1
|
Lacerda AM, Kewming MJ, Brenes M, Jackson C, Clark SR, Mitchison MT, Goold J. Entropy production in the mesoscopic-leads formulation of quantum thermodynamics. Phys Rev E 2024; 110:014125. [PMID: 39160916 DOI: 10.1103/physreve.110.014125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/31/2024] [Indexed: 08/21/2024]
Abstract
Understanding the entropy production of systems strongly coupled to thermal baths is a core problem of both quantum thermodynamics and mesoscopic physics. While many techniques exist to accurately study entropy production in such systems, they typically require a microscopic description of the baths, which can become numerically intractable to study for large systems. Alternatively an open-systems approach can be employed with all the nuances associated with various levels of approximation. Recently, the mesoscopic leads approach has emerged as a powerful method for studying such quantum systems strongly coupled to multiple thermal baths. In this method, a set of discretized lead modes, each locally damped, provide a Markovian embedding. Here we show that this method proves extremely useful to describe entropy production of a strongly coupled open quantum system. We show numerically, for both noninteracting and interacting setups, that a system coupled to a single bath exhibits a thermal fixed point at the level of the embedding. This allows us to use various results from the thermodynamics of quantum dynamical semigroups to infer the nonequilibrium thermodynamics of the strongly coupled, non-Markovian central systems. In particular, we show that the entropy production in the transient regime recovers the well-established microscopic definitions of entropy production with a correction that can be computed explicitly for both the single- and multiple-lead cases.
Collapse
Affiliation(s)
| | | | - Marlon Brenes
- Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto, 60 Saint George St., Toronto, Ontario, Canada, M5S 1A7
- Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA), Universidad de Costa Rica, San José 11501, Costa Rica
- Escuela de Física, Universidad de Costa Rica, San José, Costa Rica
| | | | | | - Mark T Mitchison
- School of Physics, Trinity College Dublin, College Green, Dublin 2, D02K8N4, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, D02YN67, Ireland
| | - John Goold
- School of Physics, Trinity College Dublin, College Green, Dublin 2, D02K8N4, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, D02YN67, Ireland
| |
Collapse
|
2
|
Sereda M, Allen T, Bradbury NC, Ibrahim KZ, Neuhauser D. Sparse-Stochastic Fragmented Exchange for Large-Scale Hybrid Time-Dependent Density Functional Theory Calculations. J Chem Theory Comput 2024; 20:4196-4204. [PMID: 38713513 DOI: 10.1021/acs.jctc.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
We extend our recently developed sparse-stochastic fragmented exchange formalism for ground-state near-gap hybrid DFT to calculate absorption spectra within linear-response time-dependent generalized Kohn-Sham DFT (LR-GKS-TDDFT) for systems consisting of thousands of valence electrons within a grid-based/plane-wave representation. A mixed deterministic/fragmented-stochastic compression of the exchange kernel, here using long-range explicit exchange functionals, provides an efficient method for accurate optical spectra. Both real-time propagation as well as frequency-resolved Casida-equation-type approaches for spectra are presented, and the method is applied to large molecular dyes.
Collapse
Affiliation(s)
- Mykola Sereda
- Department of Chemistry and Biochemistry, and California Nanoscience Institute, UCLA, Los Angeles, California 90095-1569, United States
| | - Tucker Allen
- Department of Chemistry and Biochemistry, and California Nanoscience Institute, UCLA, Los Angeles, California 90095-1569, United States
| | - Nadine C Bradbury
- Department of Chemistry and Biochemistry, and California Nanoscience Institute, UCLA, Los Angeles, California 90095-1569, United States
| | - Khaled Z Ibrahim
- Computer Science Department, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, United States
| | - Daniel Neuhauser
- Department of Chemistry and Biochemistry, and California Nanoscience Institute, UCLA, Los Angeles, California 90095-1569, United States
| |
Collapse
|
3
|
Oz A, Nitzan A, Hod O, Peralta JE. Electron Dynamics in Open Quantum Systems: The Driven Liouville-von Neumann Methodology within Time-Dependent Density Functional Theory. J Chem Theory Comput 2023; 19:7496-7504. [PMID: 37852250 PMCID: PMC10653109 DOI: 10.1021/acs.jctc.3c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 10/20/2023]
Abstract
A first-principles approach to describe electron dynamics in open quantum systems driven far from equilibrium via external time-dependent stimuli is introduced. Within this approach, the driven Liouville-von Neumann methodology is used to impose open boundary conditions on finite model systems whose dynamics is described using time-dependent density functional theory. As a proof of concept, the developed methodology is applied to simple spin-compensated model systems, including a hydrogen chain and a graphitic molecular junction. Good agreement between steady-state total currents obtained via direct propagation and those obtained from the self-consistent solution of the corresponding Sylvester equation indicates the validity of the implementation. The capability of the new computational approach to analyze, from first principles, non-equilibrium dynamics of open quantum systems in terms of temporally and spatially resolved current densities is demonstrated. Future extensions of the approach toward the description of dynamical magnetization and decoherence effects are briefly discussed.
