1
|
Higbee PS, Dayhoff GW, Anbanandam A, Varma S, Daughdrill G. Structural Adaptation of Secondary p53 Binding Sites on MDM2 and MDMX. J Mol Biol 2024; 436:168626. [PMID: 38810774 DOI: 10.1016/j.jmb.2024.168626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/24/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
The thermodynamics of secondary p53 binding sites on MDM2 and MDMX were evaluated using p53 peptides containing residues 16-29, 17-35, and 1-73. All the peptides had large, negative heat capacity (ΔCp), consistent with the burial of p53 residues F19, W23, and L26 in the primary binding sites of MDM2 and MDMX. MDMX has a higher affinity and more negative ΔCp than MDM2 for p5317-35, which is due to MDMX stabilization and not additional interactions with the secondary binding site. ΔCp measurements show binding to the secondary site is inhibited by the disordered tails of MDM2 for WT p53 but not a more helical mutant where proline 27 is changed to alanine. This result is supported by all-atom molecular dynamics simulations showing that p53 residues 30-35 turn away from the disordered tails of MDM2 in P27A17-35 and make direct contact with this region in p5317-35. Molecular dynamics simulations also suggest that an intramolecular methionine-aromatic motif found in both MDM2 and MDMX structurally adapts to support multiple p53 binding modes with the secondary site. ΔCp measurements also show that tighter binding of the P27A mutant to MDM2 and MDMX is due to increased helicity, which reduces the energetic penalty associated with coupled folding and binding. Our results will facilitate the design of selective p53 inhibitors for MDM2 and MDMX.
Collapse
Affiliation(s)
- Pirada Serena Higbee
- The Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Guy W Dayhoff
- The Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Asokan Anbanandam
- The Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Sameer Varma
- The Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA; The Department of Physics, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Gary Daughdrill
- The Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| |
Collapse
|
2
|
Cueny RR, Varma S, Schmidt KH, Keck JL. Biochemical properties of naturally occurring human bloom helicase variants. PLoS One 2023; 18:e0281524. [PMID: 37267408 DOI: 10.1371/journal.pone.0281524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Bloom syndrome helicase (BLM) is a RecQ-family helicase implicated in a variety of cellular processes, including DNA replication, DNA repair, and telomere maintenance. Mutations in human BLM cause Bloom syndrome (BS), an autosomal recessive disorder that leads to myriad negative health impacts including a predisposition to cancer. BS-causing mutations in BLM often negatively impact BLM ATPase and helicase activity. While BLM mutations that cause BS have been well characterized both in vitro and in vivo, there are other less studied BLM mutations that exist in the human population that do not lead to BS. Two of these non-BS mutations, encoding BLM P868L and BLM G1120R, when homozygous, increase sister chromatid exchanges in human cells. To characterize these naturally occurring BLM mutant proteins in vitro, we purified the BLM catalytic core (BLMcore, residues 636-1298) with either the P868L or G1120R substitution. We also purified a BLMcore K869A K870A mutant protein, which alters a lysine-rich loop proximal to the P868 residue. We found that BLMcore P868L and G1120R proteins were both able to hydrolyze ATP, bind diverse DNA substrates, and unwind G-quadruplex and duplex DNA structures. Molecular dynamics simulations suggest that the P868L substitution weakens the DNA interaction with the winged-helix domain of BLM and alters the orientation of one lobe of the ATPase domain. Because BLMcore P868L and G1120R retain helicase function in vitro, it is likely that the increased genome instability is caused by specific impacts of the mutant proteins in vivo. Interestingly, we found that BLMcore K869A K870A has diminished ATPase activity, weakened binding to duplex DNA structures, and less robust helicase activity compared to wild-type BLMcore. Thus, the lysine-rich loop may have an important role in ATPase activity and specific binding and DNA unwinding functions in BLM.
Collapse
Affiliation(s)
- Rachel R Cueny
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, United States of America
| | - Sameer Varma
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States of America
- Department of Physics, University of South Florida, Tampa, FL, United States of America
| | - Kristina H Schmidt
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States of America
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, United States of America
| |
Collapse
|
3
|
Duro N, Varma S. Role of Structural Fluctuations in Allosteric Stimulation of Paramyxovirus Hemagglutinin-Neuraminidase. Structure 2019; 27:1601-1611.e2. [DOI: 10.1016/j.str.2019.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/29/2019] [Accepted: 07/15/2019] [Indexed: 11/29/2022]
|
4
|
Botlani M, Siddiqui A, Varma S. Machine learning approaches to evaluate correlation patterns in allosteric signaling: A case study of the PDZ2 domain. J Chem Phys 2018; 148:241726. [DOI: 10.1063/1.5022469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Mohsen Botlani
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, USA
| | - Ahnaf Siddiqui
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, USA
| | - Sameer Varma
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
5
|
Wong JJW, Young TA, Zhang J, Liu S, Leser GP, Komives EA, Lamb RA, Zhou ZH, Salafsky J, Jardetzky TS. Monomeric ephrinB2 binding induces allosteric changes in Nipah virus G that precede its full activation. Nat Commun 2017; 8:781. [PMID: 28974687 PMCID: PMC5626764 DOI: 10.1038/s41467-017-00863-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/01/2017] [Indexed: 11/09/2022] Open
Abstract
Nipah virus is an emergent paramyxovirus that causes deadly encephalitis and respiratory infections in humans. Two glycoproteins coordinate the infection of host cells, an attachment protein (G), which binds to cell surface receptors, and a fusion (F) protein, which carries out the process of virus-cell membrane fusion. The G protein binds to ephrin B2/3 receptors, inducing G conformational changes that trigger F protein refolding. Using an optical approach based on second harmonic generation, we show that monomeric and dimeric receptors activate distinct conformational changes in G. The monomeric receptor-induced changes are not detected by conformation-sensitive monoclonal antibodies or through electron microscopy analysis of G:ephrinB2 complexes. However, hydrogen/deuterium exchange experiments confirm the second harmonic generation observations and reveal allosteric changes in the G receptor binding and F-activating stalk domains, providing insights into the pathway of receptor-activated virus entry.Nipah virus causes encephalitis in humans. Here the authors use a multidisciplinary approach to study the binding of the viral attachment protein G to its host receptor ephrinB2 and show that monomeric and dimeric receptors activate distinct conformational changes in G and discuss implications for receptor-activated virus entry.
