1
|
Rishi V, Cole-Filipiak NC, Ramasesha K, McCaslin LM. Excited state electronic structure of dimethyl disulfide involved in photodissociation at ∼200 nm. Phys Chem Chem Phys 2024; 26:23986-23997. [PMID: 39240347 DOI: 10.1039/d4cp02505a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Dimethyl disulfide (DMDS), one of the smallest organic molecules with an S-S bond, serves as a model system for understanding photofragmentation in polypeptides and proteins. Prior studies of DMDS photodissociation excited at ∼266 nm and ∼248 nm have elucidated the mechanisms of S-S and C-S bond cleavage, which involve the lowest excited electronic states S1 and S2. Far less is known about the dissociation mechanisms and electronic structure of relevant excited states of DMDS excited at ∼200 nm. Herein we present calculations of the electronic structure and properties of electronic states S1-S6 accessed when DMDS is excited at ∼200 nm. Our analysis includes a comparison of theoretical and experimental UV spectra, as well as theoretically predicted one-dimensional cuts through the singlet and triplet potential energy surfaces along the S-S and C-S bond dissociation coordinates. Finally, we present calculations of spin-orbit coupling constants at the Franck-Condon geometry to assess the likelihood of ultrafast intersystem crossing. We show that choosing an accurate yet computationally efficient electronic structure method for calculating the S0-S6 potential energy surfaces along relevant dissociation coordinates is challenging due to excited states with doubly excited character and/or mixed Rydberg-valence character. Our findings demonstrate that the extended multi-state complete active space second-order perturbation theory (XMS-CASPT2) balances this computational efficiency and accuracy, as it captures both the Rydberg character of states in the Franck-Condon region and multiconfigurational character toward the bond-dissociation limits. We compare the performance of XMS-CASPT2 to a new variant of equation of motion coupled cluster theory with single, double, and perturbative triple corrections, EOM-CCSD(T)(a)*, finding that EOM-CCSD(T)(a)* significantly improves the treatment of doubly excited states compared to EOM-CCSD, but struggles to quantitatively capture asymptotic energies along bond dissociation coordinates for these states.
Collapse
Affiliation(s)
- Varun Rishi
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA.
| | - Neil C Cole-Filipiak
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA.
| | - Krupa Ramasesha
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA.
| | - Laura M McCaslin
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA.
| |
Collapse
|
2
|
Zhang D, Hermes MR, Gagliardi L, Truhlar DG. Multiconfiguration Density-Coherence Functional Theory. J Chem Theory Comput 2021; 17:2775-2782. [PMID: 33818081 DOI: 10.1021/acs.jctc.0c01346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper presents a new theory called multiconfiguration density coherence functional theory (MC-DCFT). This theory provides a new route to define density functionals for multiconfiguration wave functions, in particular by using the one-particle density matrix in the coordinate representation. The theory is illustrated by calculating the dissociation curve of four heteronuclear and homonuclear diatomic molecules, namely, H2, F2, N2, and HF, using density coherence functionals converted from PBE, BLYP, and PW91. By introducing two parameters in the converted density functionals, we are able to calculate bond dissociation energies of comparable accuracy as those calculated by multiconfiguration pair-density functional theory (MC-PDFT) and complete active space second-order perturbation theory (CASPT2). This demonstrates that it would be possible to build a successful multiconfiguration density functional theory based on density coherence.
Collapse
Affiliation(s)
- Dayou Zhang
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Matthew R Hermes
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
3
|
Abstract
Kohn-Sham density functional theory with the available exchange-correlation functionals is less accurate for strongly correlated systems, which require a multiconfigurational description as a zero-order function, than for weakly correlated systems, and available functionals of the spin densities do not accurately predict energies for many strongly correlated systems when one uses multiconfigurational wave functions with spin symmetry. Furthermore, adding a correlation functional to a multiconfigurational reference energy can lead to double counting of electron correlation. Multiconfiguration pair-density functional theory (MC-PDFT) overcomes both obstacles, the second by calculating the quantum mechanical part of the electronic energy entirely by a functional, and the first by using a functional of the total density and the on-top pair density rather than the spin densities. This allows one to calculate the energy of strongly correlated systems efficiently with a pair-density functional and a suitable multiconfigurational reference function. This article reviews MC-PDFT and related background information.
