1
|
de Araújo BB, Gonçalves PFB. From skin sensitizers to wastewater: the unknown photo-deactivation process of low-lying excited states of isothiazolinones. A non-adiabatic dynamics investigation. Phys Chem Chem Phys 2024; 26:12799-12805. [PMID: 38619871 DOI: 10.1039/d4cp00998c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Isothiazolinones represent a class of heterocyclic compounds widely used in various applications, including as biocides in cosmetics, detergents, and paints, as well as in industrial wastewater treatment. Indeed, the presence of isothiazolinones in the environment and their associated potential health hazards have raised significant concerns. In this study, a non-adiabatic dynamics investigation was conducted using state-of-the-art methodologies to explore the photochemistry of isothiazolinones. A simplified model, isothiazol-3(2H)-one (ISO), was employed to represent this compound class. The study validated the model and demonstrated that ISO can return to its ground state through the cleavage of the S-N or S-C bonds, with no significant energy barrier observed. Non-adiabatic dynamics simulations provided insights into the time scales and detailed processes of isothiazolinone photodissociation. The preferred route for deactivation was found to be the cleavage of the S-N bond. This research enhances our understanding of the photodeactivation processes of isothiazolinones and their potential environmental impact.
Collapse
Affiliation(s)
- Bruno Bercini de Araújo
- Grupo de Química Teórica, Universidade Federal do Rio Grande do Sul - Instituto de Química, Avenida Bento Gonçalves 9500, CP 15003, CEP 91501970, Porto Alegre, Brazil.
| | - Paulo Fernando Bruno Gonçalves
- Grupo de Química Teórica, Universidade Federal do Rio Grande do Sul - Instituto de Química, Avenida Bento Gonçalves 9500, CP 15003, CEP 91501970, Porto Alegre, Brazil.
| |
Collapse
|
2
|
Navarrete-Miguel M, Giussani A, Rubio M, Boggio-Pasqua M, Borin AC, Roca-Sanjuán D. Quantum-Chemistry Study of the Photophysical Properties of 4-Thiouracil and Comparisons with 2-Thiouracil. J Phys Chem A 2024; 128:2273-2285. [PMID: 38504122 PMCID: PMC10982997 DOI: 10.1021/acs.jpca.3c06310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/16/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024]
Abstract
DNA in living beings is constantly damaged by exogenous and endogenous agents. However, in some cases, DNA photodamage can have interesting applications, as it happens in photodynamic therapy. In this work, the current knowledge on the photophysics of 4-thiouracil has been extended by further quantum-chemistry studies to improve the agreement between theory and experiments, to better understand the differences with 2-thiouracil, and, last but not least, to verify its usefulness as a photosensitizer for photodynamic therapy. This study has been carried out by determining the most favorable deactivation paths of UV-vis photoexcited 4-thiouracil by means of the photochemical reaction path approach and an efficient combination of the complete-active-space second-order perturbation theory//complete-active-space self-consistent field (CASPT2//CASSCF), (CASPT2//CASPT2), time-dependent density functional theory (TDDFT), and spin-flip TDDFT (SF-TDDFT) methodologies. By comparing the data computed herein for both 4-thiouracil and 2-thiouracil, a rationale is provided on the relatively higher yields of intersystem crossing, triplet lifetime and singlet oxygen production of 4-thiouracil, and the relatively higher yield of phosphorescence of 2-thiouracil.
Collapse
Affiliation(s)
- Miriam Navarrete-Miguel
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, ES-46071 Valencia, Spain
| | - Angelo Giussani
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, ES-46071 Valencia, Spain
| | - Mercedes Rubio
- Departament
de Química Física, Universitat
de València, 46100 Burjassot, Spain
| | - Martial Boggio-Pasqua
- Laboratoire
de Chimie et Physique Quantiques, IRSAMC,
CNRS et Université Toulouse 3, 118 route de Narbonne, 31062 Toulouse, France
| | - Antonio Carlos Borin
- Department
of Fundamental Chemistry, Institute of Chemistry,
University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo CEP 05508-000, Brazil
| | - Daniel Roca-Sanjuán
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, ES-46071 Valencia, Spain
| |
Collapse
|
3
|
Calio PB, Hermes MR, Bao JJ, Galván IF, Lindh R, Truhlar DG, Gagliardi L. Minimum-Energy Conical Intersections by Compressed Multistate Pair-Density Functional Theory. J Phys Chem A 2024; 128:1698-1706. [PMID: 38407944 DOI: 10.1021/acs.jpca.3c07048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Compressed multistate pair-density functional theory (CMS-PDFT) is a multistate version of multiconfiguration pair-density functional theory that can capture the correct topology of coupled potential energy surfaces (PESs) around conical intersections. In this work, we develop interstate coupling vectors (ISCs) for CMS-PDFT in the OpenMolcas and PySCF/mrh electronic structure packages. Yet, the main focus of this work is using ISCs to calculate minimum-energy conical intersections (MECIs) by CMS-PDFT. This is performed using the projected constrained optimization method in OpenMolcas, which uses ISCs to restrain the iterations to the conical intersection seam. We optimize the S1/S0 MECIs for ethylene, butadiene, and benzene and show that CMS-PDFT gives smooth PESs in the vicinities of the MECIs. Furthermore, the CMS-PDFT MECIs are in good agreement with the MECI calculated by the more expensive XMS-CASPT2 method.
Collapse
Affiliation(s)
- Paul B Calio
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637-1403, United States
| | - Matthew R Hermes
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637-1403, United States
| | - Jie J Bao
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | | | - Roland Lindh
- Department of Chemistry-BMC, Uppsala University, Uppsala 75123, Sweden
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637-1403, United States
- Argonne National Laboratory, Lemont, Illinois 60439-4801, United States
| |
Collapse
|
4
|
Oliveira LMF, Valverde D, Costa GJ, Borin AC. The copious photochemistry of 2,6-diaminopurine: Luminescence, triplet population, and ground state recovery. Photochem Photobiol 2024; 100:323-338. [PMID: 37403286 DOI: 10.1111/php.13833] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023]
Abstract
9H- and 7H-2,6-Diaminopurine (26DAP) photoinduced events in vacuum were studied at the MS-CASPT2/cc-pVDZ level of theory. The S1 1 (ππ* La ) state is initially populated evolving barrierless towards its minimum energy structure, from where two photochemical events can take place in both tautomers. The first is the return of the electronic population to the ground state via the C6 conical intersection (CI-C6). The second involves an internal conversion to the ground through the C2 conical intersection (CI-C2). According to our geodesic interpolated paths connecting the critical structures, the second route is less favorable in both tautomers, due to the presence of high energy barriers. Our calculations suggest a competition between fluorescence and ultrafast relaxation to the electronic ground state via internal conversion process. Based on our calculated potential energy surfaces and experimental excited state lifetimes from the literature, we can infer that the 7H- must have a greater fluorescence yield than the 9H-tautomer. We also explored the triplet state population mechanisms on the 7H-26DAP to understand their long-lived components observed experimentally.
Collapse
Affiliation(s)
- Leonardo M F Oliveira
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Danillo Valverde
- Unité de Chimie Physique Théorique et Structurale, Namur Institute of Structured Matter, Université de Namur, Namur, Belgium
| | - Gustavo J Costa
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
McFarlane NR, Harvey JN. Exploration of biochemical reactivity with a QM/MM growing string method. Phys Chem Chem Phys 2024; 26:5999-6007. [PMID: 38293892 DOI: 10.1039/d3cp05772k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
In this work, we have implemented the single-ended growing string method using a hybrid internal/Cartesian coordinate scheme within our in-house QM/MM package, QoMMMa, representing the first implementation of the growing string method in the QM/MM framework. The goal of the implementation was to facilitate generation of QM/MM reaction pathways with minimal user input, and also to improve the quality of the pathways generated as compared to the widely used adiabatic mapping approach. We have validated the algorithm against a reaction which has been studied extensively in previous computational investigations - the Claisen rearrangement catalysed by chorismate mutase. The nature of the transition state and the height of the barrier was predicted well using our algorithm, where more than 88% of the pathways generated were deemed to be of production quality. Directly compared to using adiabatic mapping, we found that while our QM/MM single-ended growing string method is slightly less efficient, it readily produces reaction pathways with fewer discontinuites and thus minimises the need for involved remapping of unsatisfactory energy profiles.