Collapse
Affiliation(s)
- Joyce J W Wong
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Jiayan Zhang
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Shiheng Liu
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - George P Leser
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL, 60208-3500, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208-3500, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA, 92093, USA
| | - Robert A Lamb
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL, 60208-3500, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208-3500, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Theodore S Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
6
|
Dutta P, Siddiqui A, Botlani M, Varma S. Stimulation of Nipah Fusion: Small Intradomain Changes Trigger Extensive Interdomain Rearrangements. Biophys J 2017; 111:1621-1630. [PMID: 27760350 DOI: 10.1016/j.bpj.2016.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/18/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022] Open
Abstract
Nipah is an emerging paramyxovirus that is of serious concern to human health. It invades host cells using two of its membrane proteins-G and F. G binds to host ephrins and this stimulates G to activate F. Upon activation, F mediates virus-host membrane fusion. Here we focus on mechanisms that underlie the stimulation of G by ephrins. Experiments show that G interacts with ephrin and F through separate sites located on two different domains, the receptor binding domain (RBD) and the F activation domain (FAD). No models explain this allosteric coupling. In fact, the analogous mechanisms in other paramyxoviruses also remain undetermined. The structural organization of G is such that allosteric coupling must involve at least one of the two interfaces-the RBD-FAD interface and/or the RBD-RBD interface. Here we examine using molecular dynamics the effect of ephrin binding on the RBD-RBD interface. We find that despite inducing small changes in individual RBDs, ephrin reorients the RBD-RBD interface extensively, and in a manner that will enhance solvent exposure of the FAD. While this finding supports a proposed model of G stimulation, we also find from additional simulations that ephrin induces a similar RBD-RBD reorientation in a stimulation-deficient G mutant, V209 VG → AAA. Together, our simulations suggest that while inter-RBD reorientation may be important, it is not, by itself, a sufficient condition for G stimulation. Additionally, we find that the mutation affects the conformational ensemble of RBD globally, including the RBD-FAD interface, suggesting the latter's role in G stimulation. Because ephrin induces small changes in individual RBDs, a proper analysis of conformational ensembles required that they are compared directly-we employ a method we developed recently, which we now release at SimTK, and show that it also performs excellently for non-Gaussian distributions.
Collapse
Affiliation(s)
- Priyanka Dutta
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida
| | - Ahnaf Siddiqui
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida
| | - Mohsen Botlani
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida
| | - Sameer Varma
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida.
| |
Collapse
|
7
|
Structural and activity characterization of human PHPT1 after oxidative modification. Sci Rep 2016; 6:23658. [PMID: 27034094 PMCID: PMC4817053 DOI: 10.1038/srep23658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/07/2016] [Indexed: 01/13/2023] Open
Abstract
Phosphohistidine phosphatase 1 (PHPT1), the only known phosphohistidine phosphatase in mammals, regulates phosphohistidine levels of several proteins including those involved in signaling, lipid metabolism, and potassium ion transport. While the high-resolution structure of human PHPT1 (hPHPT1) is available and residues important for substrate binding and catalytic activity have been reported, little is known about post-translational modifications that modulate hPHPT1 activity. Here we characterize the structural and functional impact of hPHPT1 oxidation upon exposure to a reactive oxygen species, hydrogen peroxide (H2O2). Specifically, liquid chromatography-tandem mass spectrometry was used to quantify site-specific oxidation of redox-sensitive residues of hPHPT1. Results from this study revealed that H2O2 exposure induces selective oxidation of hPHPT1 at Met95, a residue within the substrate binding region. Explicit solvent molecular dynamics simulations, however, predict only a minor effect of Met95 oxidation in the structure and dynamics of the apo-state of the hPHPT1 catalytic site, suggesting that if Met95 oxidation alters hPHPT1 activity, then it will do so by altering the stability of an intermediate state. Employing a novel mass spectrometry-based assay, we determined that H2O2-induced oxidation does not impact hPHPT1 function negatively; a result contrary to the common conception that protein oxidation is typically a loss-of-function modification.
Collapse
|
8
|
Dutta P, Botlani M, Varma S. Water Dynamics at Protein–Protein Interfaces: Molecular Dynamics Study of Virus–Host Receptor Complexes. J Phys Chem B 2014; 118:14795-807. [DOI: 10.1021/jp5089096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Varma S, Botlani M, Leighty RE. Discerning intersecting fusion-activation pathways in the Nipah virus using machine learning. Proteins 2014; 82:3241-54. [DOI: 10.1002/prot.24541] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Sameer Varma
- Department of Cell Biology; Microbiology and Molecular Biology, University of South Florida; Tampa Florida 33620
| | - Mohsen Botlani
- Department of Cell Biology; Microbiology and Molecular Biology, University of South Florida; Tampa Florida 33620
| | - Ralph E. Leighty
- Department of Cell Biology; Microbiology and Molecular Biology, University of South Florida; Tampa Florida 33620
| |
Collapse
|