1
|
Zhang YL, Han ZF. Rational design of an orthogonal noncovalent interaction system at the MUPP1 PDZ11 complex interface with CaMKIIα-derived peptides in human fertilization. MOLECULAR BIOSYSTEMS 2017; 13:2145-2151. [PMID: 28832060 DOI: 10.1039/c7mb00379j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An orthogonal noncovalent interaction (ONI) system between a native hydrogen bond and a designed halogen bond across the complex interface of the MUPP1 PDZ11 domain with the CaMKIIαsia[Asn-1Phe] peptide mutant is introduced using a structure-based rational approach.
Collapse
Affiliation(s)
- Yi-Le Zhang
- Reproductive Medical Center
- the First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| | - Zhao-Feng Han
- Department of Burn and Reconstruction Surgery
- the First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| |
Collapse
|
2
|
Umadevi P, Senthilkumar L. Interaction between arginine conformers and Hofmeister halide anions. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Zhu J, Lu M, Zhu L. Rational derivation of CETP self-binding helical peptides by π-π stacking and halogen bonding: Therapeutic implication for atherosclerosis. Bioorg Chem 2016; 68:259-64. [DOI: 10.1016/j.bioorg.2016.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 01/17/2023]
|
4
|
Molecular design and validation of halogen bonding orthogonal to hydrogen bonding in breast cancer MDM2-peptide complex. J Mol Graph Model 2016; 70:40-44. [PMID: 27649550 DOI: 10.1016/j.jmgm.2016.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 11/21/2022]
Abstract
Peptide therapeutics has been raised as an attractive approach for the treatment of breast cancer by targeting the oncogenic protein MDM2 that inactivates p53 tumor suppressor. Here, we performed molecular design of halogen bonding orthogonal to hydrogen bonding at the complex interface of MDM2 protein with its cognate peptide ligand to improve the peptide binding affinity and specificity. Crystal structure analysis, high-level quantum chemistry (QC) calculations and combined quantum mechanics/molecular mechanics (QM/MM) modeling revealed that halogen substitution at position 3 of the benzene moiety of peptide Phe3 residue can constitute a putative halogen bonding, which is shown to be geometrically perpendicular to and energetically independent of a native hydrogen bonding that share a common carbonyl oxygen acceptor. The designed halogen bonding was then validated by surface plasmon resonance (SPR) assays, that is, substitution with bromine at position 3 can considerably improve peptide affinity by ∼4-fold, but the peptide binding does not change substantially upon the bromine substitution at other positions of the Phe3 benzene moiety (the negative controls that are theoretically unable to form the halogen bonding), indicating that the orthogonal molecular interaction (OMI) system between the designed halogen bonding and native hydrogen bonding can co-work well at the complex interface of MDM2 protein with its halogenated peptide ligands.
Collapse
|
5
|
Wagner ND, Kim D, Russell DH. Increasing Ubiquitin Ion Resistance to Unfolding in the Gas Phase Using Chloride Adduction: Preserving More "Native-Like" Conformations Despite Collisional Activation. Anal Chem 2016; 88:5934-40. [PMID: 27137645 DOI: 10.1021/acs.analchem.6b00871] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electrospray ionization (ESI) of ubiquitin from acidified (0.1%) aqueous solution produces abundant ubiquitin-chloride adduct ions, [M + nH + xCl]((n - x)+), that upon mild heating react via elimination of neutral HCl. Ion mobility collision cross section (CCS) measurements show that ubiquitin ions retaining chloride adducts exhibit CCS values similar to those of the "native-state" of the protein. Coupled with results from recent molecular dynamics (MD) simulations for the evolution of a salt-containing electrospray droplet, this study provides a more complete picture for how the presence of salts affects the evolution of protein conformers in the final stages of dehydration of the ESI process and within the instrument.
Collapse
Affiliation(s)
- Nicole D Wagner
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Doyong Kim
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| |
Collapse
|
6
|
Dou SF, Liu H, Cao TM, Wen QL, Li J, Shao QC. Structure-Based Design of a Br Halogen Bond at the Complex Interface of the Human Placental HtrA1 PDZ Domain with Its Heptapeptide Ligand. Arch Pharm (Weinheim) 2016; 349:302-7. [PMID: 26972470 DOI: 10.1002/ardp.201500466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 11/06/2022]
Abstract
The shock-induced serine protease HtrA1 is a potential regulator of human placenta development during pregnancy. The protein contains a functional PDZ domain that has been solved in complex with a phage display-derived heptapeptide: Asp-6 Ser-5 Arg-4 Ile-3 Trp-2 Trp-1 Val0 . In this study, a rationally designed halogen bond was introduced to the domain-peptide complex based on its NMR structure in solution. We computationally compared the stabilization energies and hindrance effects due to the presence of different halogens X (X = F, Cl, Br, or I), using a hybrid quantum mechanics/molecular mechanics (QM/MM) approach, and found that the Br atom could considerably promote the peptide binding free energy (ΔΔG = -5.2 kcal/mol). Fluorescence assays confirmed that the peptide affinity to the HtrA1 PDZ domain was improved by approximately sevenfold upon bromination. Structural analysis identified a geometrically perfect halogen bond between the Br atom of the peptide Trp-1 residue and the carbonyl O atom of the HtrA1 Ile385 residue, with a bond length and an interaction energy of d = 3.20 Å and ΔE = -3.7 kcal/mol, respectively.
