1
|
Dynamic stability of salt stable cowpea chlorotic mottle virus capsid protein dimers and pentamers of dimers. Sci Rep 2022; 12:14251. [PMID: 35995818 PMCID: PMC9395436 DOI: 10.1038/s41598-022-18019-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Intermediates of the self-assembly process of the salt stable cowpea chlorotic mottle virus (ss-CCMV) capsid can be modelled atomistically on realistic computational timescales either by studying oligomers in equilibrium or by focusing on their dissociation instead of their association. Our previous studies showed that among the three possible dimer interfaces in the icosahedral capsid, two are thermodynamically relevant for capsid formation. The aim of the current study is to evaluate the relative structural stabilities of the three different ss-CCMV dimers and to find and understand the conditions that lead to their dissociation. Long timescale molecular dynamics simulations at 300 K of the various dimers and of the pentamer of dimers underscore the importance of large contact surfaces on stabilizing the capsid subunits within an oligomer. Simulations in implicit solvent show that at higher temperature (350 K), the N-terminal tails of the protein units act as tethers, delaying dissociation for all but the most stable interface. The pentamer of dimers is also found to be stable on long timescales at 300 K, with an inherent flexibility of the outer protein chains.
Collapse
|
2
|
Chávez-García C, Hénin J, Karttunen M. Multiscale Computational Study of the Conformation of the Full-Length Intrinsically Disordered Protein MeCP2. J Chem Inf Model 2022; 62:958-970. [PMID: 35130441 DOI: 10.1021/acs.jcim.1c01354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The malfunction of the methyl-CpG binding protein 2 (MeCP2) is associated with the Rett syndrome, one of the most common causes of cognitive impairment in females. MeCP2 is an intrinsically disordered protein (IDP), making its experimental characterization a challenge. There is currently no structure available for the full-length MeCP2 in any of the databases, and only the structure of its MBD domain has been solved. We used this structure to build a full-length model of MeCP2 by completing the rest of the protein via ab initio modeling. Using a combination of all-atom and coarse-grained simulations, we characterized its structure and dynamics as well as the conformational space sampled by the ID and transcriptional repression domain (TRD) domains in the absence of the rest of the protein. The present work is the first computational study of the full-length protein. Two main conformations were sampled in the coarse-grained simulations: a globular structure similar to the one observed in the all-atom force field and a two-globule conformation. Our all-atom model is in good agreement with the available experimental data, predicting amino acid W104 to be buried, amino acids R111 and R133 to be solvent-accessible, and having a 4.1% α-helix content, compared to the 4% found experimentally. Finally, we compared the model predicted by AlphaFold to our Modeller model. The model was not stable in water and underwent further folding. Together, these simulations provide a detailed (if perhaps incomplete) conformational ensemble of the full-length MeCP2, which is compatible with experimental data and can be the basis of further studies, e.g., on mutants of the protein or its interactions with its biological partners.
Collapse
Affiliation(s)
- Cecilia Chávez-García
- Department of Chemistry, the University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.,The Centre of Advanced Materials and Biomaterials Research, the University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Jérôme Hénin
- Laboratoire de Biochimie Théorique UPR 9080, CNRS and Université de Paris, Paris 75005, France
| | - Mikko Karttunen
- Department of Chemistry, the University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.,The Centre of Advanced Materials and Biomaterials Research, the University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.,Department of Physics and Astronomy, the University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| |
Collapse
|
3
|
Hunkler S, Lemke T, Peter C, Kukharenko O. Back-mapping based sampling: Coarse grained free energy landscapes as a guideline for atomistic exploration. J Chem Phys 2019; 151:154102. [DOI: 10.1063/1.5115398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
4
|
Chen J, Lansac Y, Tresset G. Interactions between the Molecular Components of the Cowpea Chlorotic Mottle Virus Investigated by Molecular Dynamics Simulations. J Phys Chem B 2018; 122:9490-9498. [DOI: 10.1021/acs.jpcb.8b08026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingzhi Chen
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Yves Lansac
- GREMAN, UMR 7347, CNRS, Université de Tours, 37200 Tours, France
| | - Guillaume Tresset
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| |
Collapse
|
5
|
Rudzinski JF, Bereau T. Structural-kinetic-thermodynamic relationships identified from physics-based molecular simulation models. J Chem Phys 2018; 148:204111. [PMID: 29865838 DOI: 10.1063/1.5025125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coarse-grained molecular simulation models have provided immense, often general, insight into the complex behavior of condensed-phase systems but suffer from a lost connection to the true dynamical properties of the underlying system. In general, the physics that is built into a model shapes the free-energy landscape, restricting the attainable static and kinetic properties. In this work, we perform a detailed investigation into the property interrelationships resulting from these restrictions, for a representative system of the helix-coil transition. Inspired by high-throughput studies, we systematically vary force-field parameters and monitor their structural, kinetic, and thermodynamic properties. The focus of our investigation is a simple coarse-grained model, which accurately represents the underlying structural ensemble, i.e., effectively avoids sterically-forbidden configurations. As a result of this built-in physics, we observe a rather large restriction in the topology of the networks characterizing the simulation kinetics. When screening across force-field parameters, we find that structurally accurate models also best reproduce the kinetics, suggesting structural-kinetic relationships for these models. Additionally, an investigation into thermodynamic properties reveals a link between the cooperativity of the transition and the network topology at a single reference temperature.