Collapse
Affiliation(s)
- Neil R McFarlane
- Department of Chemistry, KU Leuven, B-3001 Leuven, Celestijnenlaan 200f, 2404, Belgium.
| | - Jeremy N Harvey
- Department of Chemistry, KU Leuven, B-3001 Leuven, Celestijnenlaan 200f, 2404, Belgium.
| |
Collapse
|
6
|
Beal R, Valverde D, Gonçalvez PFB, Borin AC. Photophysics of tz Adenine and tz Guanine fluorescent nucleobases embedded into DNA and RNA. J Comput Chem 2023; 44:2246-2255. [PMID: 37486177 DOI: 10.1002/jcc.27194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
UV-VIS photoinduced events of tz A and tz G embedded into DNA and RNA are described by combining the Extended Multi-State Second-Order Perturbation Theory (XMS-CASPT2) and electrostatic embedding molecular mechanics methods (QM/MM). Our results point out that the S1 1 (ππ* La ) state is the bright state in both environments. After the photoexcitation to the S1 1 (ππ* La ) state, the electronic population evolves barrierless towards its minimum, from where the excess of energy can be dissipated by fluorescence. As the minimum energy crossing point structure between the ground and first bright states lies in a high-energy region, the direct internal conversion to the ground state is an unviable mechanism. Other spectroscopic properties (for instance, absorption and Stokes shifts) and comparisons with photochemical properties of canonical nucleobases are also provided.
Collapse
Affiliation(s)
- Roiney Beal
- Grupo de Química Teórica e Computacional, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brazil
| | - Danillo Valverde
- Unité de Chimie Physique Théorique et Structurale, Namur Institute of Structured Matter, Université de Namur, Namur, Belgium
| | - Paulo F B Gonçalvez
- Grupo de Química Teórica e Computacional, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brazil
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Chao W, Jones GH, Okumura M, Percival CJ, Winiberg FAF. A-Band Absorption Spectrum of the ClSO Radical: Electronic Structure of the Sulfinyl Group. J Phys Chem A 2023; 127:8374-8382. [PMID: 37772907 PMCID: PMC10577680 DOI: 10.1021/acs.jpca.3c04977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Sulfur oxide species (RSOx) play a critical role in many fields, ranging from biology to atmospheric chemistry. Chlorine-containing sulfur oxides may play a key role in sulfate aerosol formation in Venus' cloud layer by catalyzing the oxidation of SO to SO2 via sulfinyl radicals (RSO). We present results from the gas-phase UV-vis transient absorption spectroscopy study of the simplest sulfinyl radical, ClSO, generated from the pulsed-laser photolysis of thionyl chloride at 248 nm (at 40 Torr of N2 and 292 K). A weak absorption spectrum from 350 to 480 nm with a peak at 385 nm was observed, with partially resolved vibronic bands (spacing = 226 cm-1), and a peak cross section σ(385 nm) = (7.6 ± 1.9) × 10-20 cm2. From ab initio calculations at the EOMEE-CCSD/ano-pVQZ level, we assigned this band to 12A' ← X2A″ and 22A' ← X2A″ transitions. The spectrum was modeled as a sum of a bound-to-free transition to the 12A' state and a bound-to-bound transition to the 22A' state with similar oscillator strengths; the prediction agreed well with the observed spectrum. We attributed the vibronic structure to a progression in the bending vibration of the 22A' state. Further calculations at the XDW-CASPT2 level predicted a conical intersection between the excited 12A' and 22A' potential energy surfaces near the Franck-Condon region. The geometry of the minimum-energy conical intersection was similar to that of the ground-state geometry. The lack of structure at shorter wavelengths could be evidence of a short excited-state lifetime arising from strong vibronic coupling. From simplified molecular orbital analysis, we attributed the ClSO spectrum to transitions involving the out-of-plane π/π* orbitals along the S-O bond and the in-plane orbital possessing a σ/σ* character along the S-Cl bond. We hypothesize that these orbitals are common to other sulfinyl radicals, RSO, which would share a combination of a strong and a weak transition in the UV (near 300 nm) and visible (400-600 nm) regions.
Collapse
Affiliation(s)
- Wen Chao
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, United States
| | - Gregory H. Jones
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, United States
| | - Mitchio Okumura
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, United States
| | - Carl J. Percival
- Jet
Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109-8099, United States
| | - Frank A. F. Winiberg
- Jet
Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109-8099, United States
| |
Collapse
|
8
|
Fdez Galván I, Lindh R. Smooth Things Come in Threes: A Diabatic Surrogate Model for Conical Intersection Optimization. J Chem Theory Comput 2023. [PMID: 37192531 DOI: 10.1021/acs.jctc.3c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The optimization of conical intersection structures is complicated by the nondifferentiability of the adiabatic potential energy surfaces. In this work, we build a pseudodiabatic surrogate model, based on Gaussian process regression, formed by three smooth and differentiable surfaces that can adequately reproduce the adiabatic surfaces. Using this model with the restricted variance optimization method results in a notable decrease of the overall computational effort required to obtain minimum energy crossing points.
Collapse
Affiliation(s)
- Ignacio Fdez Galván
- Department of Chemistry-BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Roland Lindh
- Department of Chemistry-BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
- Uppsala Center for Computational Chemistry (UC3), Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| |
Collapse
|
9
|
Krul SE, Costa GJ, Hoehn SJ, Valverde D, Oliveira LMF, Borin AC, Crespo-Hernández CE. Resolving Ultrafast Photoinitiated Dynamics of the Hachimoji 5-Aza-7-Deazaguanine Nucleobase: Impact of Synthetically Expanding the Genetic Alphabet. Photochem Photobiol 2022; 99:693-705. [PMID: 35938218 DOI: 10.1111/php.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
The guanine derivative, 5-aza-7-deazaguanine (5N7C G) has recently been proposed as one of four unnatural bases, termed Hachimoji (8-letter) to expand the genetic code. We apply steady-state and time-resolved spectroscopy to investigate its electronic relaxation mechanism and probe the effect of atom substitution on the relaxation mechanism in polar protic and polar aprotic solvents. Mapping of the excited state potential energy surfaces is performed, from which the critical points are optimized by using the state-of-art Extended Multi-State Complete Active Space Second-Order Perturbation Theory. It is demonstrated that excitation to the lowest energy 1 ππ* state of 5N7C G results in complex dynamics leading to ca. 10 to 30-fold slower relaxation (depending on solvent) compared to guanine. A significant conformational change occurs at the S1 minimum, resulting in a 10-fold greater fluorescence quantum yield compared to guanine. The fluorescence quantum yield and S1 decay lifetime increase going from water to acetonitrile to propanol. The solvent-dependent results are supported by the quantum chemical calculations showing an increase in the energy barrier between the S1 minimum and the S1 /S0 conical intersection going from water to propanol. The longer lifetimes might make 5N7C G more photochemical active to adjacent nucleobases than guanine or other nucleobases within DNA.
Collapse
Affiliation(s)
- Sarah E Krul
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio, 44106, United States
| | - Gustavo J Costa
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000. São Paulo, SP, Brazil
| | - Sean J Hoehn
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio, 44106, United States
| | - Danillo Valverde
- Unité de Chimie Physique Theorique et Structurale, Namur Institute of Structured Matter, Université de Namur, B-5000, Namur, Belgium
| | - Leonardo M F Oliveira
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000. São Paulo, SP, Brazil
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000. São Paulo, SP, Brazil
| | - Carlos E Crespo-Hernández
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio, 44106, United States
| |
Collapse
|
10
|
Tóbiás R, Árendás P, Császár AG. Normal-Mode Vibrational Analysis of Weakly Bound Oligomers at Constrained Stationary Points of Arbitrary Order. J Chem Theory Comput 2022; 18:1788-1798. [PMID: 35201747 DOI: 10.1021/acs.jctc.1c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Following the full realization of the importance of noncovalent interactions, finding and characterizing stationary points (SP), of various order, for weakly bound oligomers have become important tasks for computational chemists. An efficient algorithm and an associated computer code, called oligoCGO, are described, facilitating constrained geometry optimization of oligomers of arbitrary structure and complexity and normal-mode vibrational analysis at nonstationary geometries. To minimize the adverse effects of nonzero forces on harmonic vibrational analyses at constrained stationary points (cSP), two residual gradient correction (RGC) schemes are proposed. RGC1, for which a rigorous justification is given, is based on ignoring the remaining forces in internal-coordinate space. RGC2 modifies the geometry of the cSP in a single Newton step and recalculates the Cartesian Hessian at this updated geometry. As demonstrated by 10 examples related to the water-water, water-methane, and methane-methane dimers as well as the methane trimer, without RGC the harmonic analysis of cSPs may result in even qualitatively incorrect results when compared to reference values obtained at the nearby unconstrained SPs (uSP). Both RGC protocols work exceedingly well, and the corrected harmonic wavenumbers of the cSPs are very close to their uSP counterparts.
