1
|
Wang M, Fang WH, Li C. Assessment of State-Averaged Driven Similarity Renormalization Group on Vertical Excitation Energies: Optimal Flow Parameters and Applications to Nucleobases. J Chem Theory Comput 2023; 19:122-136. [PMID: 36534617 DOI: 10.1021/acs.jctc.2c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a comprehensive excited-state benchmark for the state-averaged (SA) driven similarity renormalization group (DSRG) [Li, C.; Evangelista, F. A. J. Chem. Phys. 2018, 148, 124106]. Following the QUEST database [Véril, M.; Scemama, A.; Caffarel, M.; Lipparini, F.; Boggio-Pasqua, M.; Jacquemin, D.; Loos, P.-F. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1517], 280 vertical transition energies of 35 medium-sized molecules are computed using the SA-DSRG derived second- and third-order perturbation theories (PT2/PT3) along with a nonperturbative approach [sq-LDSRG(2)]. Comparing to the theoretical best estimates, the optimal flow parameter is found to be 0.35 and 2.0 Eh-2 for SA-DSRG-PT2 and SA-DSRG-PT3, respectively. For SA-sq-LDSRG(2), a flow parameter of 1.5 Eh-2 provides converged equations without compromising the accuracy. We then assess the accuracy of the SA-DSRG hierarchy using these parameters. The SA-DSRG-PT2 scheme outperforms the level-shifted CASPT2 by 0.10 eV in mean absolute error (MAE), yet this accuracy is slightly inferior than that of CASPT2 with the ionization-potential-electron-affinity shift. Both SA-DSRG-PT3 and SA-sq-LDSRG(2) yield a MAE of 0.10 eV, which is comparable to that of CASPT3 (0.09 eV). Finally, we compute vertical excitation energies of several low-lying singlet states of nucleobases. The SA-sq-LDSRG(2) approach provides highly accurate results for π → π* excitations, while n → π* transitions are better described by SA-DSRG-PT3.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Battaglia S, Fransén L, Fdez Galván I, Lindh R. Regularized CASPT2: an Intruder-State-Free Approach. J Chem Theory Comput 2022; 18:4814-4825. [PMID: 35876618 PMCID: PMC9367007 DOI: 10.1021/acs.jctc.2c00368] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In this work we present a new approach to fix the intruder-state
problem (ISP) in CASPT2 based on σp regularization. The resulting σp-CASPT2 method is compared to previous techniques, namely, the real
and imaginary level shifts, on a theoretical basis and by performing
a series of systematic calculations. The analysis is focused on two
aspects, the effectiveness of σp-CASPT2 in removing the ISP and the sensitivity of the approach with
respect to the input parameter. We found that σp-CASPT2 compares favorably with respect to previous
approaches and that different versions, σ1-CASPT2
and σ2-CASPT2, have different potential application
domains. This analysis also reveals the unsuitability of the real
level shift technique as a general way to avoid the intruder-state
problem.
Collapse
Affiliation(s)
- Stefano Battaglia
- Department of Chemistry─BMC, Uppsala University, P. O. Box 576, SE-75123 Uppsala, Sweden
| | - Lina Fransén
- Department of Chemistry─BMC, Uppsala University, P. O. Box 576, SE-75123 Uppsala, Sweden
| | - Ignacio Fdez Galván
- Department of Chemistry─BMC, Uppsala University, P. O. Box 576, SE-75123 Uppsala, Sweden
| | - Roland Lindh
- Department of Chemistry─BMC, Uppsala University, P. O. Box 576, SE-75123 Uppsala, Sweden
| |
Collapse
|
3
|
Hapka M, Przybytek M, Pernal K. Symmetry-Adapted Perturbation Theory Based on Multiconfigurational Wave Function Description of Monomers. J Chem Theory Comput 2021; 17:5538-5555. [PMID: 34517707 PMCID: PMC8444344 DOI: 10.1021/acs.jctc.1c00344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We present a formulation
of the multiconfigurational (MC) wave
function symmetry-adapted perturbation theory (SAPT). The method is
applicable to noncovalent interactions between monomers which require
a multiconfigurational description, in particular when the interacting
system is strongly correlated or in an electronically excited state.