Collapse
Affiliation(s)
- Prachi Sharma
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| | - Jie J Bao
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, USA;
| |
Collapse
|
4
|
Burton HGA, Thom AJW. General Approach for Multireference Ground and Excited States Using Nonorthogonal Configuration Interaction. J Chem Theory Comput 2019; 15:4851-4861. [DOI: 10.1021/acs.jctc.9b00441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hugh G. A. Burton
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Alex J. W. Thom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| |
Collapse
|
5
|
Wang Q, Zou J, Xu E, Pulay P, Li S. Automatic Construction of the Initial Orbitals for Efficient Generalized Valence Bond Calculations of Large Systems. J Chem Theory Comput 2018; 15:141-153. [PMID: 30481019 DOI: 10.1021/acs.jctc.8b00854] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We propose an efficient general strategy for generating initial orbitals for generalized valence bond (GVB) calculations which makes routine black-box GVB calculations on large systems feasible. Two schemes are proposed, depending on whether the restricted Hartree-Fock (RHF) wave function is stable (scheme I) or not (scheme II). In both schemes, the first step is the construction of active occupied orbitals and active virtual orbitals. In scheme I, active occupied orbitals are composed of the valence orbitals (the inner core orbitals are excluded), and the active virtual orbitals are obtained from the original virtual space by requiring its maximum overlap with the virtual orbital space of the same system at a minimal basis set. In scheme II, active occupied orbitals and active virtual orbitals are obtained from the set of unrestricted natural orbitals (UNOs), which are transformed from two sets of unrestricted HF spatial orbitals. In the next step, the active occupied orbitals and active virtual ones are separately transformed to localized orbitals. Localized occupied and virtual orbital pairs are formed using the Kuhn-Munkres (KM) algorithm and are used as the initial guess for the GVB orbitals. The optimized GVB wave function is obtained using the second-order self-consistent-field algorithm in the GAMESS program. With this procedure, GVB energies have been obtained for the lowest singlet and triplet states of polyacenes (up to decacene with 96 pairs) and the singlet ground state of two di-copper-oxygen-ammonia complexes. We have also calculated the singlet-triplet gaps for some polyacenes and the relative energy between two di-copper-oxygen-ammonia complexes with the block-correlated second-order perturbation theory based on the GVB reference.
Collapse
Affiliation(s)
- Qingchun Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry , Nanjing University , Nanjing 210023 , P. R. China
| | - Jingxiang Zou
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry , Nanjing University , Nanjing 210023 , P. R. China
| | - Enhua Xu
- Graduate School of Science, Technology, and Innovation , Kobe University , Nada-ku, Kobe 657-8501 , Japan
| | - Peter Pulay
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
6
|
Kuwata KT, Luu L, Weberg AB, Huang K, Parsons AJ, Peebles LA, Rackstraw NB, Kim MJ. Quantum Chemical and Statistical Rate Theory Studies of the Vinyl Hydroperoxides Formed in trans-2-Butene and 2,3-Dimethyl-2-butene Ozonolysis. J Phys Chem A 2018; 122:2485-2502. [DOI: 10.1021/acs.jpca.8b00287] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keith T. Kuwata
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| | - Lina Luu
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| | - Alexander B. Weberg
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| | - Ke Huang
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| | - Austin J. Parsons
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| | - Liam A. Peebles
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| | - Nathan B. Rackstraw
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| | - Min Ji Kim
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| |
Collapse
|
7
|
Coughtrie DJ, Giereth R, Kats D, Werner HJ, Köhn A. Embedded Multireference Coupled Cluster Theory. J Chem Theory Comput 2018; 14:693-709. [DOI: 10.1021/acs.jctc.7b01144] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- David J. Coughtrie
- Institute for Theoretical
Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Robin Giereth