Collapse
Affiliation(s)
- Roland Tóbiás
- Institute of Chemistry, ELTE Eötvös Loránd University, Budapest 1117, Hungary.,MTA-ELTE Complex Chemical Systems Research Group, Budapest 1117, Hungary
| | - Péter Árendás
- Institute of Chemistry, ELTE Eötvös Loránd University, Budapest 1117, Hungary.,MTA-ELTE Complex Chemical Systems Research Group, Budapest 1117, Hungary.,Budapest Business School, Budapest 1149, Hungary
| | - Attila G Császár
- Institute of Chemistry, ELTE Eötvös Loránd University, Budapest 1117, Hungary.,MTA-ELTE Complex Chemical Systems Research Group, Budapest 1117, Hungary
| |
Collapse
|
11
|
Fdez Galván I, Brakestad A, Vacher M. Role of conical intersection seam topography in the chemiexcitation of 1,2-dioxetanes. Phys Chem Chem Phys 2022; 24:1638-1653. [PMID: 34989378 DOI: 10.1039/d1cp05028a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chemiexcitation, the generation of electronic excited states by a thermal reaction initiated on the ground state, is an essential step in chemiluminescence, and it is mediated by the presence of a conical intersection that allows a nonadiabatic transition from ground state to excited state. Conical intersections classified as sloped favor chemiexcitation over ground state relaxation. The chemiexcitation yield of 1,2-dioxetanes is known to increase upon methylation. In this work we explore to which extent this trend can be attributed to changes in the conical intersection topography or accessibility. Since conical intersections are not isolated points, but continuous seams, we locate regions of the conical intersection seams that are close to the configuration space traversed by the molecules as they react on the ground state. We find that conical intersections are energetically and geometrically accessible from the reaction trajectory, and that topographies favorable to chemiexcitation are found in all three molecules studied. Nevertheless, the results suggest that dynamic effects are more important for explaining the different yields than the static features of the potential energy surfaces.
Collapse
Affiliation(s)
- Ignacio Fdez Galván
- Department of Chemistry - BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden.
| | - Anders Brakestad
- Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway.,Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Morgane Vacher
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
| |
Collapse
|
12
|
Xie BB, Tang XF, Liu XY, Chang XP, Cui G. Mechanistic photophysics and photochemistry of unnatural bases and sunscreen molecules: insights from electronic structure calculations. Phys Chem Chem Phys 2021; 23:27124-27149. [PMID: 34849517 DOI: 10.1039/d1cp03994f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photophysics and photochemistry are basic subjects in the study of light-matter interactions and are ubiquitous in diverse fields such as biology, energy, materials, and environment. A full understanding of mechanistic photophysics and photochemistry underpins many recent advances and applications. This contribution first provides a short discussion on the theoretical calculation methods we have used in relevant studies, then we introduce our latest progress on the mechanistic photophysics and photochemistry of two classes of molecular systems, namely unnatural bases and sunscreens. For unnatural bases, we disclose the intrinsic driving forces for the ultrafast population to reactive triplet states, impacts of the position and degree of chalcogen substitutions, and the effects of complex environments. For sunscreen molecules, we reveal the photoprotection mechanisms that dissipate excess photon energy to the surroundings by ultrafast internal conversion to the ground state. Finally, relevant theoretical challenges and outlooks are discussed.
Collapse
Affiliation(s)
- Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Xiu-Fang Tang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
13
|
Valverde D, de Araújo AVS, Borin AC. Photophysical Deactivation Mechanisms of the Pyrimidine Analogue 1-Cyclohexyluracil. Molecules 2021; 26:5191. [PMID: 34500625 PMCID: PMC8434193 DOI: 10.3390/molecules26175191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
The photophysical relaxation mechanisms of 1-cyclohexyluracil, in vacuum and water, were investigated by employing the Multi-State CASPT2 (MS-CASPT2, Multi-State Complete Active-Space Second-Order Perturbation Theory) quantum chemical method and Dunning's cc-pVDZ basis sets. In both environments, our results suggest that the primary photophysical event is the population of the S11(ππ*) bright state. Afterwards, two likely deactivation pathways can take place, which is sustained by linear interpolation in internal coordinates defined via Z-Matrix scans connecting the most important characteristic points. The first one (Route 1) is the same relaxation mechanism observed for uracil, its canonical analogue, i.e., internal conversion to the ground state through an ethylenic-like conical intersection. The other route (Route 2) is the direct population transfer from the S11(ππ*) bright state to the T23(nπ*) triplet state via an intersystem crossing process involving the (S11(ππ*)/T23(nπ*))STCP singlet-triplet crossing point. As the spin-orbit coupling is not too large in either environment, we propose that most of the electronic population initially on the S11(ππ*) state returns to the ground following the same ultrafast deactivation mechanism observed in uracil (Route 1), while a smaller percentage goes to the triplet manifold. The presence of a minimum on the S11(ππ*) potential energy hypersurface in water can help to understand why experimentally it is noticed suppression of the triplet states population in polar protic solvent.
Collapse
Affiliation(s)
- Danillo Valverde
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, SP, Brazil;
| | | | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, SP, Brazil;
| |
Collapse
|
14
|
Matsika S. Electronic Structure Methods for the Description of Nonadiabatic Effects and Conical Intersections. Chem Rev 2021; 121:9407-9449. [PMID: 34156838 DOI: 10.1021/acs.chemrev.1c00074] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonadiabatic effects are ubiquitous in photophysics and photochemistry, and therefore, many theoretical developments have been made to properly describe them. Conical intersections are central in nonadiabatic processes, as they promote efficient and ultrafast nonadiabatic transitions between electronic states. A proper theoretical description requires developments in electronic structure and specifically in methods that describe conical intersections between states and nonadiabatic coupling terms. This review focuses on the electronic structure aspects of nonadiabatic processes. We discuss the requirements of electronic structure methods to describe conical intersections and nonadiabatic couplings, how the most common excited state methods perform in describing these effects, and what the recent developments are in expanding the methodology and implementing nonadiabatic couplings.
Collapse
Affiliation(s)
- Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
15
|
Lykhin AO, Truhlar DG, Gagliardi L. Role of Triplet States in the Photodynamics of Aniline. J Am Chem Soc 2021; 143:5878-5889. [PMID: 33843225 DOI: 10.1021/jacs.1c00989] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dynamics of excited heteroaromatic molecules is a key to understanding the photoprotective properties of many biologically relevant chromophores that dissipate their excitation energy nonreactively and thereby prevent the detrimental effects of ultraviolet radiation. Despite their structural variability, most substituted aromatic compounds share a common feature of a repulsive 1πσ* potential energy surface. This surface can lead to photoproducts, and it can also facilitate the population transfer back to the ground electronic state by means of a 1πσ*/S0 conical intersection. Here, we explore a hidden relaxation route involving the triplet electronic state of aniline, which has recently been discovered by means of time-selected photofragment translational spectroscopy [J. Chem. Phys. 2019, 151, 141101]. By using the recently available analytical gradients for multiconfiguration pair-density functional theory, it is now possible to locate the minimum-energy crossing points between states of different spin and therefore compute the intersystem crossing rates with a multireference method, rather than with the less reliable single-reference methods. Using such calculations, we demonstrate that the population loss of aniline in the T1(3ππ*) state is dominated by C6H5NH2 → C6H5NH· + H· dissociation, and we explain the long nonradiative lifetimes of the T1(3ππ*) state at the excitation wavelengths of 294-264 nm.
Collapse
Affiliation(s)
- Aleksandr O Lykhin
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
16
|
Valverde D, Mai S, Sanches de Araújo AV, Canuto S, González L, Borin AC. On the population of triplet states of 2-seleno-thymine. Phys Chem Chem Phys 2021; 23:5447-5454. [PMID: 33650609 DOI: 10.1039/d1cp00041a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The population and depopulation mechanisms leading to the lowest-lying triplet states of 2-Se-Thymine were studied at the MS-CASPT2/cc-pVDZ level of theory. Several critical points on different potential energy hypersurfaces were optimized, including minima, conical intersections, and singlet-triplet crossings. The accessibility of all relevant regions on the potential energy hypersurfaces was investigated by means of minimum energy paths and linear interpolation in internal coordinates techniques. Our analysis indicates that, after the population of the bright S2 state in the Franck-Condon region, the first photochemical event is a barrierless evolution towards one of its two minima. After that, three viable photophysical deactivation paths can take place. In one of them, the population in the S2 state is transferred to the T2 state via intersystem crossing and subsequently to the T1 state by internal conversion. Alternatively, the S1 state could be accessed by internal conversion through two distinct conical intersections with S2 state followed by singlet-triplet crossing with the T2 state. The absence of a second minimum on the T1 state and a small energy barrier on pathway along the potential energy surface towards the ground state from the lowest triplet state are attributed as potential reasons to explain why the lifetime of the triplet state of 2-Se-Thymine might be reduced in comparison with its thio-analogue.
Collapse
Affiliation(s)
- Danillo Valverde
- Institute of Physics, University of São Paulo, Rua do Matão 1371. 05508-090, São Paulo, SP, Brazil
| | - Sebastian Mai
- Photonics Institute, Vienna University of Technology, Gußhausstraße 27-29, 1040 Vienna, Austria and Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
| | | | - Sylvio Canuto
- Institute of Physics, University of São Paulo, Rua do Matão 1371. 05508-090, São Paulo, SP, Brazil
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748. 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
17
|
Fdez Galván I, Raggi G, Lindh R. Restricted-Variance Constrained, Reaction Path, and Transition State Molecular Optimizations Using Gradient-Enhanced Kriging. J Chem Theory Comput 2020; 17:571-582. [PMID: 33382621 PMCID: PMC7871327 DOI: 10.1021/acs.jctc.0c01163] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Gaussian process
regression has recently been explored as an alternative
to standard surrogate models in molecular equilibrium geometry optimization.
