1
|
Kolobova E, Petrushanko I, Mitkevich V, Makarov AA, Grigorova IL. β-Amyloids and Immune Responses Associated with Alzheimer's Disease. Cells 2024; 13:1624. [PMID: 39404388 PMCID: PMC11475064 DOI: 10.3390/cells13191624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Alzheimer's disease (AD) is associated with the accumulation of β-amyloids (Aβs) and the formation of Aβ plaques in the brain. Various structural forms and isoforms of Aβs that have variable propensities for oligomerization and toxicity and may differentially affect the development of AD have been identified. In addition, there is evidence that β-amyloids are engaged in complex interactions with the innate and adaptive immune systems, both of which may also play a role in the regulation of AD onset and progression. In this review, we discuss what is currently known about the intricate interplay between β-amyloids and the immune response to Aβs with a more in-depth focus on the possible roles of B cells in the pathogenesis of AD.
Collapse
Affiliation(s)
- Elizaveta Kolobova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Irina Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Vladimir Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Irina L Grigorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| |
Collapse
|
2
|
Zhao X, Li Y, Li Z, Hu D, Zhang R, Li M, Liu Y, Xiu X, Jia H, Wang H, Liu Y, Yang H, Cheng M. Design and synthesis of hemicyanine-based NIRF probe for detecting Aβ aggregates in Alzheimer's disease. Bioorg Chem 2024; 150:107514. [PMID: 38870704 DOI: 10.1016/j.bioorg.2024.107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, has garnered increased attention due to its substantial economic burden and the escalating global aging phenomenon. Amyloid-β deposition is a key pathogenic marker observed in the brains of Alzheimer's sufferers. Based on real-time, safe, low-cost, and commonly used, near-infrared fluorescence (NIRF) imaging technology have become an essential technique for the detection of AD in recent years. In this work, NIRF probes with hemicyanine structure were designed, synthesized and evaluated for imaging Aβ aggregates in the brain. We use the hemicyanine structure as the parent nucleus to enhance the probe's optical properties. The introduction of PEG chain is to improve the probe's brain dynamice properties, and the alkyl chain on the N atom is to enhance the fluorescence intensity of the probe after binding to the Aβ aggregates as much as possible. Among these probes, Z2, Z3, Z6, X3, X6 and T1 showed excellent optical properties and high affinity to Aβ aggregates (Kd = 24.31 ∼ 59.60 nM). In vitro brain section staining and in vivo NIRF imaging demonstrated that X6 exhibited superior discrimination between Tg mice and WT mice, and X6 has the best brain clearance rate. As a result, X6 was identified as the optimal probe. Furthermore, the docking theory calculation results aided in describing X6's binding behavior with Aβ aggregates. As a high-affinity, high-selectivity, safe and effective probe of targeting Aβ aggregates, X6 is a promising NIRF probe for in vivo detection of Aβ aggregates in the AD brain.
Collapse
Affiliation(s)
- Xueqi Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Yingbo Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Zhenli Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Dexiang Hu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Ruiwen Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Mengzhen Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Yaoyang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Xiaomeng Xiu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Hongwei Jia
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China.
| | - Huali Yang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China.
| |
Collapse
|
3
|
Tang Y, Zhang Y, Zhang D, Liu Y, Nussinov R, Zheng J. Exploring pathological link between antimicrobial and amyloid peptides. Chem Soc Rev 2024; 53:8713-8763. [PMID: 39041297 DOI: 10.1039/d3cs00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms. These shared features enable AMYs to possess antimicrobial activity and AMPs to acquire amyloidogenic properties. Despite limited studies on AMYs-AMPs systems, the cross-seeding phenomenon between AMYs and AMPs has emerged as a crucial factor in the bidirectional communication between the pathogenesis of neurodegenerative diseases and host defense against microbial infections. In this review, we examine recent developments in the potential interplay between AMYs and AMPs, as well as their pathological implications for both infectious and neurodegenerative diseases. By discussing the current progress and challenges in this emerging field, this account aims to inspire further research and investments to enhance our understanding of the intricate molecular crosstalk between AMYs and AMPs. This knowledge holds great promise for the development of innovative therapies to combat both microbial infections and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
4
|
Alaziqi B, Beckitt L, Townsend DJ, Morgan J, Price R, Maerivoet A, Madine J, Rochester D, Akien G, Middleton DA. Characterization of Olive Oil Phenolic Extracts and Their Effects on the Aggregation of the Alzheimer's Amyloid-β Peptide and Tau. ACS OMEGA 2024; 9:32557-32578. [PMID: 39100310 PMCID: PMC11292642 DOI: 10.1021/acsomega.4c01281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024]
Abstract
The dietary consumption of extra virgin olive oil (EVOO) is believed to slow the progression of Alzheimer's disease (AD) symptoms. Its protective mechanisms are unclear, but specific EVOO phenolic compounds can individually impede the aggregation of amyloid-β (Aβ) peptides and the microtubule-associated protein tau, two important pathological manifestations of AD. It is unknown, however, whether the numerous and variable phenolic compounds that are consumed in dietary EVOO can collectively alter tau and Aβ aggregation as effectively as the individual compounds. The activity of these complex mixtures against Aβ and tau may be moderated by competition between active and nonactive phenolic components and by extensive derivatizations and isomerization. Here, phenolic mixtures extracted from two different EVOO sources are characterized and tested for how they modulate the aggregation of Aβ40 peptide and tau peptides in vitro. The chromatographic and NMR analysis of Greek and Saudi Arabian EVOO phenolic extracts reveals that they have different concentration profiles, and over 30 compounds are identified. Thioflavin T fluorescence and circular dichroism measurements show that relatively low concentrations (<20 μg/mL) of the Greek and Saudi extracts reduce the rate of Aβ40 aggregation and fibril mass, despite the extracts having different phenolic profiles. By contrast, the Greek extract reduces the rate of tau aggregation only at very high phenolic concentrations (>100 μg/mL). Most compounds in the extracts bind to preformed Aβ40 fibrils and release soluble Aβ oligomers that are mildly toxic to SH-SY5Y cells. Much higher (500 μg/mL) extract concentrations are required to remodel tau filaments into oligomers, and a minimal binding of phenolic compounds to the preformed filaments is observed. It is concluded that EVOO extracts having different phenol profiles are similarly capable of modulating Aβ40 aggregation and fibril morphology in vitro at relatively low concentrations but are less efficient at modulating tau aggregation. Over 2 M tonnes of EVOO are consumed globally each year as part of the Mediterranean diet, and the results here provide motivation for further clinical interrogation of the antiaggregation properties of EVOO as a potential protective mechanism against AD.
Collapse
Affiliation(s)
- Bakri Alaziqi
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
- Department
of Chemistry, University College in Al-Qunfudah,
Umm Al-Qura University, Makkah
Al-Mukarramah 1109, Saudi
Arabia
| | - Liam Beckitt
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - David J. Townsend
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Jasmine Morgan
- Department
of Biology, Edge Hill University, Ormskirk L39 4QP, United Kingdom
| | - Rebecca Price
- Department
of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular
and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Alana Maerivoet
- Department
of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular
and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Jillian Madine
- Department
of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular
and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - David Rochester
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Geoffrey Akien
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - David A. Middleton
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
5
|
Abidi SMS, Shukla AK, Randhawa S, Bathla M, Acharya A. Diosgenin loaded cellulose nanoonion impedes different stages of protein aggregation induced cell death via alleviating mitochondrial dysfunction and upregulation of autophagy. Int J Biol Macromol 2024; 266:131108. [PMID: 38531523 DOI: 10.1016/j.ijbiomac.2024.131108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Protein aggregation is a multifaceted phenomenon prevalent in the progression of neurodegenerative diseases, yielding aggregates of diverse sizes. Recently, increased attention has been directed towards early protein aggregates due to their pronounced toxicity, largely stemming from inflammation mediated by reactive oxygen species (ROS). This study advocates for a therapeutic approach focusing on inflammation control rather than mere ROS inhibition in the context of neurodegenerative disorders. Here, we introduced Camellia sinensis cellulose nanoonion (CS-CNO) as an innovative, biocompatible nanocarrier for encapsulating the phytosteroid diosgenin (DGN@CS-CNO). The resulting nano-assembly, manifesting as spherical entities with dimensions averaging ~180-220 nm, exhibits a remarkable capacity for the gradual and sustained release of approximately 39-44 % of DGN over a 60-hour time frame. DGN@CS-CNO displays a striking ability to inhibit or disassemble various phases of hen egg white lysozyme (HEWL) protein aggregates, including the early (HEWLEA) and late (HEWLLA) stages. In vitro experiments employing HEK293 cells underscore the potential of DGN@CS-CNO in mitigating cell death provoked by protein aggregation. This effect is achieved by ameliorating ROS-mediated inflammation and countering mitochondrial dysfunction, as evidenced by alterations in TNFα, TLR4, and MT-CO1 protein expression. Western blot analyses reveal that the gradual and sustained release of DGN from DGN@CS-CNO induces autophagy, a pivotal process in dismantling intracellular amyloid deposits. In summary, this study not only illuminates a path forward but also presents a compelling case for the utilization of phytosteroid as a formidable strategy against neuroinflammation incited by protein aggregation.
Collapse
Affiliation(s)
- Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manik Bathla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Das BK, Singh O, Chakraborty D. Exploring the Barriers in the Aggregation of a Hexadecameric Human Prion Peptide through the Markov State Model. ACS Chem Neurosci 2023; 14:3622-3645. [PMID: 37705330 DOI: 10.1021/acschemneuro.3c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
The prefibrillar aggregation kinetics of prion peptides are still an enigma. In this perspective, we employ atomistic molecular dynamics (MD) simulations of the shortest human prion peptide (HPP) (127GYMLGS132) at various temperatures and peptide concentrations and apply the Markov state model to determine the various intermediates and lag phases. Our results reveal that the natural mechanism of prion peptide self-assembly in the aqueous phase is impeded by two significant kinetic barriers with oligomer sizes of 6-9 and 12-13 peptides, respectively. The first one is the aggregation of unstructured lower-order oligomers, and the second is fibril nucleation, which impedes the further growth of prion aggregates. Among these two activation barriers, the second one is found to be dominant irrespective of the increase in temperature and peptide concentration. These lag phases are captured in all three different force-field parameters, namely, GROMOS-54a7, AMBER-99SB-ILDN, and CHARMMS 36m, at different concentrations. The GROMOS-54a7 and AMBER-99SB-ILDN force fields showed a comparatively higher percentage of β-sheet formation in the metastable aggregate that evolved during the aggregation process. In contrast, the CHARMM-36m force field showed mostly coil or turn conformations. The addition of a novel catecholamine derivative (naphthoquinone dopamine (NQDA)) arrests the aggregation process between the lag phases by increasing the activation barrier for the Lag1 and Lag2 phases in all of the force fields, which further validates the existence of these lag phases. The preferential binding of NQDA with the peptides increases the hydration of peptides and eventually disrupts the organized morphology of prefibrillar aggregates. It reduces the dimer dissociation energy by -24.34 kJ/mol.