- Institute for Theoretical
Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Daniel Kats
- Institute for Theoretical
Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Hans-Joachim Werner
- Institute for Theoretical
Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Andreas Köhn
- Institute for Theoretical
Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
8
|
Jiao Y, Dibble TS. First kinetic study of the atmospherically important reactions BrHg˙ + NO 2 and BrHg˙ + HOO. Phys Chem Chem Phys 2018; 19:1826-1838. [PMID: 28000816 DOI: 10.1039/c6cp06276h] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use computational chemistry to determine the rate constants and product yields for the reactions of BrHg˙ with the atmospherically abundant radicals NO2 and HOO. The reactants, products, and well-defined transition states are characterized using CCSD(T) with large basis sets. The potential energy profiles for the barrierless addition of HOO and NO2 to BrHg˙ are characterized using CASPT2 and RHF-CCSDT, and the rate constants are computed as a function of temperature and pressure using variational transition state theory and master equation simulations. The calculated rate constant for the addition of NO2 to BrHg˙ is larger than that for the addition of HOO by a factor of up to two under atmospheric conditions. For the reaction of HOO with BrHg˙ the addition reaction entirely dominates competing HOO + BrHg˙ reaction channels. The addition of NO2 to BrHg˙ initially produces both BrHgNO2 and BrHgONO, but after a few seconds under atmospheric conditions the sole product is syn-BrHgONO. A previously unsuspected reaction channel for BrHg˙ + NO2 competes with the addition to yield Hg + BrNO2. This reaction reduces the mercury oxidation state in BrHg˙ from Hg(i) to Hg(0) and slows the atmospheric oxidation of Hg(0). While the rate constant for this reduction channel is not well-constrained by the present calculations, it may be as much as 18% as large as the oxidation channel under some atmospheric conditions. As no experimental kinetic or product yield data are available for the reactions studied here, this work will provide guidance for atmospheric modelers and experimental kineticists.
Collapse
Affiliation(s)
- Yuge Jiao
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, 1 Forestry Dr, Syracuse, NY 13210, USA.
| | - Theodore S Dibble
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, 1 Forestry Dr, Syracuse, NY 13210, USA.
| |
Collapse
|
9
|
Dewyer AL, Argüelles AJ, Zimmerman PM. Methods for exploring reaction space in molecular systems. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1354] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Amanda L. Dewyer
- Department of Chemistry; University of Michigan; Ann Arbor MI USA
| | | | | |
Collapse
|
10
|
Sandhiya L, Zipse H. OO bond homolysis in hydrogen peroxide. J Comput Chem 2017; 38:2186-2192. [DOI: 10.1002/jcc.24870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/11/2017] [Accepted: 06/13/2017] [Indexed: 11/08/2022]
Affiliation(s)
| | - Hendrik Zipse
- Department of Chemistry; LMU München; München D-81377 Germany
| |
Collapse
|
11
|
Zimmerman PM. Singlet–Triplet Gaps through Incremental Full Configuration Interaction. J Phys Chem A 2017; 121:4712-4720. [DOI: 10.1021/acs.jpca.7b03998] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul M. Zimmerman
- Department of Chemistry, University of Michigan 930 North University
Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Li C, Evangelista FA. Driven similarity renormalization group: Third-order multireference perturbation theory. J Chem Phys 2017; 146:124132. [DOI: 10.1063/1.4979016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chenyang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A. Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
13
|
Sinha Ray S, Ghosh A, Shit A, Chaudhuri RK, Chattopadhyay S. A simplified ab initio treatment of diradicaloid structures produced from stretching and breaking chemical bonds. Phys Chem Chem Phys 2017; 19:22282-22301. [DOI: 10.1039/c7cp03564k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With a proper choice of active spaces, the single root perturbation theory employing improved virtual orbitals can flawlessly describe the ground, excited, ionized, and dissociated states having varying degrees of degeneracy at the expense of low computational cost.