Collapse
Affiliation(s)
| | - Tristan Bereau
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| |
Collapse
|
6
|
The Role of Conformational Entropy in the Determination of Structural-Kinetic Relationships for Helix-Coil Transitions. COMPUTATION 2018. [DOI: 10.3390/computation6010021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Coarse-grained molecular simulation models can provide significant insight into the complex behavior of protein systems, but suffer from an inherently distorted description of dynamical properties. We recently demonstrated that, for a heptapeptide of alanine residues, the structural and kinetic properties of a simulation model are linked in a rather simple way, given a certain level of physics present in the model. In this work, we extend these findings to a longer peptide, for which the representation of configuration space in terms of a full enumeration of sequences of helical/coil states along the peptide backbone is impractical. We verify the structural-kinetic relationships by scanning the parameter space of a simple native-biased model and then employ a distinct transferable model to validate and generalize the conclusions. Our results further demonstrate the validity of the previous findings, while clarifying the role of conformational entropy in the determination of the structural-kinetic relationships. More specifically, while the global, long timescale kinetic properties of a particular class of models with varying energetic parameters but approximately fixed conformational entropy are determined by the overarching structural features of the ensemble, a shift in these kinetic observables occurs for models with a distinct representation of steric interactions. At the same time, the relationship between structure and more local, faster kinetic properties is not affected by varying the conformational entropy of the model.
Collapse
|
7
|
Bereau T, Bennett WFD, Pfaendtner J, Deserno M, Karttunen M. Folding and insertion thermodynamics of the transmembrane WALP peptide. J Chem Phys 2016; 143:243127. [PMID: 26723612 DOI: 10.1063/1.4935487] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA)n (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural properties have been illuminated in a large number of experimental and simulation studies. In this combined coarse-grained and atomistic simulation study, we probe the thermodynamics of a single WALP peptide, focusing on both the insertion across the water-membrane interface, as well as folding in both water and a membrane. The potential of mean force characterizing the peptide's insertion into the membrane shows qualitatively similar behavior across peptides and three force fields. However, the Martini force field exhibits a pronounced secondary minimum for an adsorbed interfacial state, which may even become the global minimum-in contrast to both atomistic simulations and the alternative PLUM force field. Even though the two coarse-grained models reproduce the free energy of insertion of individual amino acids side chains, they both underestimate its corresponding value for the full peptide (as compared with atomistic simulations), hinting at cooperative physics beyond the residue level. Folding of WALP in the two environments indicates the helix as the most stable structure, though with different relative stabilities and chain-length dependence.
Collapse
Affiliation(s)
- Tristan Bereau
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - W F Drew Bennett
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Mikko Karttunen
- Department of Mathematics and Computer Science & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MetaForum, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
8
|
Pluhackova K, Böckmann RA. Biomembranes in atomistic and coarse-grained simulations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015. [PMID: 26194872 DOI: 10.1088/0953-8984/27/32/323103] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The architecture of biological membranes is tightly coupled to the localization, organization, and function of membrane proteins. The organelle-specific distribution of lipids allows for the formation of functional microdomains (also called rafts) that facilitate the segregation and aggregation of membrane proteins and thus shape their function. Molecular dynamics simulations enable to directly access the formation, structure, and dynamics of membrane microdomains at the molecular scale and the specific interactions among lipids and proteins on timescales from picoseconds to microseconds. This review focuses on the latest developments of biomembrane force fields for both atomistic and coarse-grained molecular dynamics (MD) simulations, and the different levels of coarsening of biomolecular structures. It also briefly introduces scale-bridging methods applicable to biomembrane studies, and highlights selected recent applications.
