1
|
Kwasigroch B, Khuu T, Perez EH, Denton JK, Schneider EK, Straßner A, Theisen M, Kruppa SV, Weis P, Kappes MM, Riehn C, Johnson MA, Niedner-Schatteburg G. On the Hydrogen Oxalate Binding Motifs onto Dinuclear Cu and Ag Metal Phosphine Complexes. Chemistry 2021; 27:15136-15146. [PMID: 34632659 PMCID: PMC8597048 DOI: 10.1002/chem.202102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 11/23/2022]
Abstract
We report the binding geometries of the isomers that are formed when the hydrogen oxalate ((CO2)2H=HOx) anion attaches to dinuclear coinage metal phosphine complexes of the form [M1M2dcpm2(HOx)]+ with M=Cu, Ag and dcpm=bis(dicyclohexylphosphino)methane, abbreviated [MM]+. These structures are established by comparison of isomer‐selective experimental vibrational band patterns displayed by the cryogenically cooled and N2‐tagged cations with DFT calculations of the predicted spectra for various local minima. Two isomeric classes are identified that feature either attachment of the carboxylate oxygen atoms to the two metal centers (end‐on docking) or attachment of oxygen atoms on different carbon atoms asymmetrically to the metal ions (side‐on docking). Within each class, there are additional isomeric variations according to the orientation of the OH group. This behavior indicates that HOx undergoes strong and directional coordination to [CuCu]+ but adopts a more flexible coordination to [AgAg]+. Infrared spectra of the bare ions, fragmentation thresholds and ion mobility measurements are reported to explore the behaviors of the complexes at ambient temperature.
Collapse
Affiliation(s)
- Björn Kwasigroch
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Thien Khuu
- Sterling Chemistry Laboratory, Yale University, 225 Prospect Str., New Haven, Connecticut, 06520, USA
| | - Evan H Perez
- Sterling Chemistry Laboratory, Yale University, 225 Prospect Str., New Haven, Connecticut, 06520, USA
| | - Joanna K Denton
- Sterling Chemistry Laboratory, Yale University, 225 Prospect Str., New Haven, Connecticut, 06520, USA
| | - Erik K Schneider
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 2, 76131, Karlsruhe, Germany
| | - Annika Straßner
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Marvin Theisen
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Sebastian V Kruppa
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Patrick Weis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 2, 76131, Karlsruhe, Germany
| | - Manfred M Kappes
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 2, 76131, Karlsruhe, Germany.,Institute for Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christoph Riehn
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 52, 67663, Kaiserslautern, Germany.,Research Center OPTIMAS, Erwin-Schrödinger Str. 46, 67663, Kaiserslautern, Germany
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, 225 Prospect Str., New Haven, Connecticut, 06520, USA
| | - Gereon Niedner-Schatteburg
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 52, 67663, Kaiserslautern, Germany.,Research Center OPTIMAS, Erwin-Schrödinger Str. 46, 67663, Kaiserslautern, Germany
| |
Collapse
|
2
|
Carlson RK, Yang P, Clegg SM, Batista ER. Mechanistic Study of the Production of NO x Gases from the Reaction of Copper with Nitric Acid. Inorg Chem 2020; 59:16833-16842. [PMID: 33202122 DOI: 10.1021/acs.inorgchem.0c00607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Copper dissolution in nitric acid is a historic reaction playing a central role in many industrial processes, particularly for metal recovery from the electronics to nuclear industries. The mechanism through which this process occurs is debated. In order to better understand this process, quantum chemical calculations were performed to elucidate the key steps in the mechanism of copper dissolution in nitric acid. We combine both Kohn-Sham density functional theory and ab initio molecular dynamics simulations to understand the mechanism of the formation of the key products: NO2, HNO2, and NO. Our calculations suggest that the mechanisms of formation of NO2, HNO2, and NO are interconnected.
Collapse
|
4
|
Zhao L, Guo W, Yang T, Lu X. Theoretical survey of the potential energy surface of methyl nitrite + Cu+ reaction. J Phys Chem A 2008; 112:533-41. [PMID: 18161951 DOI: 10.1021/jp075007i] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The gas-phase reaction of methyl nitrite with Cu+ has been investigated using density functional theory. The geometries and energies of all the stationary points involved in the reaction have been investigated at the B3LYP/6-311+G(2df,2pd) level. Seven different structures of the encounter complexes could be formed when Cu+ attacking at different electronegative heteroatoms of trans and cis conformational isomers of methyl nitrite, in which the inner oxygen attacks account for the most stable complexes. Extensive conversions could take place for these complexes converting into each other. Various mechanisms leading to the loss of NO and HNO are analyzed in terms of the topology of the potential energy surface. The reaction proceeds exclusively from the inner oxygen attachments, followed by four different mechanisms, i.e., direct dissociation, direct H abstraction, N-O activation, and C-H activation, where the former two provide direct channels for the respective losses of NO and HNO, the third one accounts for both of the losses, and C-H activation is unlikely to be important due to the energetics.
Collapse
Affiliation(s)
- Lianming Zhao
- College of Physics Science and Technology, China University of Petroleum Dongying, Shandong 257061, PR China
| | | | | | | |
Collapse
|