Collapse
Affiliation(s)
- Bratin Kumar Das
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| | - Omkar Singh
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| | - Debashree Chakraborty
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| |
Collapse
|
7
|
Maroli N. Aquaporin-4 Mediated Aggregation of Alzheimer's Amyloid β-Peptide. ACS Chem Neurosci 2023; 14:2683-2698. [PMID: 37486638 DOI: 10.1021/acschemneuro.3c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Clearance of Alzheimer's amyloid oligomers from the brain is crucial for preventing cell toxicity. Dementia complications arise as a result of apoptosis, which is caused by peptide plaques on the lipid surface of cells. Here, we employed all-atom and coarse-grained molecular dynamics simulations to investigate the aggregation of amyloid peptides at the lipid surface and the role of aquaporin-4 (AQP4) in facilitating peptide clearance from astrocytes. The network of protein-protein interactions through text mining revealed that the expression of AQP4 and amyloid aggregation were strongly correlated. It has also been revealed that the role of aquaporins in the etiology of Alzheimer's disease involves several interconnected proteins and pathways. The nature of aggregation at the surface of the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer was revealed by the interaction of amyloid oligomers. The membrane-bound pore region of AQP4 interacts with the peptide and slows its aggregation. This interaction maintains the helical content of the peptide while lowering its toxicity at the lipid surface. The hydrophobicity of the peptide also decreased because of these interactions, which may help in the removal of the peptide from astrocytes. Long-term coarse-grained MD simulations demonstrated different features of oligomer aggregation at the surface and strong oligomer attraction to AQP4, which inhibited aggregation. Additionally, the water dynamics of aquaporins demonstrate how the selectivity filter is broken to disrupt water flow. Our findings also provide insight into the physiological alterations in brain tissue associated with Alzheimer's disease, including water retention and increased water flow in the CSF. Furthermore, in vitro thioflavin fluorescence spectroscopy revealed a slower aggregation of the peptide in the presence of AQP4.
Collapse
Affiliation(s)
- Nikhil Maroli
- Computational Biology Division, DRDO Center for Life Science, Bharathiar University Campus, Coimbatore 641046, Tamil Nadu, India
| |
Collapse
|
8
|
Yao J, He Z, You G, Liu Q, Li N. The Deficits of Insulin Signal in Alzheimer's Disease and the Mechanisms of Vanadium Compounds in Curing AD. Curr Issues Mol Biol 2023; 45:6365-6382. [PMID: 37623221 PMCID: PMC10453015 DOI: 10.3390/cimb45080402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Vanadium is a well-known essential trace element, which usually exists in oxidation states in the form of a vanadate cation intracellularly. The pharmacological study of vanadium began with the discovery of its unexpected inhibitory effect on ATPase. Thereafter, its protective effects on β cells and its ability in glucose metabolism regulation were observed from the vanadium compound, leading to the application of vanadium compounds in clinical trials for curing diabetes. Alzheimer's disease (AD) is the most common dementia disease in elderly people. However, there are still no efficient agents for treating AD safely to date. This is mainly because of the complexity of the pathology, which is characterized by senile plaques composed of the amyloid-beta (Aβ) protein in the parenchyma of the brain and the neurofibrillary tangles (NFTs), which are derived from the hyperphosphorylated tau protein in the neurocyte, along with mitochondrial damage, and eventually the central nervous system (CNS) atrophy. AD was also illustrated as type-3 diabetes because of the observations of insulin deficiency and the high level of glucose in cerebrospinal fluid (CSF), as well as the impaired insulin signaling in the brain. In this review, we summarize the advances in applicating the vanadium compound to AD treatment in experimental research and point out the limitations of the current study using vanadium compounds in AD treatment. We hope this will help future studies in this field.
Collapse
Affiliation(s)
- Jinyi Yao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
| | - Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
| | - Guanying You
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (J.Y.)
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
9
|
Viles JH. Imaging Amyloid-β Membrane Interactions: Ion-Channel Pores and Lipid-Bilayer Permeability in Alzheimer's Disease. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202215785. [PMID: 38515735 PMCID: PMC10952214 DOI: 10.1002/ange.202215785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 03/08/2023]
Abstract
The accumulation of the amyloid-β peptides (Aβ) is central to the development of Alzheimer's disease. The mechanism by which Aβ triggers a cascade of events that leads to dementia is a topic of intense investigation. Aβ self-associates into a series of complex assemblies with different structural and biophysical properties. It is the interaction of these oligomeric, protofibril and fibrillar assemblies with lipid membranes, or with membrane receptors, that results in membrane permeability and loss of cellular homeostasis, a key event in Alzheimer's disease pathology. Aβ can have an array of impacts on lipid membranes, reports have included: a carpeting effect; a detergent effect; and Aβ ion-channel pore formation. Recent advances imaging these interactions are providing a clearer picture of Aβ induced membrane disruption. Understanding the relationship between different Aβ structures and membrane permeability will inform therapeutics targeting Aβ cytotoxicity.
Collapse
Affiliation(s)
- John H. Viles
- Department of Biochemistry, SBBS, Queen MaryUniversity of LondonUK
| |
Collapse
|
10
|
Viles JH. Imaging Amyloid-β Membrane Interactions: Ion-Channel Pores and Lipid-Bilayer Permeability in Alzheimer's Disease. Angew Chem Int Ed Engl 2023; 62:e202215785. [PMID: 36876912 PMCID: PMC10953358 DOI: 10.1002/anie.202215785] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
The accumulation of the amyloid-β peptides (Aβ) is central to the development of Alzheimer's disease. The mechanism by which Aβ triggers a cascade of events that leads to dementia is a topic of intense investigation. Aβ self-associates into a series of complex assemblies with different structural and biophysical properties. It is the interaction of these oligomeric, protofibril and fibrillar assemblies with lipid membranes, or with membrane receptors, that results in membrane permeability and loss of cellular homeostasis, a key event in Alzheimer's disease pathology. Aβ can have an array of impacts on lipid membranes, reports have included: a carpeting effect; a detergent effect; and Aβ ion-channel pore formation. Recent advances imaging these interactions are providing a clearer picture of Aβ induced membrane disruption. Understanding the relationship between different Aβ structures and membrane permeability will inform therapeutics targeting Aβ cytotoxicity.
Collapse
Affiliation(s)
- John H. Viles
- Department of Biochemistry, SBBS, Queen MaryUniversity of LondonUK
| |
Collapse
|
11
|
Chowdhury UD, Paul A, Bhargava BL. Interaction of the tau fibrils with the neuronal membrane. Biophys Chem 2023; 298:107024. [PMID: 37104971 DOI: 10.1016/j.bpc.2023.107024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Tau proteins are recently gaining a lot of interest due to their active role in causing a range of tauopathies. Molecular mechanisms underlying the tau interaction with the neuronal membrane are hitherto unknown and difficult to characterize using experimental methods. Using the cryo-EM structure of the tau-fibrils we have used atomistic molecular dynamics simulation to model the tau fibril and neuronal membrane interaction using explicit solvation. The dynamics and structural characteristics of the tau fibril with the neuronal membrane are compared to the tau fibril in the aqueous phase to corroborate the effect of the neuronal membrane in the tau structure. Tau fibrils have been modelled using CHARMM-36m force field and the six component neuronal membrane composition is taken from the earlier simulation results. The timescale conceivable in our molecular dynamics simulations is of the order of microseconds which captures the onset of the interaction of the tau fibrils with the neuronal membrane. This interaction is found to impact the tau pathogenesis that finally causes neuronal toxicity. Our study initiates the understanding of tau conformational ensemble in the presence of neuronal membrane and sheds the light on the significant tau-membrane interactions.
Collapse
Affiliation(s)
- Unmesh D Chowdhury
- School of Chemical Sciences, National Institute of Science Education & Research-Bhubaneswar, An OCC of Homi Bhabha National Institute, P.O. Jatni, Khurda, Odisha 752050, India
| | - Arnav Paul
- School of Chemical Sciences, National Institute of Science Education & Research-Bhubaneswar, An OCC of Homi Bhabha National Institute, P.O. Jatni, Khurda, Odisha 752050, India
| | - B L Bhargava
- School of Chemical Sciences, National Institute of Science Education & Research-Bhubaneswar, An OCC of Homi Bhabha National Institute, P.O. Jatni, Khurda, Odisha 752050, India.