Collapse
Affiliation(s)
- Shuo-Fen Dou
- Catheter Room, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hong Liu
- Department of Obstetrics, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Tong-Mei Cao
- Department of Obstetrics, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Qing-Li Wen
- Department of Obstetrics, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jie Li
- Department of Obstetrics, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Qing-Chun Shao
- Department of Obstetrics, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
7
|
Li Y, Yu X, Lou Y, Wang T. Rational Design of an Orthogonal Molecular Interaction System at the Complex Interface of Lung Cancer-Related MDM2 Protein with p53 Peptide. Aust J Chem 2016. [DOI: 10.1071/ch16096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The oncogenic protein MDM2 is an important negative regulator of p53 tumour suppressor. Overexpression of this protein is closely related to the pathological progression and metastasis of lung cancer and other tumours. Previously, a 12-mer peptide segment 17ETFSDLWKLLPE28 (p5317–28) corresponding to residues 17–28 of the human p53 transactivation domain was identified to interact moderately with MDM2. Here, we successfully created an orthogonal molecular interaction system between a native hydrogen bond (H-bond) and a designed halogen bond (X-bond) across the protein–peptide complex interface, where the X-bond was introduced by substituting the 3-hydrogen atom of the benzene ring of the p5317–28 Phe19 residue with a halogen atom X, resulting in a series of 3X-peptides (X = F, Cl, Br or I). Theoretical analysis found that chlorine is a good compromise between X-bonding strength and steric hindrance due to introducing a bulkier halogen atom to the tightly packed complex interface. Consequently, the 3Cl-peptide (Kd = 105 nM) was determined to exhibit ~5-fold affinity improvement relative to p5317–28 (Kd = 570 nM). In contrast, the binding affinity of the 2Cl-peptide (Kd = 492 nM), a negative control that cannot form the X-bond according to computational analysis, did not change considerably on the halogenation.
Collapse
|
8
|
Just an additional hydrogen bond can dramatically reduce the catalytic activity of Bacillus subtilis lipase A I12T mutant: An integration of computational modeling and experimental analysis. Comput Biol Med 2013; 43:1882-8. [DOI: 10.1016/j.compbiomed.2013.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 11/22/2022]
|
9
|
Demireva M, Oomens J, Berden G, Williams ER. The Ionic Hydrogen/Deuterium Bonds between Diammoniumalkane Dications and Halide Anions. Chempluschem 2013; 78:995-1004. [PMID: 31986747 DOI: 10.1002/cplu.201300084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Indexed: 11/06/2022]
Abstract
Halide-anion binding to 1,12-dodecanediammonium, tetramethyl-1,12-dodecanediammmonium, and tetramethyl-1,7-heptanediammonium has been investigated with infrared multiple-photon dissociation (IRMPD) spectroscopy in the 1000-2250 cm-1 spectral region and with theory. Both charged ammonium groups in these diammonium compounds interact with the halide anion resulting in an ionic hydrogen bond (IHB) stretching frequency outside of the spectral frequency range that can be measured with the free-electron laser (FEL). This frequency is shifted into the spectral range upon exchanging all of the labile hydrogen atoms with deuterium atoms, thus making measurement of the ionic deuterium bond (IDB) stretching frequency possible. The IDB stretching frequency shifts to higher values with increasing halide-anion size, methylation of the ammonium groups, and alkane chain length, consistent with the halide-anion-deuterium bond strength decreasing with decreasing gas-phase basicity of the halide anion and the increasing gas-phase basicity of the ammonium groups. The IDB stretching frequency also depends on the alkane chain length owing to constraints on the angle of the bonds between the halide anion and the two ammonium groups. There are additional bands in the IDB stretching feature in the IRMPD spectra, which are attributed to Fermi resonances and arise from coupling with overtone or combination bands that can be identified from theory and depend on the halide-anion identity and alkane chain length.