SAPT(MC) is based on one- and two-particle reduced density matrices
of the monomers and assumes the single-exchange approximation for
the exchange energy contributions. Second-order terms are expressed
through response properties from extended random phase approximation
(ERPA). The dispersion components of SAPT(MC) have been introduced
in our previous works [HapkaM.2019, 15, 1016−102730525591; HapkaM.2019, 15, 6712–672331670950]. SAPT(MC) is applied either with generalized valence
bond perfect pairing (GVB) or with complete active space self-consistent
field (CASSCF) treatment of the monomers. We discuss two model multireference
systems: the H2 ··· H2 dimer
in out-of-equilibrium geometries and interaction between the argon
atom and excited state of ethylene. Using the C2H4* ··· Ar complex as an example, we examine second-order
terms arising from negative transitions in the linear response function
of an excited monomer. We demonstrate that the negative-transition
terms must be accounted for to ensure qualitative prediction of induction
and dispersion energies and develop a procedure allowing for their
computation. Factors limiting the accuracy of SAPT(MC) are discussed
in comparison with other second-order SAPT schemes on a data set of
small single-reference dimers.
Collapse
Affiliation(s)
- Michał Hapka
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland.,Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Przybytek
- Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| |
Collapse
|
4
|
Guo Y, Sivalingam K, Neese F. Approximations of density matrices in N-electron valence state second-order perturbation theory (NEVPT2). I. Revisiting the NEVPT2 construction. J Chem Phys 2021; 154:214111. [PMID: 34240991 DOI: 10.1063/5.0051211] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Over the last decade, the second-order N-electron valence state perturbation theory (NEVPT2) has developed into a widely used multireference perturbation method. To apply NEVPT2 to systems with large active spaces, the computational bottleneck is the construction of the fourth-order reduced density matrix. Both its generation and storage become quickly problematic beyond the usual maximum active space of about 15 active orbitals. To reduce the computational cost of handling fourth-order density matrices, the cumulant approximation (CU) has been proposed in several studies. A more conventional strategy to address the higher-order density matrices is the pre-screening approximation (PS), which is the default one in the ORCA program package since 2010. In the present work, the performance of the CU, PS, and extended PS (EPS) approximations for the fourth-order density matrices is compared. Following a pedagogical introduction to NEVPT2, contraction schemes, as well as the approximations to density matrices, and the intruder state problem are discussed. The CU approximation, while potentially leading to large computational savings, virtually always leads to intruder states. With the PS approximation, the computational savings are more modest. However, in conjunction with conservative cutoffs, it produces stable results. The EPS approximation to the fourth-order density matrices can reproduce very accurate NEVPT2 results without any intruder states. However, its computational cost is not much lower than that of the canonical algorithm. Moreover, we found that a good indicator of intrude states problems in any approximation to high order density matrices is the eigenspectra of the Koopmans matrices.
Collapse
Affiliation(s)
- Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Kantharuban Sivalingam
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
5
|
Hapka M, Krzemińska A, Pernal K. How Much Dispersion Energy Is Included in the Multiconfigurational Interaction Energy? J Chem Theory Comput 2020; 16:6280-6293. [PMID: 32877179 PMCID: PMC7586340 DOI: 10.1021/acs.jctc.0c00681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 11/30/2022]
Abstract
We demonstrate how to quantify the amount of dispersion interaction recovered by supermolecular calculations with the multiconfigurational self-consistent field (MCSCF) wave functions. For this purpose, we present a rigorous derivation which connects the portion of dispersion interaction captured by the assumed wave function model-the residual dispersion interaction-with the size of the active space. Based on the obtained expression for the residual dispersion contribution, we propose a dispersion correction for the MCSCF that avoids correlation double counting. Numerical demonstration for model four-electron dimers in both ground and excited states described with the complete active space self-consistent field (CASSCF) reference serves as a proof-of-concept for the method. Accurate results, largely independent of the size of the active space, are obtained. For many-electron systems, routine CASSCF interaction energy calculations recover a tiny fraction of the full second-order dispersion energy. We found that the residual dispersion is non-negligible only for purely dispersion-bound complexes.