| |
Collapse
|
12
|
Nguyen PH, Derreumaux P. An S-Shaped Aβ42 Cross-β Hexamer Embedded into a Lipid Bilayer Reveals Membrane Disruption and Permeability. ACS Chem Neurosci 2023; 14:936-946. [PMID: 36757886 DOI: 10.1021/acschemneuro.2c00785] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
The interactions of amyloid oligomers with membranes are known to contribute to cellular toxicity. Numerous in vitro experimental studies reported on the insertion of oligomers of different sizes that can induce cell membrane disruption, extract lipids, and form ion-permeable transmembrane pores. The current repertoire of amyloid-beta (Aβ) membrane-inserted folds that was subject to high-resolution structure NMR spectroscopy and computer simulations is devoid of any cross-β fibrillar structure. In this study, we explored the dynamics of an S-shaped Aβ42 cross-β hexamer model inserted into a lipid bilayer membrane by two atomistic molecular dynamics simulations. The initial model is characterized by the hydrophobic residues at the central hydrophobic core (residues 17-21, CHC) and the C-terminus (residues 30-42) embedded into the membrane. We observed major structural secondary, tertiary, and quaternary rearrangements leading to two distinct species, hexamer and two trimers, accompanied by membrane disruption and water permeation. The simulations show that some configurations, but not the majority, have the CHC and C-terminus hydrophobic residues exposed to the solvent. Overall, our computational results offer new perspectives to understand the relationship between Aβ42 assemblies and membrane permeability.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR 9080, Laboratoire de Biochimie Théorique, Fondation Edmond de Rothschild, Université Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- CNRS, UPR 9080, Laboratoire de Biochimie Théorique, Fondation Edmond de Rothschild, Université Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.,Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
13
|
Guzmán-Ocampo DC, Aguayo-Ortiz R, Velasco-Bolom JL, Gupta PL, Roitberg AE, Dominguez L. Elucidating the Protonation State of the γ-Secretase Catalytic Dyad. ACS Chem Neurosci 2023; 14:261-269. [PMID: 36562727 DOI: 10.1021/acschemneuro.2c00563] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
γ-Secretase (GS) is an intramembrane aspartyl protease that participates in the sequential cleavage of C99 to generate different isoforms of the amyloid-β (Aβ) peptides that are associated with the development of Alzheimer's disease. Due to its importance in the proteolytic processing of C99 by GS, we performed pH replica exchange molecular dynamics (pH-REMD) simulations of GS in its apo and substrate-bound forms to sample the protonation states of the catalytic dyad. We found that the catalytic dyad is deprotonated at physiological pH in our apo form, but the presence of the substrate at the active site displaces its monoprotonated state toward physiological pH. Our results show that Asp257 acts as the general base and Asp385 as the general acid during the cleavage mechanism. We identified different amino acids such as Lys265, Arg269, and the PAL motif interacting with the catalytic dyad and promoting changes in its acid-base behavior. Finally, we also found a significant pKa shift of Glu280 related to the internalization of TM6-CT in the GS-apo form. Our study provides critical mechanistic insight into the GS mechanism and the basis for future research on the genesis of Aβ peptides and the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Dulce C Guzmán-Ocampo
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City04510, Mexico
| | - Rodrigo Aguayo-Ortiz
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City04510, Mexico
| | - José-Luis Velasco-Bolom
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City04510, Mexico
| | - Pancham Lal Gupta
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City04510, Mexico
| |
Collapse
|
14
|
Abstract
Perturbation of cell membranes by amyloid β (Ab) peptide oligomers is one possible mechanism of cytotoxicity in Alzheimer's disease, but the structure of such Ab-membrane complexes is unknown. Here we examine the stability of several putative structures by implicit membrane and all-atom molecular dynamics simulations. The structures include (a) a variety of models proposed by other researchers in the past, (b) a heptameric β barrel determined by grafting the Ab sequence onto α-hemolysin, (c) a similar structure with modified strand orientation and turn location based on an experimental β-hairpin structure, (d) oligomers inserting C-terminal β hairpins into one leaflet of the bilayer, (e) oligomers forming parallel C-terminal β barrels, and (f) a helical hexamer made of C-terminal fragments. The α-hemolysin-grafted structure and its alternately oriented variant are stable in the membrane and form an aqueous pore. In contrast, the C-terminal parallel barrels are not stable, presumably due to excessive hydrophobicity of their inner surface. The helical hexamer also failed to stabilize an aqueous pore for the same reason. The C-terminal hairpin-inserting structures remain stably inserted but, again, do not form an aqueous pore. Our results suggest that only β-barrels inserting a combination of C-terminal and other residues can form stable aqueous pores.
Collapse
Affiliation(s)
- Aliasghar Sepehri
- Department of Chemistry, City College of New York, CUNY, 160 Convent Avenue, New York, New York10031, United States
| | - Themis Lazaridis
- Department of Chemistry, City College of New York, CUNY, 160 Convent Avenue, New York, New York10031, United States.,Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York10016, United States
| |
Collapse
|
15
|
The Strategies for Treating "Alzheimer's Disease": Insulin Signaling May Be a Feasible Target. Curr Issues Mol Biol 2022; 44:6172-6188. [PMID: 36547082 PMCID: PMC9777526 DOI: 10.3390/cimb44120421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by senile plaques formed by amyloid-beta (Aβ) extracellularly and neurofibrillary tangles (NFTs) formed by hyperphosphorylated tau protein intracellularly. Apart from these two features, insulin deficiency and insulin resistance have also been observed in AD brains. Thus, AD has also been referred to as type 3 diabetes by some of the scientists in this field. Insulin plays a pivotal role in learning and memory and is involved in regulating tau phosphorylation though the PI3KAkt-GSK3b signaling pathway. Interestingly, recent studies revealed that in AD brains the microglia transformed into a disease-associated microglia (DAM) status in a TREM2-dependent manner to restrain the toxicity of Aβ and propagation of tau. This also correlated with PI3K-Akt signaling through the adaptor of TREM2. Whether insulin has any effect on microglia activation in AD pathology is unclear so far. However, many studies demonstrated that diabetes increased the risk of AD. In this review, we summarize the main strategies for curing AD, including lowering the level of Aβ, suppressing the phosphorylation of tau, the ablation and/or repopulation of microglia, and especially the supply of insulin. We also propose that attention should be given to the influences of insulin on microglia in AD.
Collapse
|
16
|
Yang Y, Distaffen H, Jalali S, Nieuwkoop AJ, Nilsson BL, Dias CL. Atomic Insights into Amyloid-Induced Membrane Damage. ACS Chem Neurosci 2022; 13:2766-2777. [PMID: 36095304 DOI: 10.1021/acschemneuro.2c00446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amphipathic peptides can cause biological membranes to leak either by dissolving their lipid content via a detergent-like mechanism or by forming pores on the membrane surface. These modes of membrane damage have been related to the toxicity of amyloid peptides and to the activity of antimicrobial peptides. Here, we perform the first all-atom simulations in which membrane-bound amphipathic peptides self-assemble into β-sheets that subsequently either form stable pores inside the bilayer or drag lipids out of the membrane surface. An analysis of these simulations shows that the acyl tail of lipids interact strongly with non-polar side chains of peptides deposited on the membrane. These strong interactions enable lipids to be dragged out of the bilayer by oligomeric structures accounting for detergent-like damage. They also disturb the orientation of lipid tails in the vicinity of peptides. These distortions are minimized around pore structures. We also show that membrane-bound β-sheets become twisted with one of their extremities partially penetrating the lipid bilayer. This allows peptides on opposite leaflets to interact and form a long transmembrane β-sheet, which initiates poration. In simulations, where peptides are deposited on a single leaflet, the twist in β-sheets allows them to penetrate the membrane and form pores. In addition, our simulations show that fibril-like structures produce little damage to lipid membranes, as non-polar side chains in these structures are unavailable to interact with the acyl tail of lipids.
Collapse
Affiliation(s)
- Yanxing Yang
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Hannah Distaffen
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Sharareh Jalali
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Andrew J Nieuwkoop
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
17
|
Wang B, Guo C. Concentration-Dependent Effects of Cholesterol on the Dimerization of Amyloid-β Peptides in Lipid Bilayers. ACS Chem Neurosci 2022; 13:2709-2718. [PMID: 36082607 DOI: 10.1021/acschemneuro.2c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Membrane disruption mediated by the accumulation of amyloid-β (Aβ) on cell membranes is central to the pathogenesis of Alzheimer's disease (AD). Cholesterol, an important component of membranes, is well-recognized as a risk factor in AD. It can affect the aggregation and pore formation of Aβ on membranes whereas the specific effects are rather complex, particularly regarding the non-linear response to cholesterol concentrations. Yet, the mechanistic understanding of the role of cholesterol in Aβ-membrane interactions remains incomplete. Herein, we employed microsecond-scale molecular dynamics simulations to investigate the effects of cholesterol on Aβ dimerization in a lipid bilayer containing different molar ratios of cholesterol (0, 20, and 40 mol %). Cholesterol reduces the time required for the formation of stable dimers and exerts dual effects on Aβ-membrane interactions. First, cholesterol promotes the extraction of the C-terminal region from the membrane to water. Consequently, at the ratios of 0 and 20 mol %, peptides are anchored at the membrane-water interface, but they are repelled to water at a ratio of 40 mol % with high structural flexibility. Second, cholesterol weakens Aβ-membrane interactions, thereby enhancing inter-peptide interactions. The former is favorable for dimerization while the latter is not. The balance between two factors eventually leads to a non-monotonic effect on the degree of dimerization, whereby the number of inter-peptide contacts is the largest at a cholesterol ratio of 20 mol %. These results provide atomistic insights into the regulation mechanism of Aβ42 aggregation by cholesterol and help to understand the pathological link between cholesterol and AD.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
18
|
Allsopp R, Pavlova A, Cline T, Salyapongse AM, Gillilan RE, Di YP, Deslouches B, Klauda JB, Gumbart JC, Tristram-Nagle S. Antimicrobial Peptide Mechanism Studied by Scattering-Guided Molecular Dynamics Simulation. J Phys Chem B 2022; 126:6922-6935. [PMID: 36067064 PMCID: PMC10392866 DOI: 10.1021/acs.jpcb.2c03193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In an effort to combat rising antimicrobial resistance, our labs have rationally designed cationic, helical, amphipathic antimicrobial peptides (AMPs) as alternatives to traditional antibiotics since AMPs incur bacterial resistance in weeks, rather than days. One highly positively charged AMP, WLBU2 (+13e), (RRWV RRVR RWVR RVVR VVRR WVRR), has been shown to be effective in killing both Gram-negative (G(-)) and Gram-positive (G(+)) bacteria by directly perturbing the bacterial membrane nonspecifically. Previously, we used two equilibrium experimental methods: synchrotron X-ray diffuse scattering (XDS) providing lipid membrane thickness and neutron reflectometry (NR) providing WLBU2 depth of penetration into three lipid model membranes (LMMs). The purpose of the present study is to use the results from the scattering experiments to guide molecular dynamics (MD) simulations to investigate the detailed biophysics of the interactions of WLBU2 with LMMs of Gram-negative outer and inner membranes, and Gram-positive cell membranes, to elucidate the mechanisms of bacterial killing. Instead of coarse-graining, backmapping, or simulating without bias for several microseconds, all-atom (AA) simulations were guided by the experimental results and then equilibrated for ∼0.5 μs. Multiple replicas of the inserted peptide were run to probe stability and reach a combined time of at least 1.2 μs for G(-) and also 2.0 μs for G(+). The simulations with experimental comparisons help rule out certain structures and orientations and propose the most likely set of structures, orientations, and effects on the membrane. The simulations revealed that water, phosphates, and ions enter the hydrocarbon core when WLBU2 is positioned there. For an inserted peptide, the three types of amino acids, arginine, tryptophan, and valine (R, W, V), are arranged with the 13 Rs extending from the hydrocarbon core to the phosphate group, Ws are located at the interface, and Vs are more centrally located. For a surface state, R, W, and V are positioned relative to the bilayer interface as expected from their hydrophobicities, with Rs closest to the phosphate group, Ws close to the interface, and Vs in between. G(-) and G(+) LMMs are thinned ∼1 Å by the addition of WLBU2. Our results suggest a dual anchoring mechanism for WLBU2 both in the headgroup and in the hydrocarbon region that promotes a defect region where water and ions can flow across the slightly thinned bacterial cell membrane.
