1
|
Pradhan E, Zeng T. The Unified Hamiltonian Formalism of Spin-Orbit Jahn-Teller and Pseudo-Jahn-Teller Problems in All Axial Symmetries. J Chem Theory Comput 2023; 19:7776-7786. [PMID: 37847554 DOI: 10.1021/acs.jctc.3c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Spatial degeneracy of electronic states closely connects spin-orbit coupling and vibronic coupling, which together determine properties of materials, especially heavy element compounds. Accurate description of those materials entails accurate mathematical formulas for spin-orbit vibronic Hamiltonians. For the first time ever, we in this work derive the Hamiltonian formalism to describe all spin-orbit Jahn-Teller and pseudo-Jahn-Teller vibronic problems in all axial symmetries. The conventional one-electron approximation of spin-orbit coupling, which was the foundation of all previous studies in this field, is not involved in the present work. Actually, the present formalism is applicable to all time-reversal symmetric hermitian Hamiltonian that has a Rank-1 dependence on the spin operator, without any restriction on the type and the number of term symbols and vibrational modes.
Collapse
Affiliation(s)
- Ekadashi Pradhan
- Department of Chemistry, York University, Toronto, Ontario M3J1P3, Canada
| | - Tao Zeng
- Department of Chemistry, York University, Toronto, Ontario M3J1P3, Canada
| |
Collapse
|
2
|
Chamoli S, Surjuse K, Jangid B, Nayak MK, Dutta AK. A reduced cost four-component relativistic coupled cluster method based on natural spinors. J Chem Phys 2022; 156:204120. [PMID: 35649878 DOI: 10.1063/5.0085932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We present the theory, implementation, and benchmark results for a frozen natural spinors based reduced cost four-component relativistic coupled cluster method. The natural spinors are obtained by diagonalizing the one-body reduced density matrix from a relativistic second-order Møller-Plesset calculation based on a four-component Dirac-Coulomb Hamiltonian. The correlation energy in the coupled cluster method converges more rapidly with respect to the size of the virtual space in the frozen natural spinor basis than that observed in the standard canonical spinors obtained from the Dirac-Hartree-Fock calculation. The convergence of properties is not smooth in the frozen natural spinor basis. However, the inclusion of the perturbative correction smoothens the convergence of the properties with respect to the size of the virtual space in the frozen natural spinor basis and greatly reduces the truncation errors in both energy and property calculations. The accuracy of the frozen natural spinor based coupled cluster methods can be controlled by a single threshold and is a black box to use.
Collapse
Affiliation(s)
- Somesh Chamoli
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kshitijkumar Surjuse
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Bhavnesh Jangid
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Malaya K Nayak
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Achintya Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
3
|
Pradhan E, Yao G, Yang Z, Zeng T. Unified one-electron Hamiltonian formalism of spin-orbit Jahn-Teller and pseudo-Jahn-Teller problems in tetrahedral and octahedral symmetries. J Chem Phys 2022; 157:064104. [DOI: 10.1063/5.0090053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Heavy element compounds with high symmetries often feature both spin-orbit coupling and vibronic coupling. This is especially true for systems with tetrahedral and octahedral symmetries, whose electronic states may be three-fold degenerate and experience complicated Jahn-Teller and pseudo-Jahn-Teller interactions. To accurately describe these interactions, high quality spin-orbit vibronic Hamiltonian operators are needed. In this study, we present a unified one-electron Hamiltonian formalism for spin-orbit vibronic interactions for systems in all tetrahedral and octahedral symmetries. The formalism covers all spin-orbit Jahn-Teller and pseudo-Jahn-Teller problems in the symmetries with arbitrary types and arbitrary numbers of vibrational modes, and generates Hamiltonian expansion formulas of arbitrarily high order.
Collapse
Affiliation(s)
| | | | | | - Tao Zeng
- Department of Chemistry, York University, Canada
| |
Collapse
|
4
|
Brown J, Pradhan E, Zeng T. Unified one-electron Hamiltonian formalism of spin-orbit Jahn-Teller and pseudo-Jahn-Teller problems in axial symmetries. J Chem Phys 2021; 155:224108. [PMID: 34911326 DOI: 10.1063/5.0068044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spin-orbit coupling and vibronic coupling are both closely related to orbital degeneracy of electronic states. Both types of coupling play significant roles in determining properties of heavy element compounds and shall be treated on the same footing. In this work, we derive a unified one-electron Hamiltonian formalism for spin-orbit and vibronic interactions for systems in all axial symmetries. The one-electron formalism is usually adequate as the spin-orbit interaction can often be approximated as a one-electron interaction. For the first time, the formalism covers spin-orbit and vibronic couplings in all axial symmetries from C1 to D∞h, arbitrary types of vibrational modes in those symmetries, and an arbitrary number of those modes and gives Hamiltonian expansions up to an arbitrary order.