In particular, the gradient-enhanced Kriging approach in association
with internal coordinates, restricted-variance optimization, and an
efficient and fast estimate of hyperparameters has demonstrated performance
on par or better than standard methods. In this report, we extend
the approach to constrained optimizations and transition states and
benchmark it for a set of reactions. We compare the performance of
the newly developed method with the standard techniques in the location
of transition states and in constrained optimizations, both isolated
and in the context of reaction path computation. The results show
that the method outperforms the current standard in efficiency as
well as in robustness.
Collapse
Affiliation(s)
| | - Gerardo Raggi
- Department of Chemistry - BMC, Uppsala University, Uppsala 75123, Sweden
| | - Roland Lindh
- Department of Chemistry - BMC, Uppsala University, Uppsala 75123, Sweden
| |
Collapse
|
18
|
Sanches de Araújo AV, Valverde D, Canuto S, Borin AC. Solvation Structures and Deactivation Pathways of Luminescent Isothiazole-Derived Nucleobases: tzA, tzG, and tzI. J Phys Chem A 2020; 124:6834-6844. [PMID: 32786984 DOI: 10.1021/acs.jpca.0c03398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The photophysical relaxation pathways of tzA, tzG, and tzI luminescent nucleobases were investigated with the MS-CASPT2 quantum-chemical method and double-ζ basis sets (cc-pVDZ) in gas and condensed phases (1,4-dioxane and water) with the sequential Monte Carlo/CASPT2 and free energy gradient (FEG) methods. Solvation shell structures, in the ground and excited states, were examined with the pairwise radial distribution function (G(r)) and solute-solvent hydrogen-bond networks. Site-specific hydrogen bonding analysis evidenced relevant changes between both electronic states. The three luminescent nucleobases share a common photophysical pattern, summarized as the lowest-lying 1(ππ*) bright state that is populated directly after the absorption of radiation and evolves barrierless to the minimum energy structure, from where the excess of energy is released by fluorescence. From the 1(ππ*)min region, the conical intersection with the ground state ((ππ*/GS)CI) is not accessible due to the presence of high energetic barriers. By combining the present results with those reported earlier by us for the pyrimidine fluorescent nucleobases, we present a comprehensive description of the photophysical properties of this important class of new fluorescent nucleosides.
Collapse
Affiliation(s)
| | - Danillo Valverde
- Institute of Physics, University of São Paulo, Rua do Matão 1371, 05508-090 São Paulo, SP, Brazil
| | - Sylvio Canuto
- Institute of Physics, University of São Paulo, Rua do Matão 1371, 05508-090 São Paulo, SP, Brazil
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
| |
Collapse
|
19
|
Aquilante F, Autschbach J, Baiardi A, Battaglia S, Borin VA, Chibotaru LF, Conti I, De Vico L, Delcey M, Fdez Galván I, Ferré N, Freitag L, Garavelli M, Gong X, Knecht S, Larsson ED, Lindh R, Lundberg M, Malmqvist PÅ, Nenov A, Norell J, Odelius M, Olivucci M, Pedersen TB, Pedraza-González L, Phung QM, Pierloot K, Reiher M, Schapiro I, Segarra-Martí J, Segatta F, Seijo L, Sen S, Sergentu DC, Stein CJ, Ungur L, Vacher M, Valentini A, Veryazov V. Modern quantum chemistry with [Open]Molcas. J Chem Phys 2020; 152:214117. [PMID: 32505150 DOI: 10.1063/5.0004835] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOLCAS/OpenMolcas is an ab initio electronic structure program providing a large set of computational methods from Hartree-Fock and density functional theory to various implementations of multiconfigurational theory. This article provides a comprehensive overview of the main features of the code, specifically reviewing the use of the code in previously reported chemical applications as well as more recent applications including the calculation of magnetic properties from optimized density matrix renormalization group wave functions.
Collapse
Affiliation(s)
- Francesco Aquilante
- Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, Buffalo, New York 14260-3000, USA
| | - Alberto Baiardi
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Stefano Battaglia
- Department of Chemistry - BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Veniamin A Borin
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Liviu F Chibotaru
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Irene Conti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Luca De Vico
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Mickaël Delcey
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Ignacio Fdez Galván
- Department of Chemistry - BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Nicolas Ferré
- Aix-Marseille University, CNRS, Institut Chimie Radicalaire, Marseille, France
| | - Leon Freitag
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Xuejun Gong
- Department of Chemistry, University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Stefan Knecht
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Ernst D Larsson
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| | - Roland Lindh
- Department of Chemistry - BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Marcus Lundberg
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Per Åke Malmqvist
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Jesper Norell
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael Odelius
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Thomas B Pedersen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Laura Pedraza-González
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Quan M Phung
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kristine Pierloot
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Javier Segarra-Martí
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom
| | - Francesco Segatta
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Luis Seijo
- Departamento de Química, Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Saumik Sen
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | | | - Christopher J Stein
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Liviu Ungur
- Department of Chemistry, University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Morgane Vacher
- Laboratoire CEISAM - UMR CNRS 6230, Université de Nantes, 44300 Nantes, France
| | - Alessio Valentini
- Theoretical Physical Chemistry, Research Unit MolSys, Université de Liège, Allée du 6 Août, 11, 4000 Liège, Belgium
| | - Valera Veryazov
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| |
Collapse
|
20
|
Park JW, Al-Saadon R, MacLeod MK, Shiozaki T, Vlaisavljevich B. Multireference Electron Correlation Methods: Journeys along Potential Energy Surfaces. Chem Rev 2020; 120:5878-5909. [PMID: 32239929 DOI: 10.1021/acs.chemrev.9b00496] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multireference electron correlation methods describe static and dynamical electron correlation in a balanced way and, therefore, can yield accurate and predictive results even when single-reference methods or multiconfigurational self-consistent field theory fails. One of their most prominent applications in quantum chemistry is the exploration of potential energy surfaces. This includes the optimization of molecular geometries, such as equilibrium geometries and conical intersections and on-the-fly photodynamics simulations, both of which depend heavily on the ability of the method to properly explore the potential energy surface. Because such applications require nuclear gradients and derivative couplings, the availability of analytical nuclear gradients greatly enhances the scope of quantum chemical methods. This review focuses on the developments and advances made in the past two decades. A detailed account of the analytical nuclear gradient and derivative coupling theories is presented. Emphasis is given to the software infrastructure that allows one to make use of these methods. Notable applications of multireference electron correlation methods to chemistry, including geometry optimizations and on-the-fly dynamics, are summarized at the end followed by a discussion of future prospects.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University, Chungdae-ro 1, Cheongju 28644, Korea
| | - Rachael Al-Saadon
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthew K MacLeod
- Workday, 4900 Pearl Circle East, Suite 100, Boulder, Colorado 80301, United States
| | - Toru Shiozaki
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Quantum Simulation Technologies, Inc., 625 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, 414 East Clark Street, Vermillion, South Dakota 57069, United States
| |
Collapse
|
21
|
Roy Chowdhury S, Mishra S. Light-Induced Spin Crossover in an Intermediate-Spin Penta-Coordinated Iron(III) Complex. J Phys Chem A 2019; 123:9883-9892. [PMID: 31663743 DOI: 10.1021/acs.jpca.9b06490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
(PMe3)2FeCl3 is an Fe(III) complex that exists in the intermediate-spin ground state in a distorted trigonal bipyramidal geometry. An electronic state with high-spin configuration lies in close vicinity to the ground state, making it a potential spin crossover candidate. A mechanistic account of the spin crossover from the lowest quartet state (Q0) to the lowest sextet state (S1) of this complex is provided by exploring both thermal and light-induced pathways. The presence of a large barrier between the two spin states suggests a possible thermal spin crossover at a rather high temperature. The light-induced spin crossover is investigated by employing complete active space self-consistent field calculations together with dynamic correlation and spin-orbit coupling for the lowest seven quartet and lowest five sextet states. The system in the Q0 state upon light absorption is excited to the optically bright Q4 LMCT state. By following minimum energy pathways along the electronic states, two light-induced pathways for spin crossover are identified. From the Q4 state, the system can photo-regenerate the ground intermediate-spin state (Q0) through an internal conversion of Q4/Q3 followed by Q3/S1 and S1/Q0 intersystem crossings. In an alternate route, through Q4/S2 intersystem crossing followed by S2/S1 internal conversion, the system can complete the spin crossover from the Q0 to S1 state.