Collapse
Affiliation(s)
- Robert Allsopp
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Anna Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tyler Cline
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Aria M Salyapongse
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Richard E Gillilan
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Y Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Berthony Deslouches
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stephanie Tristram-Nagle
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
19
|
Vallés AS, Barrantes FJ. Interactions between the Nicotinic and Endocannabinoid Receptors at the Plasma Membrane. MEMBRANES 2022; 12:812. [PMID: 36005727 PMCID: PMC9414690 DOI: 10.3390/membranes12080812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Compartmentalization, together with transbilayer and lateral asymmetries, provide the structural foundation for functional specializations at the cell surface, including the active role of the lipid microenvironment in the modulation of membrane-bound proteins. The chemical synapse, the site where neurotransmitter-coded signals are decoded by neurotransmitter receptors, adds another layer of complexity to the plasma membrane architectural intricacy, mainly due to the need to accommodate a sizeable number of molecules in a minute subcellular compartment with dimensions barely reaching the micrometer. In this review, we discuss how nature has developed suitable adjustments to accommodate different types of membrane-bound receptors and scaffolding proteins via membrane microdomains, and how this "effort-sharing" mechanism has evolved to optimize crosstalk, separation, or coupling, where/when appropriate. We focus on a fast ligand-gated neurotransmitter receptor, the nicotinic acetylcholine receptor, and a second-messenger G-protein coupled receptor, the cannabinoid receptor, as a paradigmatic example.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Bahía Blanca 8000, Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|
20
|
Chowdhury UD, Paul A, Bhargava BL. The effect of lipid composition on the dynamics of tau fibrils. Proteins 2022; 90:2103-2115. [DOI: 10.1002/prot.26401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Unmesh Dutta Chowdhury
- School of Chemical Sciences National Institute of Science Education & Research‐Bhubaneswar, OCC of Homi Bhabha National Institute Khurda Odisha India
| | - Arnav Paul
- School of Chemical Sciences National Institute of Science Education & Research‐Bhubaneswar, OCC of Homi Bhabha National Institute Khurda Odisha India
| | - B. L. Bhargava
- School of Chemical Sciences National Institute of Science Education & Research‐Bhubaneswar, OCC of Homi Bhabha National Institute Khurda Odisha India
| |
Collapse
|
21
|
Nguyen HL, Linh HQ, Krupa P, La Penna G, Li MS. Amyloid β Dodecamer Disrupts the Neuronal Membrane More Strongly than the Mature Fibril: Understanding the Role of Oligomers in Neurotoxicity. J Phys Chem B 2022; 126:3659-3672. [PMID: 35580354 PMCID: PMC9150093 DOI: 10.1021/acs.jpcb.2c01769] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The amyloid cascade
hypothesis states that senile plaques, composed
of amyloid β (Aβ) fibrils, play a key role in Alzheimer’s
disease (AD). However, recent experiments have shown that Aβ
oligomers are more toxic to neurons than highly ordered fibrils. The
molecular mechanism underlying this observation remains largely unknown.
One of the possible scenarios for neurotoxicity is that Aβ peptides
create pores in the lipid membrane that allow Ca2+ ions
to enter cells, resulting in a signal of cell apoptosis. Hence, one
might think that oligomers are more toxic due to their higher ability
to create ion channels than fibrils. In this work, we study the effect
of Aβ42 dodecamer and fibrils on a neuronal membrane, which
is similar to that observed in AD patients, using all-atom molecular
dynamics simulations. Due to short simulation times, we cannot observe
the formation of pores, but useful insight on the early events of
this process has been obtained. Namely, we showed that dodecamer distorts
the lipid membrane to a greater extent than fibrils, which may indicate
that ion channels can be more easily formed in the presence of oligomers.
Based on this result, we anticipate that oligomers are more toxic
than mature fibrils, as observed experimentally. Moreover, the Aβ–membrane
interaction was found to be governed by the repulsive electrostatic
interaction between Aβ and the ganglioside GM1 lipid. We calculated
the bending and compressibility modulus of the membrane in the absence
of Aβ and obtained good agreement with the experiment. We predict
that the dodecamer will increase the compressibility modulus but has
little effect on the bending modulus. Due to the weak interaction
with the membrane, fibrils insignificantly change the membrane elastic
properties.
Collapse
Affiliation(s)
- Hoang Linh Nguyen
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 729110, Vietnam.,Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 740500, Vietnam.,Vietnam National University, Ho Chi Minh City 71300, Vietnam
| | - Huynh Quang Linh
- Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 740500, Vietnam.,Vietnam National University, Ho Chi Minh City 71300, Vietnam
| | - Pawel Krupa
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw 02-668, Poland
| | - Giovanni La Penna
- National Research Council of Italy (CNR), Institute for Chemistry of Organometallic Compounds (ICCOM), Florence 50019, Italy.,National Institute for Nuclear Physics (INFN), Section of Roma-Tor Vergata, Rome 00815, Italy
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw 02-668, Poland
| |
Collapse
|
22
|
Di Meco A, Kemal S, Popovic J, Chandra S, Sadleir KR, Vassar R. Poloxamer-188 Exacerbates Brain Amyloidosis, Presynaptic Dystrophies, and Pathogenic Microglial Activation in 5XFAD Mice. Curr Alzheimer Res 2022; 19:317-329. [DOI: 10.2174/1567205019666220509143823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022]
Abstract
Background:
Alzheimer’s disease (AD) is initiated by aberrant accumulation of amyloid beta (Aβ) protein in the brain parenchyma. The microenvironment surrounding amyloid plaques is characterized by the swelling of presynaptic terminals (dystrophic neurites) associated with lysosomal dysfunction, microtubule disruption and impaired axonal transport. Aβ-induced plasma membrane damage and calcium influx could be potential mechanisms underlying dystrophic neurite formation.
Objective:
We tested whether promoting membrane integrity by brain administration of a safe FDA approved surfactant molecule poloxamer-188 (P188) could attenuate AD pathology in vivo.
Methods:
Three-month-old 5XFAD male mice were administered several concentrations of P188 in the brain for 42 days with mini-osmotic pumps. After 42 days, mice were euthanized and assessed for amyloid pathology, dystrophic neurites, pathogenic microglia activation, tau phosphorylation and lysosomal / vesicular trafficking markers in the brain.
Results:
P188 was lethal at the highest concentration of 10mM. Lower concentrations of P188 (1.2, 12 and 120μM) were well tolerated. P188 increased brain Aβ burden, potentially through activation of the γ-secretase pathway. Dystrophic neurite pathology was exacerbated in P188 treated mice as indicated by increased LAMP1 accumulation around Aβ deposits. Pathogenic microglial activation was increased by P188. Total tau levels were decreased by P188. Lysosomal enzyme cathepsin D and calcium-dependent vesicular trafficking regulator synaptotagmin-7 (SYT7) were dysregulated upon P188 administration.
Conclusion:
P188 brain delivery exacerbated amyloid pathology, dystrophic neurites and pathogenic microglial activation in 5XFAD mice. These effects correlated with lysosomal dysfunction and dysregulation of plasma membrane vesicular trafficking. P188 is not a promising therapeutic strategy against AD pathogenesis.
Collapse
Affiliation(s)
- Antonio Di Meco
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Shahrnaz Kemal
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Jelena Popovic
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Sidhanth Chandra
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | | | - Robert Vassar
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Mesulam Center for Cognitive Neurology and Alzheimer’s disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
23
|
Xie H, Rojas A, Maisuradze GG, Khelashvili G. Mechanistic Kinetic Model Reveals How Amyloidogenic Hydrophobic Patches Facilitate the Amyloid-β Fibril Elongation. ACS Chem Neurosci 2022; 13:987-1001. [PMID: 35258946 PMCID: PMC8986627 DOI: 10.1021/acschemneuro.1c00801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abnormal aggregation of amyloid β (Aβ) peptides into fibrils plays a critical role in the development of Alzheimer's disease. A two-stage "dock-lock" model has been proposed for the Aβ fibril elongation process. However, the mechanisms of the Aβ monomer-fibril binding process have not been elucidated with the necessary molecular-level precision, so it remains unclear how the lock phase dynamics leads to the overall in-register binding of the Aβ monomer onto the fibril. To gain mechanistic insights into this critical step during the fibril elongation process, we used molecular dynamics (MD) simulations with a physics-based coarse-grained UNited-RESidue (UNRES) force field and sampled extensively the dynamics of the lock phase process, in which a fibril-bound Aβ(9-40) peptide rearranged to establish the native docking conformation. Analysis of the MD trajectories with Markov state models was used to quantify the kinetics of the rearrangement process and the most probable pathways leading to the overall native docking conformation of the incoming peptide. These revealed a key intermediate state in which an intra-monomer hairpin is formed between the central core amyloidogenic patch 18VFFA21 and the C-terminal hydrophobic patch 34LMVG37. This hairpin structure is highly favored as a transition state during the lock phase of the fibril elongation. We propose a molecular mechanism for facilitation of the Aβ fibril elongation by amyloidogenic hydrophobic patches.
Collapse
Affiliation(s)
- Hengyi Xie
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10065, United States
| | - Ana Rojas
- Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | - Gia G. Maisuradze
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
24
|
Press-Sandler O, Miller Y. Molecular insights into the primary nucleation of polymorphic amyloid β dimers in DOPC lipid bilayer membrane. Protein Sci 2022; 31:e4283. [PMID: 35129859 PMCID: PMC8994488 DOI: 10.1002/pro.4283] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) pathology is characterized by loss of memory cognitive and behavioral deterioration. One of the hallmarks of AD is amyloid β (Aβ) plaques in the brain that consists of Aβ oligomers and fibrils. It is accepted that oligomers, particularly dimers, are toxic species that are produced extracellularly and intracellularly in membranes. It is believed that the disruption of membranes by polymorphic Aβ oligomers is the key for the pathology of AD. This is a first study that investigate the effect of polymorphic “α‐helix/random coil” and “fibril‐like” Aβ dimers on 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine (DOPC) membrane. It has been found that the DOPC membrane promotes Aβ1–42 “fibril‐like” dimers and impedes Aβ1–42 “α‐helix/random coil” dimers. The N‐termini domains within Aβ1–42 dimers play a role in Aβ aggregation in membrane milieus. In addition, the aromatic π–π interactions (involving residues F19 and F20 in Aβ1–42) are the driving forces for the hydrophobic interactions that initiate the primary nucleation of polymorphic Aβ1–42 dimers within DOPC membrane. Finally, the DOPC bilayer membrane thickness is locally decreased, and it is disrupted by an embedded distinct Aβ1–42 dimer, due to relatively large contacts between Aβ1–42 monomers and the DOPC membrane. This study reveals insights into the molecular mechanisms by which polymorphic early‐stage Aβ1–42 dimers have distinct impacts on DOPC membrane.