Collapse
Affiliation(s)
- Maria Demireva
- Department of Chemistry, University of California, Berkeley, CA 94720-1460 (USA), Fax: (+1) (510)-642-7714
| | - Jos Oomens
- Radboud University Nijmegen, Institute for Molecules and Materials, FELIX Facility, Toernooiveld 7, 6525ED Nijmegen (The Netherlands).,Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam (The Netherlands)
| | - Giel Berden
- Radboud University Nijmegen, Institute for Molecules and Materials, FELIX Facility, Toernooiveld 7, 6525ED Nijmegen (The Netherlands)
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, CA 94720-1460 (USA), Fax: (+1) (510)-642-7714
| |
Collapse
|
10
|
Prakash M, Gopalsamy K, Subramanian V. Studies on the structure, stability, and spectral signatures of hydride ion-water clusters. J Chem Phys 2012; 135:214308. [PMID: 22149793 DOI: 10.1063/1.3663708] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The gas-phase structure, stability, spectra, and electron density topography of H(-)W(n) clusters (where n = 1-8) have been calculated using coupled-cluster CCSD(T) and Møller-Plesset second-order perturbation (MP2) theory combined with complete basis set (CBS) approaches. The performance of various density functional theory (DFT) based methods such as B3LYP, M05-2X, M06, M06-L, and M06-2X using 6-311++G(d,p), and aug-cc-pVXZ (aVXZ, where X = D, T, and Q) basis sets has also been assessed by considering values calculated using CCSD(T)/CBS limit as reference. The performance of the functionals has been ranked based on the mean signed/unsigned error. The comparison of geometrical parameters elicits that the geometrical parameters predicted by B3LYP/aVTZ method are in good agreement with those values obtained at MP2/aVTZ level of theory. Results show that M05-2X functional outperform other functionals in predicting the energetics when compared to CCSD(T)/CBS value. On the other hand, values predicted by M06-2X, and M06 methods, are closer to those values obtained from MP2/CBS approach. It is evident from the calculations that H(-)W(n) (where n = 5-8) clusters adopt several interesting structural motifs such as pyramidal, prism, book, Clessidra, cubic, cage, and bag. The important role played by ion-water (O-H···H(-)) and water-water (O-H···O) interactions in determining the stability of the clusters has also been observed. Analysis of the results indicates that the most stable cluster is made up of minimum number of O-H···H(-) interaction in conjugation with the maximum number of O-H···O interactions. The Bader theory of atoms in molecules (AIM) and natural bond orbital (NBO) analyses has also been carried out to characterize the nature of interactions between hydride ion and water molecules. It can be observed from the vibrational spectra of H(-)W(n) clusters, the stretching frequencies involving ion-water interaction always exhibit larger redshift and intensities than that of water-water (inter solvent) interactions.
Collapse
Affiliation(s)
- M Prakash
- Chemical Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
| | | | | |
Collapse
|
11
|
Oh SY, Nickels CW, Garcia F, Jones W, Friščić T. Switching between halogen- and hydrogen-bonding in stoichiometric variations of a cocrystal of a phosphine oxide. CrystEngComm 2012. [DOI: 10.1039/c2ce25653c] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
A systematical comparison of DFT methods in reproducing the interaction energies of halide series with protein moieties. J Mol Model 2011; 18:2079-98. [DOI: 10.1007/s00894-011-1232-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
|
13
|
Ni Z, Zhou P, Jin X, Lin XF. Integrating In Silico and In vitro Approaches to Dissect the Stereoselectivity of Bacillus subtilis Lipase A toward Ketoprofen Vinyl Ester. Chem Biol Drug Des 2011; 78:301-8. [PMID: 21477088 DOI: 10.1111/j.1747-0285.2011.01097.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhong Ni
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | | | | | | |
Collapse
|
14
|
Ni Z, Jin X, Zhou P, Wu Q, Lin XF. A Combination of Computational and Experimental Approaches to Investigate the Binding Behavior of B.sub Lipase A Mutants with Substrate pNPP. Mol Inform 2011; 30:359-67. [PMID: 27466952 DOI: 10.1002/minf.201000110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/29/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Zhong Ni
- Department of Chemistry, Zhejiang University, Hangzhou 31002, P. R. China tel: +86 571 87952618, fax: +86 571 87951588
| | - Xin Jin
- Department of Chemistry, Zhejiang University, Hangzhou 31002, P. R. China tel: +86 571 87952618, fax: +86 571 87951588
| | - Peng Zhou
- Department of Chemistry, Zhejiang University, Hangzhou 31002, P. R. China tel: +86 571 87952618, fax: +86 571 87951588
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou 31002, P. R. China tel: +86 571 87952618, fax: +86 571 87951588
| | - Xian-Fu Lin
- Department of Chemistry, Zhejiang University, Hangzhou 31002, P. R. China tel: +86 571 87952618, fax: +86 571 87951588.