Collapse
Affiliation(s)
- Suvonil Sinha Ray
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| | - Anirban Ghosh
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| | | | | | - Sudip Chattopadhyay
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| |
Collapse
|
14
|
Barrierless association of CF2 and dissociation of C2F4 by variational transition-state theory and system-specific quantum Rice-Ramsperger-Kassel theory. Proc Natl Acad Sci U S A 2016; 113:13606-13611. [PMID: 27834727 DOI: 10.1073/pnas.1616208113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bond dissociation is a fundamental chemical reaction, and the first principles modeling of the kinetics of dissociation reactions with a monotonically increasing potential energy along the dissociation coordinate presents a challenge not only for modern electronic structure methods but also for kinetics theory. In this work, we use multifaceted variable-reaction-coordinate variational transition-state theory (VRC-VTST) to compute the high-pressure limit dissociation rate constant of tetrafluoroethylene (C2F4), in which the potential energies are computed by direct dynamics with the M08-HX exchange correlation functional. To treat the pressure dependence of the unimolecular rate constants, we use the recently developed system-specific quantum Rice-Ramsperger-Kassel theory. The calculations are carried out by direct dynamics using an exchange correlation functional validated against calculations that go beyond coupled-cluster theory with single, double, and triple excitations. Our computed dissociation rate constants agree well with the recent experimental measurements.
Collapse
|
15
|
Sivalingam K, Krupicka M, Auer AA, Neese F. Comparison of fully internally and strongly contracted multireference configuration interaction procedures. J Chem Phys 2016; 145:054104. [DOI: 10.1063/1.4959029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kantharuban Sivalingam
- Max-Planck Institute of Chemical Energy Conversion, Stiftstrasse 34, 45470 Mülheim an der Ruhr, Germany
| | - Martin Krupicka
- Max-Planck Institute of Chemical Energy Conversion, Stiftstrasse 34, 45470 Mülheim an der Ruhr, Germany
| | - Alexander A. Auer
- Max-Planck Institute of Chemical Energy Conversion, Stiftstrasse 34, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck Institute of Chemical Energy Conversion, Stiftstrasse 34, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
16
|
Bao JL, Sand A, Gagliardi L, Truhlar DG. Correlated-Participating-Orbitals Pair-Density Functional Method and Application to Multiplet Energy Splittings of Main-Group Divalent Radicals. J Chem Theory Comput 2016; 12:4274-83. [PMID: 27438755 DOI: 10.1021/acs.jctc.6b00569] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Predicting the singlet-triplet splittings of divalent radicals is a challenging task for electronic structure theory. In the present work, we investigate the performance of multiconfiguration pair-density functional theory (MC-PDFT) for computing the singlet-triplet splitting for small main-group divalent radicals for which accurate experimental data are available. In order to define theoretical model chemistries that can be assessed consistently, we define three correlated participating orbitals (CPO) schemes (nominal, moderate, and extended, abbreviated as nom, mod, and ext) to define the constitution of complete active spaces, and we test them systematically. Broken-symmetry Kohn-Sham DFT calculations have also been carried out for comparison. We found that the extended CPO-PDFT scheme with translated on-top pair-density functionals have smaller mean unsigned errors than weighted-average broken-symmetry Kohn-Sham DFT with the corresponding exchange-correlation functional. The accuracy of the translated Perdew-Burke-Ernzerhof (tPBE) on-top pair-density functionals with ext-CPO active space is even better than some of the more accurately parametrized exchange-correlation density functionals that we tested; this is very encouraging for MC-PDFT theory.
Collapse
Affiliation(s)
- Junwei Lucas Bao
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Andrew Sand
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
17
|
Chattopadhyay S, Chaudhuri RK, Mahapatra US, Ghosh A, Ray SS. State-specific multireference perturbation theory: development and present status. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sudip Chattopadhyay
- Department of Chemistry; Indian Institute of Engineering Science and Technology; Shibpur, Howrah India
| | | | | | - Anirban Ghosh
- Department of Chemistry; Indian Institute of Engineering Science and Technology; Shibpur, Howrah India
| | - Suvonil Sinha Ray
- Department of Chemistry; Indian Institute of Engineering Science and Technology; Shibpur, Howrah India
| |
Collapse
|
18
|
Bao JL, Truhlar DG. Silane-initiated nucleation in chemically active plasmas: validation of density functionals, mechanisms, and pressure-dependent variational transition state calculations. Phys Chem Chem Phys 2016; 18:10097-108. [DOI: 10.1039/c6cp00816j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pressure-dependent rate constants for nucleation in nanodusty plasmas are calculated by variational transition state theory with system-specific quantum RRK theory.