Collapse
Affiliation(s)
- Olga Press-Sandler
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva, Israel.,Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva, Israel.,Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva, Israel
| |
Collapse
|
25
|
Sulatskaya AI, Kosolapova AO, Bobylev AG, Belousov MV, Antonets KS, Sulatsky MI, Kuznetsova IM, Turoverov KK, Stepanenko OV, Nizhnikov AA. β-Barrels and Amyloids: Structural Transitions, Biological Functions, and Pathogenesis. Int J Mol Sci 2021; 22:11316. [PMID: 34768745 PMCID: PMC8582884 DOI: 10.3390/ijms222111316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/17/2023] Open
Abstract
Insoluble protein aggregates with fibrillar morphology called amyloids and β-barrel proteins both share a β-sheet-rich structure. Correctly folded β-barrel proteins can not only function in monomeric (dimeric) form, but also tend to interact with one another-followed, in several cases, by formation of higher order oligomers or even aggregates. In recent years, findings proving that β-barrel proteins can adopt cross-β amyloid folds have emerged. Different β-barrel proteins were shown to form amyloid fibrils in vitro. The formation of functional amyloids in vivo by β-barrel proteins for which the amyloid state is native was also discovered. In particular, several prokaryotic and eukaryotic proteins with β-barrel domains were demonstrated to form amyloids in vivo, where they participate in interspecies interactions and nutrient storage, respectively. According to recent observations, despite the variety of primary structures of amyloid-forming proteins, most of them can adopt a conformational state with the β-barrel topology. This state can be intermediate on the pathway of fibrillogenesis ("on-pathway state"), or can be formed as a result of an alternative assembly of partially unfolded monomers ("off-pathway state"). The β-barrel oligomers formed by amyloid proteins possess toxicity, and are likely to be involved in the development of amyloidoses, thus representing promising targets for potential therapy of these incurable diseases. Considering rapidly growing discoveries of the amyloid-forming β-barrels, we may suggest that their real number and diversity of functions are significantly higher than identified to date, and represent only "the tip of the iceberg". Here, we summarize the data on the amyloid-forming β-barrel proteins, their physicochemical properties, and their biological functions, and discuss probable means and consequences of the amyloidogenesis of these proteins, along with structural relationships between these two widespread types of β-folds.
Collapse
Affiliation(s)
- Anna I. Sulatskaya
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Anastasiia O. Kosolapova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., 142290 Moscow, Russia;
| | - Mikhail V. Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Maksim I. Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia;
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Olesya V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| |
Collapse
|
26
|
Boopathi S, Poma AB, Garduño-Juárez R. An Overview of Several Inhibitors for Alzheimer's Disease: Characterization and Failure. Int J Mol Sci 2021; 22:10798. [PMID: 34639140 PMCID: PMC8509255 DOI: 10.3390/ijms221910798] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 01/04/2023] Open
Abstract
Amyloid beta (Aβ) oligomers are the most neurotoxic aggregates causing neuronal death and cognitive damage. A detailed elucidation of the aggregation pathways from oligomers to fibril formation is crucial to develop therapeutic strategies for Alzheimer's disease (AD). Although experimental techniques rely on the measure of time- and space-average properties, they face severe difficulties in the investigation of Aβ peptide aggregation due to their intrinsically disorder character. Computer simulation is a tool that allows tracing the molecular motion of molecules; hence it complements Aβ experiments, as it allows to explore the binding mechanism between metal ions and Aβ oligomers close to the cellular membrane at the atomic resolution. In this context, integrated studies of experiments and computer simulations can assist in mapping the complete pathways of aggregation and toxicity of Aβ peptides. Aβ oligomers are disordered proteins, and due to a rapid exploration of their intrinsic conformational space in real-time, they are challenging therapeutic targets. Therefore, no good drug candidate could have been identified for clinical use. Our previous investigations identified two small molecules, M30 (2-Octahydroisoquinolin-2(1H)-ylethanamine) and Gabapentin, capable of Aβ binding and inhibiting molecular aggregation, synaptotoxicity, intracellular calcium signaling, cellular toxicity and memory losses induced by Aβ. Thus, we recommend these molecules as novel candidates to assist anti-AD drug discovery in the near future. This review discusses the most recent research investigations about the Aβ dynamics in water, close contact with cell membranes, and several therapeutic strategies to remove plaque formation.
Collapse
Affiliation(s)
- Subramanian Boopathi
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | - Adolfo B. Poma
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research Polish Academy of Science, Pawińskiego 5B, 02-106 Warsaw, Poland
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Ramón Garduño-Juárez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| |
Collapse
|
27
|
Sant V, Som M, Karkisaval AG, Carnahan P, Lal R. Scavenging amyloid oligomers from neurons with silica nanobowls: Implications for amyloid diseases. Biophys J 2021; 120:3329-3340. [PMID: 34242592 PMCID: PMC8391079 DOI: 10.1016/j.bpj.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Amyloid-β (Aβ) oligomers are toxic species implicated in Alzheimer's disease (AD). The prevailing hypothesis implicates a major role of membrane-associated amyloid oligomers in AD pathology. Our silica nanobowls (NB) coated with lipid-polymer have submicromolar affinity for Aβ binding. We demonstrate that NB scavenges distinct fractions of Aβs in a time-resolved manner from amyloid precursor protein-null neuronal cells after incubation with Aβ. At short incubation times in cell culture, NB-Aβ seeds have aggregation kinetics resembling that of extracellular fraction of Aβ, whereas at longer incubation times, NB-Aβ seeds scavenge membrane-associated Aβ. Aβ aggregates can be eluted from NB surfaces by mechanical agitation and appear to retain their aggregation driving domains as seen in seeding aggregation experiments. These results demonstrate that the NB system can be used for time-resolved separation of toxic Aβ species from biological samples for characterization and in diagnostics. Scavenging membrane-associated amyloids using lipid-functionalized NB without chemical manipulation has wide applications in the diagnosis and therapy of AD and other neurodegenerative diseases, cancer, and cardiovascular conditions.
Collapse
Affiliation(s)
- Vrinda Sant
- Materials Science and Engineering, University of California San Diego, La Jolla, California.
| | - Madhura Som
- Department of Nanoengineering, University of California San Diego, La Jolla, California
| | - Abhijith G Karkisaval
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California
| | - Parker Carnahan
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Ratnesh Lal
- Materials Science and Engineering, University of California San Diego, La Jolla, California; Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California.
| |
Collapse
|
28
|
Kumar V, Sinha N, Thakur AK. Necessity of regulatory guidelines for the development of amyloid based biomaterials. Biomater Sci 2021; 9:4410-4422. [PMID: 34018497 DOI: 10.1039/d1bm00059d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Amyloid diseases are caused due to protein homeostasis failure where incorrectly folded proteins/peptides form cross-β-sheet rich amyloid fibrillar structures. Besides proteins/peptides, small metabolite assemblies also exhibit amyloid-like features. These structures are linked to several human and animal diseases. In addition, non-toxic amyloids with diverse physiological roles are characterized as a new functional class. This finding, along with the unique properties of amyloid like stability and mechanical strength, led to a surge in the development of amyloid-based biomaterials. However, the usage of these materials by humans and animals may pose a health risk such as the development of amyloid diseases and toxicity. This is possible because amyloid-based biomaterials and their fragments may assist seeding and cross-seeding mechanisms of amyloid formation in the body. This review summarizes the potential uses of amyloids as biomaterials, the concerns regarding their usage, and a prescribed workflow to initiate a regulatory approach.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nabodita Sinha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, UP-208016, India.
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, UP-208016, India.
| |
Collapse
|
29
|
Ngo ST, Nguyen PH, Derreumaux P. Cholesterol Molecules Alter the Energy Landscape of Small Aβ1-42 Oligomers. J Phys Chem B 2021; 125:2299-2307. [PMID: 33646777 DOI: 10.1021/acs.jpcb.1c00036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Small amyloid-β (Aβ) oligomers are believed to be key pathogenic species in Alzheimer's disease (AD). One suggested toxicity mechanism is the detergent model where oligomers remove lipid molecules from the bilayer. Senile plaques of AD patients also accumulate a 1:1 ratio of cholesterol/Aβ. What are the dominant structures of small Aβ42 oligomers with cholesterol molecules in aqueous solution? Here, we answer this question by performing atomistic replica exchange molecular dynamics simulations of Aβ42 dimers and trimers. Our simulations demonstrate that the interactions with cholesterol molecules change completely the energy landscape of small Aβ42 oligomers. This result shows that simulations in the bulk solution cannot recapitulate aggregation in the brain extracellular space.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, 13 rue Pierre et Marie Curie, 75005 Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75000 Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, 13 rue Pierre et Marie Curie, 75005 Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75000 Paris, France.,Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
30
|
Gomes GN, Levine ZA. Defining the Neuropathological Aggresome across in Silico, in Vitro, and ex Vivo Experiments. J Phys Chem B 2021; 125:1974-1996. [PMID: 33464098 PMCID: PMC8362740 DOI: 10.1021/acs.jpcb.0c09193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The loss of proteostasis over the life course is associated with a wide range of debilitating degenerative diseases and is a central hallmark of human aging. When left unchecked, proteins that are intrinsically disordered can pathologically aggregate into highly ordered fibrils, plaques, and tangles (termed amyloids), which are associated with countless disorders such as Alzheimer's disease, Parkinson's disease, type II diabetes, cancer, and even certain viral infections. However, despite significant advances in protein folding and solution biophysics techniques, determining the molecular cause of these conditions in humans has remained elusive. This has been due, in part, to recent discoveries showing that soluble protein oligomers, not insoluble fibrils or plaques, drive the majority of pathological processes. This has subsequently led researchers to focus instead on heterogeneous and often promiscuous protein oligomers. Unfortunately, significant gaps remain in how to prepare, model, experimentally corroborate, and extract amyloid oligomers relevant to human disease in a systematic manner. This Review will report on each of these techniques and their successes and shortcomings in an attempt to standardize comparisons between protein oligomers across disciplines, especially in the context of neurodegeneration. By standardizing multiple techniques and identifying their common overlap, a clearer picture of the soluble neuropathological aggresome can be constructed and used as a baseline for studying human disease and aging.