Collapse
Affiliation(s)
- Michał Hapka
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
- Faculty
of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Agnieszka Krzemińska
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| | - Katarzyna Pernal
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| |
Collapse
|
6
|
Multi-reference perturbation theory study on the RaCl molecule promising for the laser cooling. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Burton HGA, Thom AJW. Reaching Full Correlation through Nonorthogonal Configuration Interaction: A Second-Order Perturbative Approach. J Chem Theory Comput 2020; 16:5586-5600. [DOI: 10.1021/acs.jctc.0c00468] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hugh G. A. Burton
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Alex J. W. Thom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
8
|
Manna S, Chaudhuri RK, Chattopadhyay S. Taming the excited states of butadiene, hexatriene, and octatetraene using state specific multireference perturbation theory with density functional theory orbitals. J Chem Phys 2020; 152:244105. [DOI: 10.1063/5.0007198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shovan Manna
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | | | - Sudip Chattopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| |
Collapse
|
9
|
Chattopadhyay S. Investigation of Multiple-Bond Dissociation Using Brillouin–Wigner Perturbation with Improved Virtual Orbitals. J Phys Chem A 2020; 124:1444-1463. [DOI: 10.1021/acs.jpca.9b11522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sudip Chattopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| |
Collapse
|
10
|
Manna S, Ray SS, Chattopadhyay S, Chaudhuri RK. A simplified account of the correlation effects to bond breaking processes: The Brillouin-Wigner perturbation theory using a multireference formulation. J Chem Phys 2019. [DOI: 10.1063/1.5097657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shovan Manna
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Suvonil Sinha Ray
- Department of Chemistry, University of Calcutta, Kolkata 700009, India
| | - Sudip Chattopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | | |
Collapse
|
11
|
Chattopadhyay S. Simplified Treatment of Electronic Structures of the Lowest Singlet and Triplet States of Didehydropyrazines. J Phys Chem A 2019; 123:5980-5994. [DOI: 10.1021/acs.jpca.9b03998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sudip Chattopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| |
Collapse
|
12
|
Chattopadhyay S. Ab Initio Probing of the Ground State of Tetraradicals: Breakdown of Hund's Multiplicity Rule. J Phys Chem A 2019; 123:2211-2226. [PMID: 30794415 DOI: 10.1021/acs.jpca.8b10514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic structure of organic σ-type polyradical including 2,4,6-tridehydropyridine radical cation (246-TDHP) and three isomers of tetradehydrobenzene (TDHB) have been studied using a computationally robust and cost-effective second-order multireference perturbative model which provides a balanced treatment of nondynamic and dynamic contributions to the electron correlation problem in the ground or excited electronic states which are imperative for predicting structural properties (e.g., ground state multiplicity, energy gaps between high-spin and low-spin states, etc.) of polyradicals. Energy gaps are useful to capture insight into the degree of interaction between the radical sites. An important finding of this study is that the tetraradicals considered here possess singlet ground states, contrary to Hund's rule. Present findings are in close agreement with the available high-level ab initio estimates at attainable cost implying that a perturbative description of the systems is adequate. The impact of N+ on the nature of ground state for the 246-TDHP have also analyzed. The singlet-triplet energy gaps for 1245- and 1234-TDHB are smaller than for o-benzyne mainly due to the ring strain. 1235-TDHB is 14.42 and 11.05 kcal/mol lower in energy than 1245- and 1234-isomers, respectively. IVO-SSMRPT predicts 1A1-3B2 and 1A1-5B2 gaps of 25.84 and 105.15 kcal/mol, respectively for the 246-TDHP cation.
Collapse
Affiliation(s)
- Sudip Chattopadhyay
- Department of Chemistry , Indian Institute of Engineering Science and Technology , Shibpur , Howrah 711103 , India
| |
Collapse
|
13
|
Combined complete active space configuration interaction and perturbation theory applied to conformational energy prototypes: Rotation and inversion barriers. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Multi-reference perturbation theory study on the CsYb molecule including the spin-orbit coupling. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.03.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Shundalau M, Minko A. Ab initio multi-reference perturbation theory calculations of the ground and some excited electronic states of the RbYb molecule. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Sinha Ray S, Ghosh P, Chaudhuri RK, Chattopadhyay S. Improved virtual orbitals in state specific multireference perturbation theory for prototypes of quasidegenerate electronic structure. J Chem Phys 2017; 146:064111. [DOI: 10.1063/1.4975322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Sinha Ray S, Ghosh A, Shit A, Chaudhuri RK, Chattopadhyay S. A simplified ab initio treatment of diradicaloid structures produced from stretching and breaking chemical bonds. Phys Chem Chem Phys 2017; 19:22282-22301. [DOI: 10.1039/c7cp03564k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With a proper choice of active spaces, the single root perturbation theory employing improved virtual orbitals can flawlessly describe the ground, excited, ionized, and dissociated states having varying degrees of degeneracy at the expense of low computational cost.