Collapse
Affiliation(s)
- Sabyasachi Roy Chowdhury
- Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur , West Bengal 721302 , India
| | - Sabyashachi Mishra
- Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur , West Bengal 721302 , India
| |
Collapse
|
22
|
Fdez. Galván I, Vacher M, Alavi A, Angeli C, Aquilante F, Autschbach J, Bao JJ, Bokarev SI, Bogdanov NA, Carlson RK, Chibotaru LF, Creutzberg J, Dattani N, Delcey MG, Dong SS, Dreuw A, Freitag L, Frutos LM, Gagliardi L, Gendron F, Giussani A, González L, Grell G, Guo M, Hoyer CE, Johansson M, Keller S, Knecht S, Kovačević G, Källman E, Li Manni G, Lundberg M, Ma Y, Mai S, Malhado JP, Malmqvist PÅ, Marquetand P, Mewes SA, Norell J, Olivucci M, Oppel M, Phung QM, Pierloot K, Plasser F, Reiher M, Sand AM, Schapiro I, Sharma P, Stein CJ, Sørensen LK, Truhlar DG, Ugandi M, Ungur L, Valentini A, Vancoillie S, Veryazov V, Weser O, Wesołowski TA, Widmark PO, Wouters S, Zech A, Zobel JP, Lindh R. OpenMolcas: From Source Code to Insight. J Chem Theory Comput 2019; 15:5925-5964. [DOI: 10.1021/acs.jctc.9b00532] [Citation(s) in RCA: 399] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ignacio Fdez. Galván
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
- Department of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Morgane Vacher
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Ali Alavi
- Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Celestino Angeli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Francesco Aquilante
- Département de Chimie Physique, Université de Genève, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Jie J. Bao
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Sergey I. Bokarev
- Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23-24, 18059 Rostock, Germany
| | - Nikolay A. Bogdanov
- Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Rebecca K. Carlson
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Liviu F. Chibotaru
- Theory of Nanomaterials Group, University of Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Joel Creutzberg
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Nike Dattani
- Harvard Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, United States
| | - Mickaël G. Delcey
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Sijia S. Dong
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205 A, 69120 Heidelberg, Germany
| | - Leon Freitag
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Luis Manuel Frutos
- Departamento de Química Analítica, Química Física e Ingeniería Química, and Instituto de Investigación Química “Andrés M. del Río”, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Frédéric Gendron
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Angelo Giussani
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- Instituto de Ciencia Molecular, Universitat de València, Apartado 22085, ES-46071 Valencia, Spain
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Gilbert Grell
- Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23-24, 18059 Rostock, Germany
| | - Meiyuan Guo
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Chad E. Hoyer
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marcus Johansson
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Sebastian Keller
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Stefan Knecht
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Goran Kovačević
- Division of Materials Physics, Ruđer Bošković Institute, P.O.B. 180, Bijenička 54, HR-10002 Zagreb, Croatia
| | - Erik Källman
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Giovanni Li Manni
- Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Marcus Lundberg
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Yingjin Ma
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - João Pedro Malhado
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Per Åke Malmqvist
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Stefanie A. Mewes
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205 A, 69120 Heidelberg, Germany
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study (NZIAS), Massey University Albany, Private Bag
102904, Auckland 0632, New Zealand
| | - Jesper Norell
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, 53100 Siena, Italy
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
- USIAS and Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS, 67034 Strasbourg, France
| | - Markus Oppel
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Quan Manh Phung
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Kristine Pierloot
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Felix Plasser
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Markus Reiher
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Andrew M. Sand
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Prachi Sharma
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Christopher J. Stein
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Lasse Kragh Sørensen
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Mihkel Ugandi
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Liviu Ungur
- Department of Chemistry, National University of Singapore, 117543 Singapore
| | - Alessio Valentini
- Theoretical Physical Chemistry, Research Unit MolSys, Allée du 6 Août, 11, 4000 Liège, Belgium
| | - Steven Vancoillie
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Valera Veryazov
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Oskar Weser
- Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Tomasz A. Wesołowski
- Département de Chimie Physique, Université de Genève, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - Per-Olof Widmark
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Sebastian Wouters
- Brantsandpatents, Pauline van Pottelsberghelaan 24, 9051 Sint-Denijs-Westrem, Belgium
| | - Alexander Zech
- Département de Chimie Physique, Université de Genève, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - J. Patrick Zobel
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Roland Lindh
- Department of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
- Uppsala Center for Computational Chemistry (UC3), Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
23
|
Valverde D, Sanches de Araujo AV, Canuto S, Borin AC. Photophysics of Emissive
tz
C[Isothiazolo‐Cytidine] and
tz
U[Isothiazolo‐Uridine] Pyrimidine Analogues. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Danillo Valverde
- Institute of PhysicsUniversity of São Paulo Rua do Matão 1371 São Paulo, SP 05508-090 Brazil
| | | | - Sylvio Canuto
- Institute of PhysicsUniversity of São Paulo Rua do Matão 1371 São Paulo, SP 05508-090 Brazil
| | - Antonio Carlos Borin
- Department of Fundamental ChemistryInstitute of ChemistryUniversity of São Paulo Avenida Professor Lineu Prestes, 748 São Paulo SP, 05508-000 Brazil
| |
Collapse
|
24
|
Borràs VJ, Francés‐Monerris A, Roca‐Sanjuán D. Hydroxyl Radical Addition to Thymine and Cytosine and Photochemistry of the Adducts at the C6 Position. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Vicent J. Borràs
- Institut de Ciència MolecularUniversitat de València P.O. Box 22085 46071 Valencia Spain
- Departamento de QuímicaUniversidad Autónoma de Madrid 28049 Madrid Spain
| | - Antonio Francés‐Monerris
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Daniel Roca‐Sanjuán
- Institut de Ciència MolecularUniversitat de València P.O. Box 22085 46071 Valencia Spain
| |
Collapse
|
25
|
Sanches de Araújo AV, Borin AC. Photochemical Relaxation Pathways of 9 H-8-Azaguanine and 8 H-8-Azaguanine. J Phys Chem A 2019; 123:3109-3120. [PMID: 30901221 DOI: 10.1021/acs.jpca.9b01397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The photochemical reaction path approach, the MS-CASPT2 quantum-chemical method, and double-ζ basis sets (cc-pVDZ) were used to study 9 H-8-azaguanine and 8 H-8-azaguanine relaxation pathways. Several potential energy hypersurfaces were characterized by means of equilibrium geometries, surface crossings (conical intersections and singlet-triplet intersystem crossings), minimum energy paths, and linear interpolation in internal coordinates. The 9 H-8-azaguanine main photochemical event begins with the direct population of the 1(ππ* La) state, which evolves toward a conical intersection with the ground state after surmounting a small energy barrier, explaining why it is nonfluorescent. For 8 H-8-azaguanine, two relaxation mechanisms are possible, depending on the excitation energy. If the S1 1(ππ*) state is initially populated (lower-energy region), the system evolves barrierless to the S1 1(ππ*)min region, from where the excess energy is released. If the 1(ππ* La) state is populated (higher-energy radiation), the system will encounter conical intersections with the S2 1(nOπ*) and S1 1(ππ*) states before evolving to the 1(ππ* La)min region, from where a conical intersection with the ground state is accessible, favoring radiationless deactivation to the ground state. However, because a fraction of the population can be transferred from 1(ππ* La) to the S1 1(ππ*) state, emission from the S1 1(ππ*)min region is also expected, although weaker than it would be if the S1 1(ππ*) state were populated directly. Irrespective of the excitation energy, the emissive state is the same and a single fluorescence band is observed, with the strongest emission occurring upon excitation in the lower-energy region, as observed experimentally. Therefore, our computational study corroborates experimental results, attributing the emission of the neutral form of 8-azaguanine in solution to the presence of the minor 8 H-8-azaguanine tautomer, while the 9 H-8-azaguanine major tautomer is nonfluorescent.
Collapse
Affiliation(s)
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry , Institute of Chemistry, University of São Paulo , Av. Prof. Lineu Prestes 748 , 05508-000 São Paulo , SP , Brazil
| |
Collapse
|
26
|
Giussani A, Farahani P, Martínez‐Muñoz D, Lundberg M, Lindh R, Roca‐Sanjuán D. Molecular Basis of the Chemiluminescence Mechanism of Luminol. Chemistry 2019; 25:5202-5213. [PMID: 30720222 DOI: 10.1002/chem.201805918] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/22/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Angelo Giussani
- Institut de Ciència MolecularUniversitat de València P.O. Box 22085 València Spain
| | - Pooria Farahani
- Department of Theoretical Chemistry & Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH)KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Daniel Martínez‐Muñoz
- Department of Chemistry-Ångström LaboratoryUppsala University P.O. Box 538 75121 Uppsala Sweden
| | - Marcus Lundberg
- Department of Chemistry-Ångström LaboratoryUppsala University P.O. Box 538 75121 Uppsala Sweden
| | - Roland Lindh
- Department of Chemistry-Ångström LaboratoryUppsala University P.O. Box 538 75121 Uppsala Sweden
| | - Daniel Roca‐Sanjuán
- Institut de Ciència MolecularUniversitat de València P.O. Box 22085 València Spain
| |
Collapse
|
27
|
Aldaz C, Kammeraad JA, Zimmerman PM. Discovery of conical intersection mediated photochemistry with growing string methods. Phys Chem Chem Phys 2018; 20:27394-27405. [PMID: 30357173 PMCID: PMC6532651 DOI: 10.1039/c8cp04703k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Conical intersections (CIs) are important features of photochemistry that determine yields and selectivity. Traditional CI optimizers require significant human effort and chemical intuition, which typically restricts searching to only a small region of the CI space. Herein, a systematic approach utilizing the growing string method is introduced to locate multiple CIs. Unintuitive MECI are found using driving coordinates that can be generated using a combinatorial search, and subsequent optimization allows reaction pathways, transition states, products, and seam-space pathways to be located. These capabilities are demonstrated by application to two prototypical photoisomerization reactions and the dimerization of butadiene. In total, many reaction pathways were uncovered, including the elusive stilbene hula-twist mechanism, and a previously unidentified product in butadiene dimerization. Overall, these results suggest that growing string methods provide a predictive strategy for exploring photochemistry.