Collapse
Affiliation(s)
- Gregory-Neal Gomes
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Zachary A. Levine
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
31
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 403] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
32
|
Venko K, Novič M, Stoka V, Žerovnik E. Prediction of Transmembrane Regions, Cholesterol, and Ganglioside Binding Sites in Amyloid-Forming Proteins Indicate Potential for Amyloid Pore Formation. Front Mol Neurosci 2021; 14:619496. [PMID: 33642992 PMCID: PMC7902868 DOI: 10.3389/fnmol.2021.619496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Besides amyloid fibrils, amyloid pores (APs) represent another mechanism of amyloid induced toxicity. Since hypothesis put forward by Arispe and collegues in 1993 that amyloid-beta makes ion-conducting channels and that Alzheimer's disease may be due to the toxic effect of these channels, many studies have confirmed that APs are formed by prefibrillar oligomers of amyloidogenic proteins and are a common source of cytotoxicity. The mechanism of pore formation is still not well-understood and the structure and imaging of APs in living cells remains an open issue. To get closer to understand AP formation we used predictive methods to assess the propensity of a set of 30 amyloid-forming proteins (AFPs) to form transmembrane channels. A range of amino-acid sequence tools were applied to predict AP domains of AFPs, and provided context on future experiments that are needed in order to contribute toward a deeper understanding of amyloid toxicity. In a set of 30 AFPs we predicted their amyloidogenic propensity, presence of transmembrane (TM) regions, and cholesterol (CBM) and ganglioside binding motifs (GBM), to which the oligomers likely bind. Noteworthy, all pathological AFPs share the presence of TM, CBM, and GBM regions, whereas the functional amyloids seem to show just one of these regions. For comparative purposes, we also analyzed a few examples of amyloid proteins that behave as biologically non-relevant AFPs. Based on the known experimental data on the β-amyloid and α-synuclein pore formation, we suggest that many AFPs have the potential for pore formation. Oligomerization and α-TM helix to β-TM strands transition on lipid rafts seem to be the common key events.
Collapse
Affiliation(s)
- Katja Venko
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Marjana Novič
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
33
|
Plasma membrane integrity in health and disease: significance and therapeutic potential. Cell Discov 2021; 7:4. [PMID: 33462191 PMCID: PMC7813858 DOI: 10.1038/s41421-020-00233-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of plasma membrane integrity is essential for normal cell viability and function. Thus, robust membrane repair mechanisms have evolved to counteract the eminent threat of a torn plasma membrane. Different repair mechanisms and the bio-physical parameters required for efficient repair are now emerging from different research groups. However, less is known about when these mechanisms come into play. This review focuses on the existence of membrane disruptions and repair mechanisms in both physiological and pathological conditions, and across multiple cell types, albeit to different degrees. Fundamentally, irrespective of the source of membrane disruption, aberrant calcium influx is the common stimulus that activates the membrane repair response. Inadequate repair responses can tip the balance between physiology and pathology, highlighting the significance of plasma membrane integrity. For example, an over-activated repair response can promote cancer invasion, while the inability to efficiently repair membrane can drive neurodegeneration and muscular dystrophies. The interdisciplinary view explored here emphasises the widespread potential of targeting plasma membrane repair mechanisms for therapeutic purposes.
Collapse
|
34
|
Urbanc B. Cross-Linked Amyloid β-Protein Oligomers: A Missing Link in Alzheimer's Disease Pathology? J Phys Chem B 2021; 125:1307-1316. [PMID: 33440940 DOI: 10.1021/acs.jpcb.0c07716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Amyloid β-protein (Aβ) oligomers are broadly viewed as the proximate mediators of toxicity in Alzheimer's disease (AD). Recent studies, however, provide substantial evidence that Aβ is involved in protection and repair of the central nervous system whereby Aβ oligomer and subsequent fibril formation are integral to its normal antimicrobial and antiviral function. These developments raise a question of what exactly makes Aβ oligomers toxic in the context of AD. This Perspective describes a paradigm shift in the search for toxic Aβ oligomer species that involves oxidative-stress-induced stabilization of Aβ oligomers via cross-linking and reviews most recent research elucidating structural aspects of cross-linked Aβ oligomers and potential inhibition of their toxicity.
Collapse
Affiliation(s)
- Brigita Urbanc
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
35
|
Man VH, Wang J, Derreumaux P, Nguyen PH. Nonequilibrium molecular dynamics simulations of infrared laser-induced dissociation of a tetrameric Aβ42 β-barrel in a neuronal membrane model. Chem Phys Lipids 2020; 234:105030. [PMID: 33347835 DOI: 10.1016/j.chemphyslip.2020.105030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 11/29/2022]
Abstract
Experimental studies have reported that the amyloid-β proteins can form pores in cell membranes, and this could be one possible source of toxicity in Alzheimer's disease. Dissociation of these pores could therefore be a potential therapeutic approach. It is known that high photon density free-electron laser experiments and laser-induced nonequilibrium molecular dynamics simulations (NEMD) can dissociate amyloid fibrils at specific frequencies in vitro. Our question is whether NEMD simulations can dissociate amyloid pores in a bilayer mimicking a neuronal membrane, and as an example, we select a tetrameric Aβ42 β-barrel. Our simulations shows that the resonance between the laser field and the amide I vibrational mode of the barrel destabilises all intramolecular and intermolecular hydrogen bonds of Aβ42 and converts the β-barrel to a random/coil disordered oligomer. Starting from this disordered oligomer, extensive standard MD simulations shows sampling of disordered Aβ42 states without any increase of β-sheet and reports that the orientational order of lipids is minimally disturbed. Interestingly, the frequency to be employed to dissociate this beta-barrel is specific to the amino acid sequence. Taken together with our previous simulation results, this study indicates that infrared laser irradiation can dissociate amyloid fibrils and oligomers in bulk solution and in a membrane environment without affecting the surrounding molecules, offering therefore a promising way to retard the progression of AD.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, Ho Chi Minh, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh, Vietnam.
| | - Phuong H Nguyen
- CNRS, Université de Paris, UPR9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
36
|
Pagano K, Tomaselli S, Molinari H, Ragona L. Natural Compounds as Inhibitors of Aβ Peptide Aggregation: Chemical Requirements and Molecular Mechanisms. Front Neurosci 2020; 14:619667. [PMID: 33414705 PMCID: PMC7783407 DOI: 10.3389/fnins.2020.619667] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders, with no cure and preventive therapy. Misfolding and extracellular aggregation of Amyloid-β (Aβ) peptides are recognized as the main cause of AD progression, leading to the formation of toxic Aβ oligomers and to the deposition of β-amyloid plaques in the brain, representing the hallmarks of AD. Given the urgent need to provide alternative therapies, natural products serve as vital resources for novel drugs. In recent years, several natural compounds with different chemical structures, such as polyphenols, alkaloids, terpenes, flavonoids, tannins, saponins and vitamins from plants have received attention for their role against the neurodegenerative pathological processes. However, only for a small subset of them experimental evidences are provided on their mechanism of action. This review focuses on those natural compounds shown to interfere with Aβ aggregation by direct interaction with Aβ peptide and whose inhibitory mechanism has been investigated by means of biophysical and structural biology experimental approaches. In few cases, the combination of approaches offering a macroscopic characterization of the oligomers, such as TEM, AFM, fluorescence, together with high-resolution methods could shed light on the complex mechanism of inhibition. In particular, solution NMR spectroscopy, through peptide-based and ligand-based observation, was successfully employed to investigate the interactions of the natural compounds with both soluble NMR-visible (monomer and low molecular weight oligomers) and NMR-invisible (high molecular weight oligomers and protofibrils) species. The molecular determinants of the interaction of promising natural compounds are here compared to infer the chemical requirements of the inhibitors and the common mechanisms of inhibition. Most of the data converge to indicate that the Aβ regions relevant to perturb the aggregation cascade and regulate the toxicity of the stabilized oligomers, are the N-term and β1 region. The ability of the natural aggregation inhibitors to cross the brain blood barrier, together with the tactics to improve their low bioavailability are discussed. The analysis of the data ensemble can provide a rationale for the selection of natural compounds as molecular scaffolds for the design of new therapeutic strategies against the progression of early and late stages of AD.
Collapse
Affiliation(s)
- Katiuscia Pagano
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Simona Tomaselli
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Henriette Molinari
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Laura Ragona
- NMR Laboratory, Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| |
Collapse
|
37
|
Nguyen H, Linh HQ, Matteini P, La Penna G, Li MS. Emergence of Barrel Motif in Amyloid-β Trimer: A Computational Study. J Phys Chem B 2020; 124:10617-10631. [PMID: 33180492 PMCID: PMC7735726 DOI: 10.1021/acs.jpcb.0c05508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/29/2020] [Indexed: 12/20/2022]
Abstract
Amyloid-β (Aβ) peptides form assemblies that are pathological hallmarks of Alzheimer's disease. Aβ oligomers are soluble, mobile, and toxic forms of the peptide that act in the extracellular space before assembling into protofibrils and fibrils. Therefore, oligomers play an important role in the mechanism of Alzheimer's disease. Since it is difficult to determine by experiment the atomic structures of oligomers, which accumulate fast and are polymorphic, computer simulation is a useful tool to investigate elusive oligomers' structures. In this work, we report extended all-atom molecular dynamics simulations, both canonical and replica exchange, of Aβ(1-42) trimer starting from two different initial conformations: (i) the pose produced by the best docking of a monomer aside of a dimer (simulation 1), representing oligomers freshly formed by assembling monomers, and (ii) a configuration extracted from an experimental mature fibril structure (simulation 2), representing settled oligomers in equilibrium with extended fibrils. We showed that in simulation 1, regions with small β-barrels are populated, indicating the chance of spontaneous formation of domains resembling channel-like structures. These structural domains are alternative to those more representative of mature fibrils (simulation 2), the latter showing a stable bundle of C-termini that is not sampled in simulation 1. Moreover, trimer of Aβ(1-42) can form internal pores that are large enough to be accessed by water molecules and Ca2+ ions.
Collapse
Affiliation(s)
- Hoang
Linh Nguyen
- Institute
for Computational Science and Technology, SBI Building, Quang Trung Software
City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Ho
Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Huynh Quang Linh
- Ho
Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Paolo Matteini
- Institute
of Applied Physics “Nello Carrara”, National Research Council, Via Madonna Del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Giovanni La Penna
- National
Research Council of Italy (CNR), Institute
for Chemistry of Organometallic Compounds (ICCOM), 50019 Florence, Italy
- National Institute for Nuclear Physics
(INFN), Section of Roma-Tor
Vergata Institute of Physics, Polish Academy of
Sciences, Al. Lotnikow
32/46, 02-668 Warsaw, Poland
| | - Mai Suan Li
- National Institute for Nuclear Physics
(INFN), Section of Roma-Tor
Vergata Institute of Physics, Polish Academy of
Sciences, Al. Lotnikow
32/46, 02-668 Warsaw, Poland
| |
Collapse
|
38
|
Shi JM, Zhu L, Lan X, Zhao DW, He YJ, Sun ZQ, Wu D, Li HY. Endocytosis Is a Key Mode of Interaction between Extracellular β-Amyloid and the Cell Membrane. Biophys J 2020; 119:1078-1090. [PMID: 32857960 PMCID: PMC7499104 DOI: 10.1016/j.bpj.2020.07.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/21/2020] [Accepted: 07/08/2020] [Indexed: 11/23/2022] Open
Abstract
Interactions between amyloid-β peptide (Aβ) and the cell membrane include interaction with membrane lipids and binding to membrane receptors, both of which are considered to be the toxicity mechanisms of Aβ. However, it is unclear whether both mechanisms lead to cytotoxicity. Thus, we aimed to analyze these two mechanisms of Aβ42 interaction with cell membranes under different Aβ aggregation states. To this end, model membrane experiments were conducted. Quantitative analysis of Aβ42 monomers or oligomers bound to the membrane of neuro-2a cells was also performed, and laser confocal microscopy was employed to assess endocytosis of FITC-Aβ42 monomers or oligomers by neuro-2a cells. We found that the binding capacity of Aβ42 to membrane lipids was weak and that the amount of Aβ42 bound to membrane lipids was low. Moreover, clathrin-mediated endocytosis of Aβ42 oligomers by neuro-2a cells was observed. Endocytosis serves as a key mode of interaction between extracellular Aβ42 and neurons. These findings provide insights into the mechanisms underlying Aβ oligomer metabolism.