Collapse
Affiliation(s)
- Suvonil Sinha Ray
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| | - Anirban Ghosh
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| | | | | | - Sudip Chattopadhyay
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| |
Collapse
|
18
|
Shundalau M, Pitsevich G, Malevich A, Hlinisty A, Minko A, Ferber R, Tamanis M. Ab initio multi-reference perturbation theory calculations of the ground and low-lying electronic states of the KRb molecule. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.04.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Sinha Ray S, Ghosh A, Chattopadhyay S, Chaudhuri RK. Taming the Electronic Structure of Diradicals through the Window of Computationally Cost Effective Multireference Perturbation Theory. J Phys Chem A 2016; 120:5897-916. [DOI: 10.1021/acs.jpca.6b03211] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suvonil Sinha Ray
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Anirban Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Sudip Chattopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Rajat K. Chaudhuri
- Theoretical Physics, Indian Institute of Astrophysics, Bangalore 560034, India
| |
Collapse
|
20
|
Nenov A, Giussani A, Segarra-Martí J, Jaiswal VK, Rivalta I, Cerullo G, Mukamel S, Garavelli M. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy. J Chem Phys 2015; 142:212443. [PMID: 26049463 DOI: 10.1063/1.4921016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040-1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide conformational dependent fingerprints in dimeric systems, the performances of the selected reduced level of calculations have been tested in the construction of 2D electronic spectra for the in vacuo adenine monomer and the unstacked adenine homodimer, thereby exciting the Lb/La transitions with the pump pulse pair and probing in the Vis to near ultraviolet spectral window.
Collapse
Affiliation(s)
- Artur Nenov
- Dipartimento di Chimica "G. Ciamician," Università di Bologna, Via Selmi 2, IT-40126 Bologna, Italy
| | - Angelo Giussani
- Dipartimento di Chimica "G. Ciamician," Università di Bologna, Via Selmi 2, IT-40126 Bologna, Italy
| | - Javier Segarra-Martí
- Dipartimento di Chimica "G. Ciamician," Università di Bologna, Via Selmi 2, IT-40126 Bologna, Italy
| | - Vishal K Jaiswal
- Dipartimento di Chimica "G. Ciamician," Università di Bologna, Via Selmi 2, IT-40126 Bologna, Italy
| | - Ivan Rivalta
- Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d'Italie, F-69364 Lyon Cedex 07, France
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo Da Vinci 32, IT-20133 Milano, Italy
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | - Marco Garavelli
- Dipartimento di Chimica "G. Ciamician," Università di Bologna, Via Selmi 2, IT-40126 Bologna, Italy
| |
Collapse
|
21
|
Chen Z, Chen X, Ying F, Gu J, Zhang H, Wu W. Nonorthogonal orbital based n-body reduced density matrices and their applications to valence bond theory. III. Second-order perturbation theory using valence bond self-consistent field function as reference. J Chem Phys 2015; 141:134118. [PMID: 25296795 DOI: 10.1063/1.4896534] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Using the formulas and techniques developed in Papers I and II of this series, the recently developed second-order perturbation theory based on a valence bond self-consistent field reference function (VBPT2) has been extended by using the internally contracted correction wave function. This ansatz strongly reduces the size of the interaction space compared to the uncontracted wave function and thus improves the capability of the VBPT2 method dramatically. Test calculations show that internally contracted VBPT2 using only a small number of reference valence bond functions, can give results as accuracy as the VBPT2 method and other more sophisticated methods such as full configuration interaction and multireference configuration interaction.
Collapse
Affiliation(s)
- Zhenhua Chen
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xun Chen
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Fuming Ying
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Junjing Gu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Huaiyu Zhang
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
22
|
Abstract
There is no fundamental difference in enthalpy–entropy compensation between dispersion and electrostatics or between quantum and molecular mechanics.
Collapse
Affiliation(s)
- Ulf Ryde
- Department of Theoretical Chemistry
- Lund University
- Chemical Centre
- SE-221 00 Lund, Sweden
| |
Collapse
|
23
|
Chen F, Fan Z. A new size extensive multireference perturbation theory. J Comput Chem 2013; 35:121-9. [DOI: 10.1002/jcc.23471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 09/03/2013] [Accepted: 10/06/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Feiwu Chen
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering; University of Science and Technology Beijing; Beijing 100083 People's Republic of China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials; Beijing 100083 People's Republic of China
| | - Zhihui Fan
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering; University of Science and Technology Beijing; Beijing 100083 People's Republic of China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials; Beijing 100083 People's Republic of China
| |
Collapse
|
24
|
Ngan VT, Pierloot K, Nguyen MT. Mn@Si14+: a singlet fullerene-like endohedrally doped silicon cluster. Phys Chem Chem Phys 2013; 15:5493-8. [DOI: 10.1039/c3cp43390k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|