Collapse
Affiliation(s)
- Kristyna Pluhackova
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | | |
Collapse
|
9
|
Rutter GO, Brown AH, Quigley D, Walsh TR, Allen MP. Testing the transferability of a coarse-grained model to intrinsically disordered proteins. Phys Chem Chem Phys 2015; 17:31741-9. [DOI: 10.1039/c5cp05652g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The coarse-grained PLUM model is shown to capture structural and dimerization behaviour of the intrinsically disordered biomineralisation peptide n16N.
Collapse
Affiliation(s)
- Gil O. Rutter
- Department of Physics
- University of Warwick
- Coventry CV4 7AL
- UK
| | - Aaron H. Brown
- Department of Chemistry and Centre for Scientific Computing
- University of Warwick
- Coventry
- UK
- Institute for Frontier Materials
| | - David Quigley
- Department of Physics and Centre for Scientific Computing
- University of Warwick
- Coventry CV4 7AL
- UK
| | - Tiffany R. Walsh
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| | - Michael P. Allen
- Department of Physics
- University of Warwick
- Coventry CV4 7AL
- UK
- H. H. Wills Physics Laboratory
| |
Collapse
|
10
|
Enhanced Sampling of Coarse-Grained Transmembrane-Peptide Structure Formation from Hydrogen-Bond Replica Exchange. J Membr Biol 2014; 248:395-405. [DOI: 10.1007/s00232-014-9738-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/27/2014] [Indexed: 12/14/2022]
|
11
|
Bereau T, Wang ZJ, Deserno M. More than the sum of its parts: coarse-grained peptide-lipid interactions from a simple cross-parametrization. J Chem Phys 2014; 140:115101. [PMID: 24655203 PMCID: PMC3977883 DOI: 10.1063/1.4867465] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/04/2014] [Indexed: 11/14/2022] Open
Abstract
Interfacial systems are at the core of fascinating phenomena in many disciplines, such as biochemistry, soft-matter physics, and food science. However, the parametrization of accurate, reliable, and consistent coarse-grained (CG) models for systems at interfaces remains a challenging endeavor. In the present work, we explore to what extent two independently developed solvent-free CG models of peptides and lipids--of different mapping schemes, parametrization methods, target functions, and validation criteria--can be combined by only tuning the cross-interactions. Our results show that the cross-parametrization can reproduce a number of structural properties of membrane peptides (for example, tilt and hydrophobic mismatch), in agreement with existing peptide-lipid CG force fields. We find encouraging results for two challenging biophysical problems: (i) membrane pore formation mediated by the cooperative action of several antimicrobial peptides, and (ii) the insertion and folding of the helix-forming peptide WALP23 in the membrane.
Collapse
Affiliation(s)
- Tristan Bereau
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Zun-Jing Wang
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
12
|
Fioroni M, Dworeck T, Rodríguez-Ropero F. Theoretical Considerations and Computational Tools. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 794:69-93. [DOI: 10.1007/978-94-007-7429-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Polles G, Indelicato G, Potestio R, Cermelli P, Twarock R, Micheletti C. Mechanical and assembly units of viral capsids identified via quasi-rigid domain decomposition. PLoS Comput Biol 2013; 9:e1003331. [PMID: 24244139 PMCID: PMC3828136 DOI: 10.1371/journal.pcbi.1003331] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 09/13/2013] [Indexed: 02/05/2023] Open
Abstract
Key steps in a viral life-cycle, such as self-assembly of a protective protein container or in some cases also subsequent maturation events, are governed by the interplay of physico-chemical mechanisms involving various spatial and temporal scales. These salient aspects of a viral life cycle are hence well described and rationalised from a mesoscopic perspective. Accordingly, various experimental and computational efforts have been directed towards identifying the fundamental building blocks that are instrumental for the mechanical response, or constitute the assembly units, of a few specific viral shells. Motivated by these earlier studies we introduce and apply a general and efficient computational scheme for identifying the stable domains of a given viral capsid. The method is based on elastic network models and quasi-rigid domain decomposition. It is first applied to a heterogeneous set of well-characterized viruses (CCMV, MS2, STNV, STMV) for which the known mechanical or assembly domains are correctly identified. The validated method is next applied to other viral particles such as L-A, Pariacoto and polyoma viruses, whose fundamental functional domains are still unknown or debated and for which we formulate verifiable predictions. The numerical code implementing the domain decomposition strategy is made freely available. The genetic material of viruses is packaged inside capsids constituted from a few tens to thousands of proteins. The latter can organize in multimers that serve as fundamental blocks for the viral shell assembly or that control the capsid conformational transitions and response to mechanical stress. In this work, we introduce and apply a computational scheme that identifies the fundamental protein blocks from the structural fluctuations of the capsids in thermal equilibrium. These can be derived from phenomenological elastic network models with minimal computational expenditure. Accordingly, the basic functional protein units of a capsid can be obtained from the sole input of the capsid crystal structure. The method is applied to a heterogeneous set of viruses of various size and geometries. These include well-characterised instances for validation purposes, as well as debated ones for which predictions are formulated.