Collapse
Affiliation(s)
- Jing-Ming Shi
- School of Medicine, Xizang Minzu University, Xian' yang, Shaanxi, P.R. China
| | - Li Zhu
- School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Xi Lan
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Duan-Wei Zhao
- Gansu Provincial Institute of Drug Control, Lanzhou, P.R. China
| | - Yong-Jun He
- School of Medicine, Xizang Minzu University, Xian' yang, Shaanxi, P.R. China
| | - Zheng-Qi Sun
- School of Medicine, Xizang Minzu University, Xian' yang, Shaanxi, P.R. China
| | - Di Wu
- School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Hai-Yun Li
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
| |
Collapse
|
39
|
Amyloidogenic Intrinsically Disordered Proteins: New Insights into Their Self-Assembly and Their Interaction with Membranes. Life (Basel) 2020; 10:life10080144. [PMID: 32784399 PMCID: PMC7459996 DOI: 10.3390/life10080144] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022] Open
Abstract
Aβ, IAPP, α-synuclein, and prion proteins belong to the amyloidogenic intrinsically disordered proteins’ family; indeed, they lack well defined secondary and tertiary structures. It is generally acknowledged that they are involved, respectively, in Alzheimer’s, Type II Diabetes Mellitus, Parkinson’s, and Creutzfeldt–Jakob’s diseases. The molecular mechanism of toxicity is under intense debate, as many hypotheses concerning the involvement of the amyloid and the toxic oligomers have been proposed. However, the main role is represented by the interplay of protein and the cell membrane. Thus, the understanding of the interaction mechanism at the molecular level is crucial to shed light on the dynamics driving this phenomenon. There are plenty of factors influencing the interaction as mentioned above, however, the overall view is made trickier by the apparent irreproducibility and inconsistency of the data reported in the literature. Here, we contextualized this topic in a historical, and even more importantly, in a future perspective. We introduce two novel insights: the chemical equilibrium, always established in the aqueous phase between the free and the membrane phospholipids, as mediators of protein-transport into the core of the bilayer, and the symmetry-breaking of oligomeric aggregates forming an alternating array of partially ordered and disordered monomers.
Collapse
|
40
|
Liu JYH, Sun MYY, Sommerville N, Ngan MP, Ponomarev ED, Lin G, Rudd JA. Soy flavonoids prevent cognitive deficits induced by intra-gastrointestinal administration of beta-amyloid. Food Chem Toxicol 2020; 141:111396. [PMID: 32417364 DOI: 10.1016/j.fct.2020.111396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/07/2020] [Accepted: 04/29/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND In Alzheimer's diseases, beta-amyloid may act as prion-like protein and migrate from the gastrointestinal tract towards the brain. Soy flavonoids have been identified as neuroprotective against cognitive loss in human. Diet with soy flavonoids may be used to slow down the progression of Alzheimer's diseases. METHODS AND RESULTS We performed in-vitro tissue culture experiments using myenteric plexus longitudinal muscle layers isolated from the ileum and colon of ICR mice. Beta-amyloid can be taken up into myenteric neurons and induce neuron degeneration, which is protected by flavonoids compounds, including daidzein, genistein, glycitein and luteolin. We also administered oligomeric beta-amyloid (1-42) (total dose: 8 μg) into the gastrointestinal walls of ICR mice and conducted memory tests and gastrointestinal function assessments after 6 and 12 months. Mice treated with beta-amyloid exhibited minor learning deficits in a T-maze memory test at 6 months and significant memory impairment in a novel object recognition task at 12 months. These impairments were prevented by soy flavonoids. Tracking studies performed using fluorescently tagged beta-amyloid found that, beta-amyloid injected at the stomach can aggregate within the layer of myenteric neurons and migrate to the jejunum or via the vagus nerves to the brain after 1 month. Reductions in the gastrointestinal tissue weight and the spontaneous ileal contraction frequency were also observed at 6 and 12 months, respectively. CONCLUSION Our findings indicate that beta-amyloid can migrate from the gastrointestinal tract to the brain to induce cognitive impairments. Furthermore, chronic soy flavonoids in drinking water have protective actions.
Collapse
Affiliation(s)
- Julia Y H Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| | - Michelle Y Y Sun
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| | - Nerina Sommerville
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| | - Man Piu Ngan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| | - Eugene D Ponomarev
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| | - John A Rudd
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China.
| |
Collapse
|
41
|
Huang YR, Liu RT. The Toxicity and Polymorphism of β-Amyloid Oligomers. Int J Mol Sci 2020; 21:E4477. [PMID: 32599696 PMCID: PMC7352971 DOI: 10.3390/ijms21124477] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/26/2022] Open
Abstract
It is widely accepted that β-amyloid oligomers (Aβos) play a key role in the progression of Alzheimer's disease (AD) by inducing neuron damage and cognitive impairment, but Aβos are highly heterogeneous in their size, structure and cytotoxicity, making the corresponding studies tough to carry out. Nevertheless, a number of studies have recently made remarkable progress in the describing the characteristics and pathogenicity of Aβos. We here review the mechanisms by which Aβos exert their neuropathogenesis for AD progression, including receptor binding, cell membrane destruction, mitochondrial damage, Ca2+ homeostasis dysregulation and tau pathological induction. We also summarize the characteristics and pathogenicity such as the size, morphology and cytotoxicity of dimers, trimers, Aβ*56 and spherical oligomers, and suggest that Aβos may play a different role at different phases of AD pathogenesis, resulting in differential consequences on neuronal synaptotoxicity and survival. It is warranted to investigate the temporal sequence of Aβos in AD human brain and examine the relationship between different Aβos and cognitive impairment.
Collapse
Affiliation(s)
- Ya-ru Huang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui-tian Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
| |
Collapse
|
42
|
Karkisaval AG, Rostagno A, Azimov R, Ban DK, Ghiso J, Kagan BL, Lal R. Ion channel formation by N-terminally truncated Aβ (4-42): relevance for the pathogenesis of Alzheimer's disease. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102235. [PMID: 32531337 DOI: 10.1016/j.nano.2020.102235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 11/17/2022]
Abstract
Aβ deposition is a pathological hallmark of Alzheimer's disease (AD). Besides the full-length amyloid forming peptides (Aβ1-40 and Aβ1-42), biochemical analyses of brain deposits have identified a variety of N- and C-terminally truncated Aβ variants in sporadic and familial AD patients. However, their relevance for AD pathogenesis remains largely understudied. We demonstrate that Aβ4-42 exhibits a high tendency to form β-sheet structures leading to fast self-aggregation and formation of oligomeric assemblies. Atomic force microscopy and electrophysiological studies reveal that Aβ4-42 forms highly stable ion channels in lipid membranes. These channels that are blocked by monoclonal antibodies specifically recognizing the N-terminus of Aβ4-42. An Aβ variant with a double truncation at phenylalanine-4 and leucine 34, (Aβ4-34), exhibits unstable channel formation capability. Taken together the results presented herein highlight the potential benefit of C-terminal proteolytic cleavage and further support an important pathogenic role for N-truncated Aβ species in AD pathophysiology.
Collapse
Affiliation(s)
- Abhijith G Karkisaval
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, 92092, USA
| | - Agueda Rostagno
- Department of Pathology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Rustam Azimov
- Department of Psychiatry, Geffen School of Medicine, University of California, Los Angeles, California 90095, USA; Semel Neuropsychiatric for Neuroscience & Human Behavior, University of California, Los Angeles, California 90095, United States
| | - Deependra K Ban
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, 92092, USA
| | - Jorge Ghiso
- Department of Pathology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY, 10016, USA; Department of Psychiatry, New York University Grossman School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
| | - Bruce L Kagan
- Department of Psychiatry, Geffen School of Medicine, University of California, Los Angeles, California 90095, USA; Semel Neuropsychiatric for Neuroscience & Human Behavior, University of California, Los Angeles, California 90095, United States.
| | - Ratnesh Lal
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, 92092, USA; Department of Bioengineering, University of California San Diego, La Jolla, California, 92092, USA; Materials Science and Engineering, University of California San Diego, La Jolla, California, 92092, USA.
| |
Collapse
|
43
|
Younger S, Jang H, Davies HA, Niemiec MJ, Garcia JGN, Nussinov R, Migrino RQ, Madine J, Arce FT. Medin Oligomer Membrane Pore Formation: A Potential Mechanism of Vascular Dysfunction. Biophys J 2020; 118:2769-2782. [PMID: 32402244 PMCID: PMC7264854 DOI: 10.1016/j.bpj.2020.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Medin, a 50-amino-acid cleavage product of the milk fat globule-EGF factor 8 protein, is one of the most common forms of localized amyloid found in the vasculature of individuals older than 50 years. Medin induces endothelial dysfunction and vascular inflammation, yet despite its prevalence in the human aorta and multiple arterial beds, little is known about the nature of its pathology. Medin oligomers have been implicated in the pathology of aortic aneurysm, aortic dissection, and more recently, vascular dementia. Recent in vitro biomechanical measurements found increased oligomer levels in aneurysm patients with altered aortic wall integrity. Our results suggest an oligomer-mediated toxicity mechanism for medin pathology. Using lipid bilayer electrophysiology, we show that medin oligomers induce ionic membrane permeability by pore formation. Pore activity was primarily observed for preaggregated medin species from the growth-phase and rarely for lag-phase species. Atomic force microscopy (AFM) imaging of medin aggregates at different stages of aggregation revealed the gradual formation of flat domains resembling the morphology of supported lipid bilayers. Transmission electron microscopy images showed the coexistence of compact oligomers, largely consistent with the AFM data, and larger protofibrillar structures. Circular dichroism spectroscopy revealed the presence of largely disordered species and suggested the presence of β-sheets. This observation and the significantly lower thioflavin T fluorescence emitted by medin aggregates compared to amyloid-β fibrils, along with the absence of amyloid fibers in the AFM and transmission electron microscopy images, suggest that medin aggregation into pores follows a nonamyloidogenic pathway. In silico modeling by molecular dynamics simulations provides atomic-level structural detail of medin pores with the CNpNC barrel topology and diameters comparable to values estimated from experimental pore conductances.
