Chen
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Hao Tang
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Weilin Wang
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Qiang Fu
- School of Pharmacy Southwest Medical University Luzhou 610041 People's Republic of China
| | - Junfei Luo
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| |
Collapse
|
46
|
Yuan Y, Liang Y, Shi S, Liang Y, Jiao N. Efficient
Pd‐Catalyzed
C—H Oxidative Bromination of Arenes with Dimethyl Sulfoxide and Hydrobromic Acid
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yizhi Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Yujie Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Shihui Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Yu‐Feng Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200062 China
| |
Collapse
|
47
|
Dhiman AK, Thakur A, Kumar I, Kumar R, Sharma U. Co(III)-Catalyzed C-H Amidation of Nitrogen-Containing Heterocycles with Dioxazolones under Mild Conditions. J Org Chem 2020; 85:9244-9254. [PMID: 32558566 DOI: 10.1021/acs.joc.0c01237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A cobalt(III)-catalyzed C-8 selective C-H amidation of quinoline N-oxide using dioxazolone as an amidating reagent under mild conditions is disclosed. The reaction proceeds efficiently with excellent functional group compatibility. The utility of the current method is demonstrated by gram scale synthesis of C-8 amide quinoline N-oxide and by converting this amidated product into functionalized quinolines. Furthermore, the developed catalytic method is also applicable for C-7 amidation of N-pyrimidylindolines and ortho-amidation of benzamides.
Collapse
Affiliation(s)
- Ankit Kumar Dhiman
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Ankita Thakur
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Inder Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rakesh Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
48
|
Copper-catalyzed sp3-carbon radical/carbamoyl radical cross coupling: A direct strategy for carbamoylation of 1,3-dicarbonyl compounds. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Yue X, He X, Wu Y, Hu M, Wu S, Xie Y, Li J. Metal‐Free Oxidative Decarboxylative Heteroannulation of Alkynyl Carboxylic Acids with Sulfinates and
tert
‐Butyl Nitrite toward 2,2‐Disulfonyl‐2
H
‐Azirines. ChemCatChem 2020. [DOI: 10.1002/cctc.201902400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xin Yue
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Xingyi He
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Yan‐Chen Wu
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Ming Hu
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Shuang Wu
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Ye‐Xiang Xie
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Jin‐Heng Li
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
- Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 P.R. China
| |
Collapse
|
50
|
Natarajan P, Chaudhary R, Rani N, Sakshi, Venugopalan P. 3-(Ethoxycarbonyl)-1-(5-methyl-5-(nitrosooxy)hexyl)pyridin-1-ium cation: A green alternative to tert-butyl nitrite for synthesis of nitro-group-containing arenes and drugs at room temperature. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|