Collapse
Affiliation(s)
- Junwei Lucas Bao
- Department of Chemistry
- Chemical Theory Center, and Minnesota Supercomputing Institute
- University of Minnesota
- Minneapolis
- USA
| | - Donald G. Truhlar
- Department of Chemistry
- Chemical Theory Center, and Minnesota Supercomputing Institute
- University of Minnesota
- Minneapolis
- USA
| |
Collapse
|
19
|
Odoh SO, Cramer CJ, Truhlar DG, Gagliardi L. Quantum-Chemical Characterization of the Properties and Reactivities of Metal–Organic Frameworks. Chem Rev 2015; 115:6051-111. [DOI: 10.1021/cr500551h] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Samuel O. Odoh
- Department of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Christopher J. Cramer
- Department of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G. Truhlar
- Department of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
20
|
Vereecken L, Glowacki DR, Pilling MJ. Theoretical Chemical Kinetics in Tropospheric Chemistry: Methodologies and Applications. Chem Rev 2015; 115:4063-114. [DOI: 10.1021/cr500488p] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Luc Vereecken
- Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - David R. Glowacki
- PULSE
Institute and Department of Chemistry, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- Department
of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom
| | | |
Collapse
|
21
|
Chattopadhyay S, Chaudhuri RK, Mahapatra US. State-specific multireference perturbation theory with improved virtual orbitals: Taming the ground state of F2, Be2,and N2. J Comput Chem 2015; 36:907-25. [DOI: 10.1002/jcc.23873] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/09/2015] [Accepted: 01/11/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Sudip Chattopadhyay
- Department of Chemistry; Indian Institute of Engineering Science and Technology; Shibpur Howrah 711103 India
| | | | - Uttam Sinha Mahapatra
- Department of Physics; Maulana Azad College; 8 Rafi Ahmed Kidwai Road Kolkata 700013 India
| |
Collapse
|
22
|
Matthews DA, Stanton JF. Non-orthogonal spin-adaptation of coupled cluster methods: A new implementation of methods including quadruple excitations. J Chem Phys 2015; 142:064108. [DOI: 10.1063/1.4907278] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Devin A. Matthews
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - John F. Stanton
- Department of Chemistry and Biochemistry, Institute for Theoretical Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
23
|
Hendrickx K, Braida B, Bultinck P, Hiberty P. More insight in multiple bonding with valence bond theory. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2014.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Klippenstein SJ, Pande VS, Truhlar DG. Chemical Kinetics and Mechanisms of Complex Systems: A Perspective on Recent Theoretical Advances. J Am Chem Soc 2014; 136:528-46. [DOI: 10.1021/ja408723a] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stephen J. Klippenstein
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Vijay S. Pande
- Department
of Chemistry and Structural Biology, Stanford University, Stanford, California 94305, United States
| | - Donald G. Truhlar
- Department
of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
25
|
Hu HS, Kowalski K. Excitation Energies with Cost-Reduced Variant of the Active-Space EOMCCSDT Method: The EOMCCSDt-3̅ Approach. J Chem Theory Comput 2013; 9:4761-8. [DOI: 10.1021/ct400501z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Han-Shi Hu
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , K8-91, P.O.Box 999, Richland, Washington 99352, United States
| | - Karol Kowalski
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , K8-91, P.O.Box 999, Richland, Washington 99352, United States
| |
Collapse
|
26
|
Robinson D. Splitting multiple bonds: A comparison of methodologies on the accuracy of bond dissociation energies. J Comput Chem 2013; 34:2625-34. [DOI: 10.1002/jcc.23433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/10/2013] [Accepted: 08/20/2013] [Indexed: 11/11/2022]
Affiliation(s)
- David Robinson
- School of Chemistry; University of Nottingham, University Park; Nottingham NG7 2RD United Kingdom
| |
Collapse
|
27
|
Berardo E, Hu HS, Kowalski K, Zwijnenburg MA. Coupled cluster calculations on TiO2 nanoclusters. J Chem Phys 2013; 139:064313. [DOI: 10.1063/1.4817536] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
28
|
Jalan A, Allen JW, Green WH. Chemically activated formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones. Phys Chem Chem Phys 2013; 15:16841-52. [DOI: 10.1039/c3cp52598h] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|