Collapse
Affiliation(s)
- Scott Younger
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Hyunbum Jang
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Hannah A Davies
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Martin J Niemiec
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Joe G N Garcia
- Department of Medicine, University of Arizona, Tucson, Arizona
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raymond Q Migrino
- Office of Research, Phoenix Veterans Affairs Health Care System, Phoenix, Arizona; Department of Medicine, University of Arizona College of Medicine-Phoenix, Arizona
| | - Jillian Madine
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Fernando T Arce
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona; Department of Medicine, University of Arizona, Tucson, Arizona.
| |
Collapse
|
44
|
Dias CL, Jalali S, Yang Y, Cruz L. Role of Cholesterol on Binding of Amyloid Fibrils to Lipid Bilayers. J Phys Chem B 2020; 124:3036-3042. [DOI: 10.1021/acs.jpcb.0c00485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Cristiano L. Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Sharareh Jalali
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Yanxing Yang
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Luis Cruz
- Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
45
|
Coarse-grained MD simulations reveal beta-amyloid fibrils of various sizes bind to interfacial liquid-ordered and liquid-disordered regions in phase separated lipid rafts with diverse membrane-bound conformational states. Biophys Chem 2020; 260:106355. [PMID: 32179374 DOI: 10.1016/j.bpc.2020.106355] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/23/2020] [Accepted: 02/29/2020] [Indexed: 12/16/2022]
Abstract
The membrane binding behaviors of beta-amyloid fibrils, dimers to pentamers, from solution to lipid raft surfaces, were investigated using coarse-grained (CG) MD simulations. Our CG rafts contain phospholipid, cholesterol (with or without tail- or headgroup modifications), and with or without asymmetrically distributed monosialotetrahexosylganglioside (GM1). All rafts exhibited liquid-ordered (Lo), liquid-disordered (Ld), and interfacial Lo/Ld (Lod) domains, with domain sizes depending on cholesterol structure. For rafts without GM1, all fibrils bound to the Lod domains. Specifically, dimer fibrils bound exclusively via the C-terminal, while larger fibrils could bind via other protein regions. Interestingly, a membrane-inserted state was detected for a trimer fibril in a raft with tail-group modified cholesterol. For rafts containing GM1, fibrils bound either to the GM1-clusters, with numerous membrane-bound conformations, or to the non-GM1-containing-Lod domains via the C-terminal. Our results indicate beta-amyloid fibrils bind to Lod domains or GM1, with diversified membrane-bound conformations, in structurally heterogeneous lipid membranes.
Collapse
|
46
|
Ngo ST, Nguyen PH, Derreumaux P. Impact of A2T and D23N Mutations on Tetrameric Aβ42 Barrel within a Dipalmitoylphosphatidylcholine Lipid Bilayer Membrane by Replica Exchange Molecular Dynamics. J Phys Chem B 2020; 124:1175-1182. [DOI: 10.1021/acs.jpcb.9b11881] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City 33000, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 33000, Vietnam
| | - Phuong H. Nguyen
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, Ho Chi Minh City 33000, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 33000, Vietnam
| |
Collapse
|
47
|
Ngo ST, Nguyen PH, Derreumaux P. Stability of Aβ11-40 Trimers with Parallel and Antiparallel β-Sheet Organizations in a Membrane-Mimicking Environment by Replica Exchange Molecular Dynamics Simulation. J Phys Chem B 2020; 124:617-626. [PMID: 31931566 DOI: 10.1021/acs.jpcb.9b10982] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aggregation of the amyloid (Aβ) peptide of 39-43 amino acids into plaques is observed in the brain of Alzheimer's disease (AD) patients, but the mechanisms underlying the neurotoxicity of Aβ oligomers are still elusive. One suggested initial mechanism is related to the implications of amyloid membrane interactions, but characterization of these assemblies is challenging by experimental means. In this study, we have explored the stability of a trimer of Aβ11-40 in parallel and antiparallel β-sheet structures for the wild-type sequence and its F20W mutant in a dipalmitoylphosphatidylcholine membrane using atomistic replica exchange molecular dynamic simulations. We show that both the U-shape organization and the assembly of β-hairpins are maintained in the membrane and are resistant to the mutation F20W. In contrast the models are destabilized by the F19P mutation. Overall, our results indicate that these two assemblies represent minimal seeds or nuclei for the formation of either amyloid fibrils, a variety of β-barrel pores, or various aggregates for many Aβ sequences in a membrane-mimicking environment.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics , Ton Duc Thang University , Ho Chi Minh City , Vietnam.,Faculty of Applied Sciences , Ton Duc Thang University , Ho Chi Minh City , Vietnam
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique , UPR 9080, CNRS, Université de Paris , 13 rue Pierre et Marie Curie , 75005 , Paris , France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University , 75005 Paris , France
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry , Ton Duc Thang University , Ho Chi Minh City , Vietnam.,Faculty of Pharmacy , Ton Duc Thang University , Ho Chi Minh City , Vietnam
| |
Collapse
|
48
|
Zhou H, Yang Z, Tian X, Chen L, Lee S, Huynh T, Ge C, Zhou R. Lanosterol Disrupts the Aggregation of Amyloid-β Peptides. ACS Chem Neurosci 2019; 10:4051-4060. [PMID: 31369236 DOI: 10.1021/acschemneuro.9b00285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lanosterol, an amphipathic molecule, was discovered only very recently to effectively hinder the aggregation of lens proteins and dissolve the extremely stable fibrillar aggregates in cataracts. Here, we combined computational and experimental approaches to study how lanosterol disrupts the aggregation of another important peptide, amyloid-β (Aβ) peptide, associated with the Alzheimer's Disease (AD). Molecular dynamics simulations using the core amyloidogenic segment (KLVFFA) of Aβ peptide revealed that lanosterol exhibits at least two types of inhibition mechanism on the self-assembly of Aβ peptides. First, lanosterol entangles with peptides and forms a hydrophobic core with residues Phe-19 and Phe-20 in particular. Second, it interferes with the steric zipper interaction at the β-sheet-β-sheet interface. These simulation data suggest that lanosterol induces the unfolding of the Aβ peptide and the separation of the β-sheet layers. This predicted inhibition effect of lanosterol was then confirmed by an in vitro ThT fluorescence assay and AFM imaging. The cell toxicity assay also showed that the treatment of lanosterol indeed mitigates the cytotoxicity of the Aβ peptide in PC-12 cells. Moreover, lanosterol shows a stronger suppression effect on Aβ peptides' aggregation than cholesterol because of its higher hydrophobicity. This result establishes a foundation for the development of lanosterol-based potential therapies for AD and other protein conformational diseases.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Jiangsu 215123, China
| | - Zaixing Yang
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Jiangsu 215123, China
| | - Xin Tian
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Jiangsu 215123, China
| | - Lei Chen
- East District of Suzhou Municipal Hospital, Suzhou, Jiangsu 215001, China
| | - Sangyun Lee
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Tien Huynh
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Cuicui Ge
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Jiangsu 215123, China
| | - Ruhong Zhou
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Jiangsu 215123, China
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
49
|
Choi H, Lee W, Lee G, Yoon DS, Na S. The Formation Mechanism of Segmented Ring-Shaped Aβ Oligomers and Protofibrils. ACS Chem Neurosci 2019; 10:3830-3838. [PMID: 31313912 DOI: 10.1021/acschemneuro.9b00324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A clear understanding of amyloid formation with diverse morphologies is critical to overcoming the fatal disease amyloidosis. Studies have revealed that monomer concentration is a crucial factor for determining amyloid morphologies, such as protofibrils, annular, or spherical oligomers. However, gaining a complete understanding of the mechanism of formation of the various amyloid morphologies has been limited by the lack of experimental devices and insufficient knowledge. In this study, we demonstrate that the monomer concentration is an essential factor in determining the morphology of beta-amyloid (Aβ) oligomers or protofibrils. By computational and experimental approaches, we investigated the strategies for structural stabilization of amyloid protein, the morphological changes, and amyloid aggregation. In particular, we found unprecedented conformations, e.g., single bent oligomers and segmented ring-shaped protofibrils, the formation of which was explained by the computational analysis. Our findings provide insight into the structural features of amyloid molecules formed at low concentrations of monomer, which will help determine the clinical targets (in therapy) to effectively inhibit amyloid formation in the early stages of the amyloid growth phase.
Collapse
Affiliation(s)
| | - Wonseok Lee
- Department of Control and Instrumentation Engineering , Korea University , Sejong 30019 , Republic of Korea
| | | | | | | |
Collapse
|
50
|
Cline EN, Bicca MA, Viola KL, Klein WL. The Amyloid-β Oligomer Hypothesis: Beginning of the Third Decade. J Alzheimers Dis 2019; 64:S567-S610. [PMID: 29843241 PMCID: PMC6004937 DOI: 10.3233/jad-179941] [Citation(s) in RCA: 543] [Impact Index Per Article: 108.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The amyloid-β oligomer (AβO) hypothesis was introduced in 1998. It proposed that the brain damage leading to Alzheimer’s disease (AD) was instigated by soluble, ligand-like AβOs. This hypothesis was based on the discovery that fibril-free synthetic preparations of AβOs were potent CNS neurotoxins that rapidly inhibited long-term potentiation and, with time, caused selective nerve cell death (Lambert et al., 1998). The mechanism was attributed to disrupted signaling involving the tyrosine-protein kinase Fyn, mediated by an unknown toxin receptor. Over 4,000 articles concerning AβOs have been published since then, including more than 400 reviews. AβOs have been shown to accumulate in an AD-dependent manner in human and animal model brain tissue and, experimentally, to impair learning and memory and instigate major facets of AD neuropathology, including tau pathology, synapse deterioration and loss, inflammation, and oxidative damage. As reviewed by Hayden and Teplow in 2013, the AβO hypothesis “has all but supplanted the amyloid cascade.” Despite the emerging understanding of the role played by AβOs in AD pathogenesis, AβOs have not yet received the clinical attention given to amyloid plaques, which have been at the core of major attempts at therapeutics and diagnostics but are no longer regarded as the most pathogenic form of Aβ. However, if the momentum of AβO research continues, particularly efforts to elucidate key aspects of structure, a clear path to a successful disease modifying therapy can be envisioned. Ensuring that lessons learned from recent, late-stage clinical failures are applied appropriately throughout therapeutic development will further enable the likelihood of a successful therapy in the near-term.
Collapse
Affiliation(s)
- Erika N Cline
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Maíra Assunção Bicca
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Kirsten L Viola
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - William L Klein
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| |
Collapse
|