Collapse
Affiliation(s)
- Guido Polles
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Giuliana Indelicato
- York Centre for Complex Systems Analysis, Department of Mathematics, University of York, York, United Kingdom
| | | | - Paolo Cermelli
- Dipartimento di Matematica, Università di Torino, Torino, Italy
| | - Reidun Twarock
- York Centre for Complex Systems Analysis, Department of Mathematics, University of York, York, United Kingdom
| | | |
Collapse
|
14
|
Coarse-grain modelling of protein-protein interactions. Curr Opin Struct Biol 2013; 23:878-86. [PMID: 24172141 DOI: 10.1016/j.sbi.2013.09.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 08/29/2013] [Accepted: 09/17/2013] [Indexed: 11/24/2022]
Abstract
Here, we review recent advances towards the modelling of protein-protein interactions (PPI) at the coarse-grained (CG) level, a technique that is now widely used to understand protein affinity, aggregation and self-assembly behaviour. PPI models of soluble proteins and membrane proteins are separately described, but we note the parallel development that is present in both research fields with three important themes: firstly, combining CG modelling with knowledge-based approaches to predict and refine protein-protein complexes; secondly, using physics-based CG models for de novo prediction of protein-protein complexes; and thirdly modelling of large scale protein aggregates.
Collapse
|
15
|
Globisch C, Krishnamani V, Deserno M, Peter C. Optimization of an elastic network augmented coarse grained model to study CCMV capsid deformation. PLoS One 2013; 8:e60582. [PMID: 23613730 PMCID: PMC3628857 DOI: 10.1371/journal.pone.0060582] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 02/28/2013] [Indexed: 11/18/2022] Open
Abstract
The major protective coat of most viruses is a highly symmetric protein capsid that forms spontaneously from many copies of identical proteins. Structural and mechanical properties of such capsids, as well as their self-assembly process, have been studied experimentally and theoretically, including modeling efforts by computer simulations on various scales. Atomistic models include specific details of local protein binding but are limited in system size and accessible time, while coarse grained (CG) models do get access to longer time and length scales but often lack the specific local interactions. Multi-scale models aim at bridging this gap by systematically connecting different levels of resolution. Here, a CG model for CCMV (Cowpea Chlorotic Mottle Virus), a virus with an icosahedral shell of 180 identical protein monomers, is developed, where parameters are derived from atomistic simulations of capsid protein dimers in aqueous solution. In particular, a new method is introduced to combine the MARTINI CG model with a supportive elastic network based on structural fluctuations of individual monomers. In the parametrization process, both network connectivity and strength are optimized. This elastic-network optimized CG model, which solely relies on atomistic data of small units (dimers), is able to correctly predict inter-protein conformational flexibility and properties of larger capsid fragments of 20 and more subunits. Furthermore, it is shown that this CG model reproduces experimental (Atomic Force Microscopy) indentation measurements of the entire viral capsid. Thus it is shown that one obvious goal for hierarchical modeling, namely predicting mechanical properties of larger protein complexes from models that are carefully parametrized on elastic properties of smaller units, is achievable.
Collapse
Affiliation(s)
| | - Venkatramanan Krishnamani
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Christine Peter
- Max Planck Institute for Polymer Research (MPIP), Mainz, Germany
| |
Collapse
|
16
|
Osborne KL, Bachmann M, Strodel B. Thermodynamic analysis of structural transitions during GNNQQNY aggregation. Proteins 2013; 81:1141-55. [DOI: 10.1002/prot.24263] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Kenneth L. Osborne
- Institute of Complex Systems: Structural Biochemistry; Research Centre Jülich; 52425 Jülich; Germany
| | - Michael Bachmann
- Center for Simulational Physics; The University of Georgia; Athens; Georgia 30602; USA
| | | |
Collapse
|