| |
Collapse
|
15
|
Zhou P, Tian F, Zou J, Ren Y, Liu X, Shang Z. Do Halide Motifs Stabilize Protein Architecture? J Phys Chem B 2010; 114:15673-86. [DOI: 10.1021/jp105259d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peng Zhou
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China, College of Bioengineering, Chongqing University, Chongqing 400044, China, Key Laboratory for Molecular Design and Nutrition Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China, Department of Biological and Chemical Engineering, Chongqing Education College, Chongqing 400067, China, and Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United
| | - Feifei Tian
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China, College of Bioengineering, Chongqing University, Chongqing 400044, China, Key Laboratory for Molecular Design and Nutrition Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China, Department of Biological and Chemical Engineering, Chongqing Education College, Chongqing 400067, China, and Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United
| | - Jianwei Zou
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China, College of Bioengineering, Chongqing University, Chongqing 400044, China, Key Laboratory for Molecular Design and Nutrition Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China, Department of Biological and Chemical Engineering, Chongqing Education College, Chongqing 400067, China, and Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United
| | - Yanrong Ren
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China, College of Bioengineering, Chongqing University, Chongqing 400044, China, Key Laboratory for Molecular Design and Nutrition Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China, Department of Biological and Chemical Engineering, Chongqing Education College, Chongqing 400067, China, and Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United
| | - Xiuhong Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China, College of Bioengineering, Chongqing University, Chongqing 400044, China, Key Laboratory for Molecular Design and Nutrition Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China, Department of Biological and Chemical Engineering, Chongqing Education College, Chongqing 400067, China, and Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United
| | - Zhicai Shang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China, College of Bioengineering, Chongqing University, Chongqing 400044, China, Key Laboratory for Molecular Design and Nutrition Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China, Department of Biological and Chemical Engineering, Chongqing Education College, Chongqing 400067, China, and Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United
| |
Collapse
|
16
|
Tian F, Zhang C, Fan X, Yang X, Wang X, Liang H. Predicting the Flexibility Profile of Ribosomal RNAs. Mol Inform 2010; 29:707-15. [PMID: 27464014 DOI: 10.1002/minf.201000092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/28/2010] [Indexed: 11/06/2022]
Abstract
Flexibility in biomolecules is an important determinant of biological functionality, which can be measured quantitatively by atomic Debye-Waller factor or B-factor. Although numerous works have been addressed on theoretical and computational studies of the B-factor profiles of proteins, the methods used for predicting B-factor values of nucleic acids, especially the complicated ribosomal RNAs (rRNAs), which are very functionally similar to proteins in providing matrix structures and in catalyzing biochemical reactions, still remain unexploited. In this article, we present a quantitative structure-flexibility relationship (QSFR) study with the aim at the quantitative prediction of rRNA B-factor based on primary sequences (sequence-based) and advanced structures (structure-based) by using both linear and nonlinear machine learning approaches, including partial least squares regression (PLS), least squares support vector machine (LSSVM), and Gaussian process (GP). By rigorously examining the performance and reliability of constructed statistical models and by comparing our models in detail to those developed previously for protein B-factors, we demonstrate that (i) rRNA B-factors could be predicted at a similar level of accuracy with that of protein, (ii) a structure-based approach performed much better as compared to sequence-based methods in modeling of rRNA B-factors, and (iii) rRNA flexibility is primarily governed by the local features of nonbonding potential landscapes, such as electrostatic and van der Waals forces.
Collapse
Affiliation(s)
- Feifei Tian
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, China phone: +86 23 68757411, fax: +86 23 68757404.,College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Chun Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, China phone: +86 23 68757411, fax: +86 23 68757404
| | - Xia Fan
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, China phone: +86 23 68757411, fax: +86 23 68757404
| | - Xue Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, China phone: +86 23 68757411, fax: +86 23 68757404
| | - Xi Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, China phone: +86 23 68757411, fax: +86 23 68757404
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, China phone: +86 23 68757411, fax: +86 23 68757404.
| |
Collapse
|
17
|
Ren Y, Chen X, Li X, Lai H, Wang Q, Zhou P, Chen G. Quantitative prediction of the thermal motion and intrinsic disorder of protein cofactors in crystalline state: A case study on halide anions. J Theor Biol 2010; 266:291-8. [DOI: 10.1016/j.jtbi.2010.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/08/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
|
18
|
Tian F, Yang L, Lv F, Luo X, Pan Y. Why OppA protein can bind sequence-independent peptides? A combination of QM/MM, PB/SA, and structure-based QSAR analyses. Amino Acids 2010; 40:493-503. [DOI: 10.1007/s00726-010-0661-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 06/12/2010] [Indexed: 01/21/2023]
|