Collapse
Affiliation(s)
- Cody Aldaz
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
28
|
Segalina A, Francés-Monerris A, Pastore M, Leininger T, Evangelisti S, Monari A. Conical intersection properties unraveled by the position spread tensor. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2377-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Francés-Monerris A, Magra K, Darari M, Cebrián C, Beley M, Domenichini E, Haacke S, Pastore M, Assfeld X, Gros PC, Monari A. Synthesis and Computational Study of a Pyridylcarbene Fe(II) Complex: Unexpected Effects of fac/ mer Isomerism in Metal-to-Ligand Triplet Potential Energy Surfaces. Inorg Chem 2018; 57:10431-10441. [PMID: 30063338 DOI: 10.1021/acs.inorgchem.8b01695] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synthesis and the steady-state absorption spectrum of a new pyridine-imidazolylidene Fe(II) complex (Fe-NHC) are presented. A detailed mechanism of the triplet metal-to-ligand charge-transfer states decay is provided on the basis of minimum energy path (MEP) calculations used to connect the lowest-lying singlet, triplet, and quintet state minima. The competition between the different decay pathways involved in the photoresponse is assessed by analyzing the shapes of the obtained potential energy surfaces. A qualitative difference between facial ( fac) and meridional ( mer) isomers' potential energy surface (PES) topologies is evidenced for the first time in iron-based complexes. Indeed, the mer complex shows a steeper triplet path toward the corresponding 3MC minimum, which lies at a lower energy as compared to the fac isomer, thus pointing to a faster triplet decay of the former. Furthermore, while a major role of the metal-centered quintet state population from the triplet 3MC region is excluded, we identify the enlargement of iron-nitrogen bonds as the main normal modes driving the excited-state decay.
Collapse
Affiliation(s)
| | - Kevin Magra
- Université de Lorraine , CNRS, L2CM , F57000 Metz , France
| | - Mohamed Darari
- Université de Lorraine , CNRS, L2CM , F54000 Nancy , France
| | | | - Marc Beley
- Université de Lorraine , CNRS, L2CM , F57000 Metz , France
| | | | - Stefan Haacke
- Université de Strasbourg-CNRS , UMR 7504 IPCMS , 67034 Strasbourg , France
| | | | - Xavier Assfeld
- Université de Lorraine , CNRS, LPCT , F54000 Nancy , France
| | | | - Antonio Monari
- Université de Lorraine , CNRS, LPCT , F54000 Nancy , France
| |
Collapse
|
30
|
Giussani A, Worth GA. Insights into the Complex Photophysics and Photochemistry of the Simplest Nitroaromatic Compound: A CASPT2//CASSCF Study on Nitrobenzene. J Chem Theory Comput 2017; 13:2777-2788. [DOI: 10.1021/acs.jctc.6b01149] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Angelo Giussani
- School
of Chemistry, University of Birmingham, Edgbaston B15 2TT, U.K
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Graham A. Worth
- School
of Chemistry, University of Birmingham, Edgbaston B15 2TT, U.K
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| |
Collapse
|
31
|
Su Q, Li Y, Wang B, Liu M, Wang H, Wang W, Liu F. Combining the Advantages of Alkene and Azo E-Z Photoisomerizations: Mechanistic Insights into Ketoimine Photoswitches. J Phys Chem A 2017; 121:2588-2596. [PMID: 28301930 DOI: 10.1021/acs.jpca.7b01674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We carried out CASPT2//(TD)DFT and CASPT2//CASSCF studies on the working mechanism of imine switches, including a camphorquinone-derived ketoimine (shortened as k-Imine) switch designed by Lehn as well as a model camphorquinone alkene-imine (a-Imine) proposed in this study. Under the experimental conditions (light irradiation with 455 and 365 nm for E and Z, respectively), k-Imine is excited to the S1:(nN,π*) state and then decays toward a perpendicular intermediate following the C═N bond rotation coordinate. During the bond rotation, a mild energy barrier caused by the strong interaction of S1:(nN,π*) and S2:(nO,π*) states will more or less slow down the rotation speed of k-Imine. The large difference in irradiation light wavelength supports k-Imine as a two-way photoswitch. The photoisomerization of a-Imine obeys a similar but fully barrierless pattern while requiring a higher excitation energy to reach the (nN,π*) state. The good directionality of thermal isomerization toward E(a-Imine), plus the barrierless photoisomerization, allows for the design of a thermal and photo-operated switch. For both imines, a minimal-energy crossing point (MECI) located at the perpendicular region, with low relative energy and close to the rotary path, ensures the directionality of C═N bond rotation and confirms imines as optimal candidates for photoswitches and motors.
Collapse
Affiliation(s)
- Qingqing Su
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an, Shaanxi 710062, People's Republic of China
| | - Yuanying Li
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an, Shaanxi 710062, People's Republic of China
| | - Bin Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an, Shaanxi 710062, People's Republic of China
| | - Minjuan Liu
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an, Shaanxi 710062, People's Republic of China
| | - Hongjuan Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an, Shaanxi 710062, People's Republic of China
| | - Wenliang Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an, Shaanxi 710062, People's Republic of China
| | - Fengyi Liu
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an, Shaanxi 710062, People's Republic of China
| |
Collapse
|
32
|
Segarra-Martí J, Francés-Monerris A, Roca-Sanjuán D, Merchán M. Assessment of the Potential Energy Hypersurfaces in Thymine within Multiconfigurational Theory: CASSCF vs. CASPT2. Molecules 2016; 21:molecules21121666. [PMID: 27918489 PMCID: PMC6274573 DOI: 10.3390/molecules21121666] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/16/2022] Open
Abstract
The present study provides new insights into the topography of the potential energy hypersurfaces (PEHs) of the thymine nucleobase in order to rationalize its main ultrafast photochemical decay paths by employing two methodologies based on the complete active space self-consistent field (CASSCF) and the complete active space second-order perturbation theory (CASPT2) methods: (i) CASSCF optimized structures and energies corrected with the CASPT2 method at the CASSCF geometries and (ii) CASPT2 optimized geometries and energies. A direct comparison between these strategies is drawn, yielding qualitatively similar results within a static framework. A number of analyses are performed to assess the accuracy of these different computational strategies under study based on a variety of numerical thresholds and optimization methods. Several basis sets and active spaces have also been calibrated to understand to what extent they can influence the resulting geometries and subsequent interpretation of the photochemical decay channels. The study shows small discrepancies between CASSCF and CASPT2 PEHs, displaying a shallow planar or twisted 1(ππ*) minimum, respectively, and thus featuring a qualitatively similar scenario for supporting the ultrafast bi-exponential deactivation registered in thymine upon UV-light exposure. A deeper knowledge of the PEHs at different levels of theory provides useful insight into its correct characterization and subsequent interpretation of the experimental observations. The discrepancies displayed by the different methods studied here are then discussed and framed within their potential consequences in on-the-fly non-adiabatic molecular dynamics simulations, where qualitatively diverse outcomes are expected.
Collapse
Affiliation(s)
- Javier Segarra-Martí
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, ES-46071 Valencia, Spain.
- Present Address: Laboratoire de Chimie UMR 5182, École Normale Supérieure de Lyon, CNRS, Université de Lyon, 46 Allée d'Italie, F-69364 Lyon Cedex 07, France.
| | - Antonio Francés-Monerris
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, ES-46071 Valencia, Spain.
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, ES-46071 Valencia, Spain.
| | - Manuela Merchán
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, ES-46071 Valencia, Spain.
| |
Collapse
|
33
|
Fdez. Galván I, Delcey MG, Pedersen TB, Aquilante F, Lindh R. Analytical State-Average Complete-Active-Space Self-Consistent Field Nonadiabatic Coupling Vectors: Implementation with Density-Fitted Two-Electron Integrals and Application to Conical Intersections. J Chem Theory Comput 2016; 12:3636-53. [DOI: 10.1021/acs.jctc.6b00384] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Mickaël G. Delcey
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Thomas Bondo Pedersen
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O.
Box 1033 Blindern, 0315 Oslo, Norway
| | - Francesco Aquilante
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Via F. Selmi 2, IT-40126 Bologna, Italy
| | | |
Collapse
|
34
|
Chattopadhyay A, Saini P, Pandharkar R. Exploring the isomerization paths of push–pull hexatrienes. RSC Adv 2016. [DOI: 10.1039/c6ra16812d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first photo-excited singlet state of all-trans donor (amine), acceptor (cyano)-substituted hexatriene forms donor side-twisted minima and its passage towards the cis–trans–trans isomer is characterized by an S0/S1 conical intersection.