Collapse
Affiliation(s)
- James Brown
- Department of Chemistry, York University, Toronto, Ontario M3J1P3, Canada
| | - Ekadashi Pradhan
- Department of Chemistry, York University, Toronto, Ontario M3J1P3, Canada
| | - Tao Zeng
- Department of Chemistry, York University, Toronto, Ontario M3J1P3, Canada
| |
Collapse
|
5
|
Brown J, Lang RA, Zeng T. Unified Hamiltonian Formalism of Jahn-Teller and Pseudo-Jahn-Teller Problems in Axial Symmetries. J Chem Theory Comput 2021; 17:4392-4402. [PMID: 34110818 DOI: 10.1021/acs.jctc.1c00419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A formalism for expansions of all Jahn-Teller and pseudo-Jahn-Teller Hamiltonian operators in all axial symmetries is presented. The formalism provides Hamiltonian expansions up to arbitrarily high order and including an arbitrary number of vibrational modes, which are of arbitrary types. It consists of three equations and two tables. The formalism is user-friendly since it can be used without understanding its derivation. An example of E3″⊗e1' Jahn-Teller interaction is used to demonstrate the correctness of the formalism. A Python program is developed to automate the generation of Hamiltonian expansions for all axial Jahn-Teller and pseodo-Jahn-Teller problems and interface the expansions to the MCTDH quantum dynamics simulation program. This is the first unified Hamiltonian formalism for axial Jahn-Teller and pseudo-Jahn-Teller problems. Also it is the only one.
Collapse
Affiliation(s)
- James Brown
- Department of Chemistry, York University, Toronto, Ontario M3J1P3, Canada
| | - Robert A Lang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.,Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Tao Zeng
- Department of Chemistry, York University, Toronto, Ontario M3J1P3, Canada
| |
Collapse
|
6
|
Wang K, Zeng T. Hamiltonian formalism of spin–orbit Jahn–Teller and pseudo-Jahn–Teller problems in trigonal and tetragonal symmetries. Phys Chem Chem Phys 2019; 21:18939-18957. [DOI: 10.1039/c9cp03584b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A formalism for expansions of all bimodal spin–orbit Jahn–Teller and pseudo-Jahn–Teller Hamiltonian operators in trigonal and tetragonal symmetries is presented.
Collapse
Affiliation(s)
- Kun Wang
- Department of Chemistry
- York University
- Toronto
- Canada
- Department of Chemistry
| | - Tao Zeng
- Department of Chemistry
- York University
- Toronto
- Canada
- Department of Chemistry
| |
Collapse
|
7
|
Zeng T, Hickman RJ, Kadri A, Seidu I. General Formalism of Vibronic Hamiltonians for Tetrahedral and Octahedral Systems: Problems That Involve T, E States and t, e Vibrations. J Chem Theory Comput 2017; 13:5004-5018. [DOI: 10.1021/acs.jctc.7b00787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tao Zeng
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Riley J. Hickman
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Aya Kadri
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Issaka Seidu
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S5B6, Canada
| |
Collapse
|
8
|
Zeng T, Seidu I. Revisiting the (E + A) ⊗ (e + a) problems of polyatomic systems with trigonal symmetry: general expansions of their vibronic Hamiltonians. Phys Chem Chem Phys 2017; 19:11098-11110. [DOI: 10.1039/c7cp01171g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we derive general expansions in vibrational coordinates for the (E + A) ⊗ (e + a) vibronic Hamiltonians of molecules with one and only one C3 axis.
Collapse
Affiliation(s)
- Tao Zeng
- Department of Chemistry
- Carleton University
- Ottawa
- Canada
| | - Issaka Seidu
- Department of Chemistry
- Carleton University
- Ottawa
- Canada
| |
Collapse
|
9
|
Absorption Spectroscopy, Emissive Properties, and Ultrafast Intersystem Crossing Processes in Transition Metal Complexes: TD-DFT and Spin-Orbit Coupling. DENSITY-FUNCTIONAL METHODS FOR EXCITED STATES 2015; 368:377-413. [DOI: 10.1007/128_2015_635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|