Collapse
Affiliation(s)
- Anjan Chattopadhyay
- Department of Chemistry
- Birla Institute of Technology and Science (BITS)
- Pilani – K.K. Birla Goa Campus
- India
| | - Praveen Saini
- Department of Chemistry
- Birla Institute of Technology and Science (BITS)
- Pilani – K.K. Birla Goa Campus
- India
| | - Riddhish Pandharkar
- Department of Chemistry
- Birla Institute of Technology and Science (BITS)
- Pilani – K.K. Birla Goa Campus
- India
| |
Collapse
|
35
|
Estrada LA, Francés-Monerris A, Schapiro I, Olivucci M, Roca-Sanjuán D. Mechanism of excited state deactivation of indan-1-ylidene and fluoren-9-ylidene malononitriles. Phys Chem Chem Phys 2016; 18:32786-32795. [DOI: 10.1039/c6cp05231b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A joint experimental and computational study on the non-radiative double bond isomerisation decay channel of indan-1-ylidene malononitrile and fluoren-9-ylidene malononitrile is presented in this work.
Collapse
Affiliation(s)
- Leandro A. Estrada
- Center for Photochemical Sciences
- Bowling Green State University
- Bowling Green
- USA
| | | | - Igor Schapiro
- Center for Photochemical Sciences
- Bowling Green State University
- Bowling Green
- USA
| | - Massimo Olivucci
- Center for Photochemical Sciences
- Bowling Green State University
- Bowling Green
- USA
- Dipartimento di Biotecnologie
| | | |
Collapse
|
36
|
Aquilante F, Autschbach J, Carlson RK, Chibotaru LF, Delcey MG, De Vico L, Fdez Galván I, Ferré N, Frutos LM, Gagliardi L, Garavelli M, Giussani A, Hoyer CE, Li Manni G, Lischka H, Ma D, Malmqvist PÅ, Müller T, Nenov A, Olivucci M, Pedersen TB, Peng D, Plasser F, Pritchard B, Reiher M, Rivalta I, Schapiro I, Segarra-Martí J, Stenrup M, Truhlar DG, Ungur L, Valentini A, Vancoillie S, Veryazov V, Vysotskiy VP, Weingart O, Zapata F, Lindh R. Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. J Comput Chem 2015; 37:506-41. [PMID: 26561362 DOI: 10.1002/jcc.24221] [Citation(s) in RCA: 1129] [Impact Index Per Article: 125.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 12/17/2022]
Abstract
In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas-Kroll-Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC-PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large-scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization.
Collapse
Affiliation(s)
- Francesco Aquilante
- Department of Chemistry - Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, Uppsala, 751 20, Sweden.,Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, IT-40126, Bologna, Italy
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, 14260-3000, USA
| | - Rebecca K Carlson
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA
| | - Liviu F Chibotaru
- Division of Quantum and Physical Chemistry, and INPAC, Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven Celestijnenlaan, 200F, 3001, Belgium
| | - Mickaël G Delcey
- Department of Chemistry - Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, Uppsala, 751 20, Sweden
| | - Luca De Vico
- Department of Chemistry, Copenhagen University, Universitetsparken 5, Copenhagen Ø, 2100, Denmark
| | - Ignacio Fdez Galván
- Department of Chemistry - Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, Uppsala, 751 20, Sweden.,Uppsala Center for Computational Chemistry - UC3, Uppsala University, Box 518, Uppsala, 751 20, Sweden
| | - Nicolas Ferré
- Université d'Aix-Marseille, CNRS, Institut de Chimie Radicalaire, Campus Étoile/Saint-Jérôme Case 521, Avenue Esc. Normandie Niemen, Marseille Cedex 20, 13397, France
| | - Luis Manuel Frutos
- Unidad Docente de Química Física, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Laura Gagliardi
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA
| | - Marco Garavelli
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, IT-40126, Bologna, Italy.,Université de Lyon, CNRS, École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon Cedex 07, F-69364, France
| | - Angelo Giussani
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, IT-40126, Bologna, Italy
| | - Chad E Hoyer
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA
| | - Giovanni Li Manni
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA.,Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, Stuttgart, 70569, Germany
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle and Boston, Lubbock, Texas, 79409-1061, USA.,Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, Vienna, A-1090, Austria
| | - Dongxia Ma
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA.,Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, Stuttgart, 70569, Germany
| | - Per Åke Malmqvist
- Department of Theoretical Chemistry, Lund University, Chemical Center, P.O.B 124 S-221 00, Lund, Sweden
| | - Thomas Müller
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Institute for Advanced Simulation (IAS), Wilhelm-Johnen-Straße, Jülich, 52425, Germany
| | - Artur Nenov
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, IT-40126, Bologna, Italy
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, Siena, 53100, Italy.,Chemistry Department, Bowling Green State University, 141 Overman Hall, Bowling Green, Ohio, 43403, USA.,Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504, 23 Rue du Loess, Strasbourg, 67034, France
| | - Thomas Bondo Pedersen
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, Oslo, 0315, Norway
| | - Daoling Peng
- College of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China
| | - Felix Plasser
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, Vienna, A-1090, Austria
| | - Ben Pritchard
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, 14260-3000, USA
| | - Markus Reiher
- ETH Zurich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, Zurich, CH-8093, Switzerland
| | - Ivan Rivalta
- Université de Lyon, CNRS, École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon Cedex 07, F-69364, France
| | - Igor Schapiro
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504, 23 Rue du Loess, Strasbourg, 67034, France.,Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Javier Segarra-Martí
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, IT-40126, Bologna, Italy
| | - Michael Stenrup
- Department of Chemistry - Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, Uppsala, 751 20, Sweden.,Uppsala Center for Computational Chemistry - UC3, Uppsala University, Box 518, Uppsala, 751 20, Sweden
| | - Donald G Truhlar
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA
| | - Liviu Ungur
- Division of Quantum and Physical Chemistry, and INPAC, Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven Celestijnenlaan, 200F, 3001, Belgium
| | - Alessio Valentini
- Unidad Docente de Química Física, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, Siena, 53100, Italy
| | - Steven Vancoillie
- Department of Theoretical Chemistry, Lund University, Chemical Center, P.O.B 124 S-221 00, Lund, Sweden
| | - Valera Veryazov
- Department of Theoretical Chemistry, Lund University, Chemical Center, P.O.B 124 S-221 00, Lund, Sweden
| | - Victor P Vysotskiy
- Department of Theoretical Chemistry, Lund University, Chemical Center, P.O.B 124 S-221 00, Lund, Sweden
| | - Oliver Weingart
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, Düsseldorf, 40225, Germany
| | - Felipe Zapata
- Unidad Docente de Química Física, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Roland Lindh
- Department of Chemistry - Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, Uppsala, 751 20, Sweden.,Uppsala Center for Computational Chemistry - UC3, Uppsala University, Box 518, Uppsala, 751 20, Sweden
| |
Collapse
|
37
|
Stenrup M, Lindh R, Fdez. Galván I. Constrained numerical gradients and composite gradients: Practical tools for geometry optimization and potential energy surface navigation. J Comput Chem 2015; 36:1698-708. [DOI: 10.1002/jcc.23987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Michael Stenrup
- Department of Chemistry - Ångström; The Theoretical Chemistry Programme, Uppsala University; P.O. Box 518 SE-751 20 Uppsala Sweden
- Uppsala Center for Computational Chemistry - UC 3 , Uppsala University; P.O. Box 518 SE-751 20 Uppsala Sweden
| | - Roland Lindh
- Department of Chemistry - Ångström; The Theoretical Chemistry Programme, Uppsala University; P.O. Box 518 SE-751 20 Uppsala Sweden
- Uppsala Center for Computational Chemistry - UC 3 , Uppsala University; P.O. Box 518 SE-751 20 Uppsala Sweden
| | - Ignacio Fdez. Galván
- Department of Chemistry - Ångström; The Theoretical Chemistry Programme, Uppsala University; P.O. Box 518 SE-751 20 Uppsala Sweden
- Uppsala Center for Computational Chemistry - UC 3 , Uppsala University; P.O. Box 518 SE-751 20 Uppsala Sweden
| |
Collapse
|
38
|
Ruiz-Barragan S, Morokuma K, Blancafort L. Conical Intersection Optimization Using Composed Steps Inside the ONIOM(QM:MM) Scheme: CASSCF:UFF Implementation with Microiterations. J Chem Theory Comput 2015; 11:1585-94. [DOI: 10.1021/acs.jctc.5b00004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sergi Ruiz-Barragan
- Institut
de Química Computacional i Catàlisis and Departament
de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Keiji Morokuma
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Lluís Blancafort
- Institut
de Química Computacional i Catàlisis and Departament
de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| |
Collapse
|
39
|
Schapiro I, Roca-Sanjuán D, Lindh R, Olivucci M. A surface hopping algorithm for nonadiabatic minimum energy path calculations. J Comput Chem 2015; 36:312-20. [DOI: 10.1002/jcc.23805] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/21/2014] [Accepted: 11/16/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Igor Schapiro
- Department of Chemistry; Bowling Green State University; Bowling Green Ohio 43403
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular; Universitat de València; P. O. Box 22085 València 46071 Spain
| | - Roland Lindh
- Department of Chemistry-Ångström; Theoretical Chemistry Programme, Uppsala University; P. O. Box 518 Uppsala 75120 Sweden
- Uppsala Center for Computational Chemistry - UC 3; Uppsala University; P. O. Box 518 Uppsala 75120 Sweden
| | - Massimo Olivucci
- Department of Chemistry; Bowling Green State University; Bowling Green Ohio 43403
- Dipartimento di Biotechnologie, Chimica e Farmacia; Università di Siena; Siena 53100 Italy
| |
Collapse
|
40
|
Kruse H, Šponer J. Towards biochemically relevant QM computations on nucleic acids: controlled electronic structure geometry optimization of nucleic acid structural motifs using penalty restraint functions. Phys Chem Chem Phys 2014; 17:1399-410. [PMID: 25427983 DOI: 10.1039/c4cp04680c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent developments in dispersion-corrected density functional theory methods allow for the first time the description of large fragments of nucleic acids (hundreds of atoms) with an accuracy clearly surpassing the accuracy of common biomolecular force fields. Such calculations can significantly improve the description of the potential energy surface of nucleic acid molecules, which may be useful for studies of molecular interactions and conformational preferences of nucleic acids, as well as verification and parameterization of other methods. The first of such studies, however, demonstrated that successful applications of accurate QM calculations to larger nucleic acid building blocks are hampered by difficulties in obtaining geometries that are biochemically relevant and are not biased by non-native structural features. We present an approach that can greatly facilitate large-scale QM studies on nucleic acids, namely electronic structure geometry optimization of nucleic acid fragments utilizing a penalty function to restrain key internal coordinates with a specific focus on the torsional backbone angles. This work explores the viability of these restraint optimizations for DFT-D3, PM6-D3H and HF-3c optimizations on a set of examples (a UpA dinucleotide, a DNA G-quadruplex and a B-DNA fragment). Evaluation of different penalty function strengths reveals only a minor system-dependency and reasonable restraint values range from 0.01 to 0.05 Eh rad(-2) for the backbone torsions. Restraints are crucial to perform the QM calculations on biochemically relevant conformations in implicit solvation and gas phase geometry optimizations. The reasons for using restrained instead of constrained or unconstrained optimizations are explained and an open-source external optimizer is provided.
Collapse
Affiliation(s)
- Holger Kruse
- CEITEC - Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic.
| | | |
Collapse
|
41
|
Sergentu DC, Maurice R, Havenith RWA, Broer R, Roca-Sanjuán D. Computational determination of the dominant triplet population mechanism in photoexcited benzophenone. Phys Chem Chem Phys 2014; 16:25393-403. [DOI: 10.1039/c4cp03277b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Giussani A, Merchán M, Gobbo JP, Borin AC. Relaxation Mechanisms of 5-Azacytosine. J Chem Theory Comput 2014; 10:3915-24. [DOI: 10.1021/ct5003175] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Angelo Giussani
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, ES-46071 Valencia, Spain
| | - Manuela Merchán
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, ES-46071 Valencia, Spain
| | - João Paulo Gobbo
- Instituto
de Química, Departamento de Química Fundamental, NAP-PhotoTech
the USP Consortium for Photochemical Technology, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Antonio Carlos Borin
- Instituto
de Química, Departamento de Química Fundamental, NAP-PhotoTech
the USP Consortium for Photochemical Technology, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, 05508-000 São Paulo, Brazil
| |
Collapse
|
43
|
Giussani A. Toward the Understanding of the Photophysics and Photochemistry of 1-Nitronaphthalene under Solar Radiation: The First Theoretical Evidence of a Photodegradation Intramolecular Rearrangement Mechanism Involving the Triplet States. J Chem Theory Comput 2014; 10:3987-95. [DOI: 10.1021/ct500395f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Angelo Giussani
- Instituto
de Ciencia Molecular, Universitat de València, Apartado22085, ES-46071 Valencia, Spain
| |
Collapse
|
44
|
|
45
|
Francés-Monerris A, Merchán M, Roca-Sanjuán D. Theoretical study of the hydroxyl radical addition to uracil and photochemistry of the formed U6OH• adduct. J Phys Chem B 2014; 118:2932-9. [PMID: 24571272 DOI: 10.1021/jp412347k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydroxyl radical ((•)OH) is produced in biological systems by external or endogenous agents. It can damage DNA/RNA by attacking pyrimidine nucleobases through the addition to the C5═C6 double bond. The adduct resulting from the attachment at the C5 position prevails in the experimental measurements, although the reasons for this preference remain unclear. The first aim of this work is therefore to shed light on the comprehension of this important process. Thus, the thermal (•)OH addition to the C5═C6 double bond of uracil has been studied theoretically by using DFT, MP2, and the multiconfigurational CASPT2//CASSCF methodologies. The in-vacuo results obtained with the latter protocol plus the analysis of solvent effects support the experimental observation. A significant lower barrier height is predicted for the C5 pathway with respect to that of the C6 route. In contrast to the C5 adduct, the C6 adduct is able to absorb visible light. Hence, the second aim of the work is to study the photochemistry of this species using the CASPT2//CASSCF methodology within the framework of the photochemical reaction path approach (PRPA). The nonradiative decay to the ground state of this compound has been characterized. A photoreactive character is predicted for the C6 adduct in the excited states according to the presence of excited-state minima along the main decay channel. Finally, a new mechanism of photodissociation has been explored, which implies the photoinduced regeneration of the canonical nucleobase by irradiating with visible light, being therefore relevant in RNA protection against damage by reactive oxygen species.
Collapse
|
46
|
|
47
|
Farahani P, Roca-Sanjuán D, Zapata F, Lindh R. Revisiting the Nonadiabatic Process in 1,2-Dioxetane. J Chem Theory Comput 2013; 9:5404-11. [PMID: 26592278 DOI: 10.1021/ct4007844] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Determining the ground and excited-state decomposition mechanisms of 1,2-dioxetane is essential to understand the chemiluminescence and bioluminescence phenomena. Several experimental and theoretical studies has been performed in the past without reaching a converged description. The reason is in part associated with the complex nonadiabatic process taking place along the reaction. The present study is an extension of a previous work (De Vico, L.; Liu, Y.-J.; Krogh, J. W.; Lindh, R. J. Phys. Chem. A 2007, 111, 8013-8019) in which a two-step mechanism was established for the chemiluminescence involving asynchronous O-O' and C-C' bond dissociations. New high-level multistate multi configurational reference second-order perturbation theory calculations and ab initio molecular dynamics simulations at constant temperature are performed in the present study, which provide further details on the mechanisms and allow to rationalize further experimental observations. In particular, the new results explain the high ratio of triplet to singlet dissociation products.
Collapse
Affiliation(s)
- Pooria Farahani
- Department of Chemistry, Ångström, Uppsala University , P.O. Box 518, SE-751 20 Uppsala, Sweden
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València , P.O. Box 22085, ES-46071 València, Spain
| | - Felipe Zapata
- Departamento de Quimica Fisica, Universidad de Alcalá , E-28871, Alcalá de Henares, Madrid, Spain
| | - Roland Lindh
- Department of Chemistry, Ångström, Uppsala University , P.O. Box 518, SE-751 20 Uppsala, Sweden
| |
Collapse
|
48
|
Ruiz-Barragan S, Robb MA, Blancafort L. Conical Intersection Optimization Based on a Double Newton–Raphson Algorithm Using Composed Steps. J Chem Theory Comput 2013; 9:1433-42. [DOI: 10.1021/ct301059t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sergi Ruiz-Barragan
- Institut de Química Computacional
and Department de Química, University of Girona, 17071 Girona,
Spain
| | - Michael A. Robb
- Department of Chemistry,
Imperial
College, London SW7 2AZ, United Kingdom
| | - Lluís Blancafort
- Institut de Química Computacional
and Department de Química, University of Girona, 17071 Girona,
Spain
| |
Collapse
|
49
|
Mori T, Martínez TJ. Exploring the Conical Intersection Seam: The Seam Space Nudged Elastic Band Method. J Chem Theory Comput 2013; 9:1155-63. [DOI: 10.1021/ct300892t] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toshifumi Mori
- PULSE Institute and
Department
of Chemistry, Stanford University, Stanford, California 94305, United
States
- SLAC National Accelerator
Laboratory,
2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Todd. J. Martínez
- PULSE Institute and
Department
of Chemistry, Stanford University, Stanford, California 94305, United
States
- SLAC National Accelerator
Laboratory,
2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
50
|
Excitation of Nucleobases from a Computational Perspective I: Reaction Paths. Top Curr Chem (Cham) 2013; 355:57-97. [DOI: 10.1007/128_2013_501] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|