Collapse
Affiliation(s)
- Annabelle Oz
- Department
of Physical Chemistry, School of Chemistry, the Raymond and Beverly
Sackler Faculty of Exact Sciences, and the Sackler Center for Computational
Molecular and Materials Science, Tel Aviv
University, Tel Aviv, 6997801, Israel
| | - Abraham Nitzan
- Department
of Physical Chemistry, School of Chemistry, the Raymond and Beverly
Sackler Faculty of Exact Sciences, and the Sackler Center for Computational
Molecular and Materials Science, Tel Aviv
University, Tel Aviv, 6997801, Israel
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103, United States
| | - Oded Hod
- Department
of Physical Chemistry, School of Chemistry, the Raymond and Beverly
Sackler Faculty of Exact Sciences, and the Sackler Center for Computational
Molecular and Materials Science, Tel Aviv
University, Tel Aviv, 6997801, Israel
| | - Juan E. Peralta
- Department
of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| |
Collapse
|
4
|
Malek M, Danaie M. A single molecule diode based on gold electrodes and benzene molecule: conductivity and coupling analysis. J Mol Model 2023; 29:332. [PMID: 37806972 DOI: 10.1007/s00894-023-05740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
CONTEXT In this paper, we simulate a single-molecule diode to calculate the effective coupling and investigate the conductivity, as well as the effect of the electric field on these two parameters. First, we obtain the molecule states and energies at 0 V. The next step is to calculate the electrode/molecule coupling using the obtained electrode and molecule Hamiltonian. The electrode/molecule coupling depends on distance. By increasing the distance from 5 to 5.5 angstroms, the coupling decreases from 0.004 to 0.0002 eV. After calculating the electrode/molecule coupling, which is the most significant parameter in electron transfer, the results can be used to obtain the current-voltage and conductivity curves of the device. Simulation results demonstrate that externally applied electric field to the benzene molecule (isolated molecule) can cause a reduction in the effective coupling between the Au electrode and benzene, leading to decreased current and conductivity. Additionally, the applied electric field narrows the gap between the HOMO and LUMO energy levels. METHODS We conducted this computational work using Gaussian 09 software and a MATLAB code, both of which are based on the density functional theory (DFT) approach and the self-consistent field (SCF) method. For DFT calculations, we employed the three-parameter Beck hybrid exchange functional (B3), hybridized with the nonlocal correlation functional developed by Lee, Yang, and Parr (LYP). All optimizations were performed with triple-zeta polarized (TZP) split-valence 6-311G basis sets. The final step involved calculating the electrode/molecule coupling using the Huckel method and integrating the site-to-state transformation with Huckel parameters and the Fermi golden rule. After this calculation, we obtained the current-voltage and conductivity curves using MATLAB software.
Collapse
Affiliation(s)
- Majid Malek
- Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran
| | - Mohammad Danaie
- Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran.
| |
Collapse
|
5
|
Zelovich T, Hansen T, Tuckerman ME. A Green's Function Approach for Determining Surface Induced Broadening and Shifting of Molecular Energy Levels. NANO LETTERS 2022; 22:9854-9860. [PMID: 36525585 DOI: 10.1021/acs.nanolett.2c02910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Upon adsorption of a molecule onto a surface, the molecular energy levels (MELs) broaden and change their alignment. This phenomenon directly affects electron transfer across the interface and is, therefore, a fundamental observable that influences electrochemical device performance. Here, we propose a rigorous parameter-free framework, built upon the theoretical construct of Green's functions, for studying the interface between a molecule and a bulk surface and its effect on MELs. The method extends beyond the usual wide-band limit approximation, and its generality allows its use with any level of electronic structure theory. We demonstrate its ability to predict the broadening and shifting of MELs as a function of intramolecular coupling, molecule/surface coupling, and the surface density of states for a molecule with two MELs adsorbed on a one-dimensional model metal surface. The new approach could help provide guidelines for the design and experimental characterization of electrochemical devices with optimal electron transport.
Collapse
Affiliation(s)
- Tamar Zelovich
- Department of Chemistry, New York University (NYU), New York, New York10003, United States
| | - Thorsten Hansen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100Copenhagen Ø, Denmark
| | - Mark E Tuckerman
- Department of Chemistry, New York University (NYU), New York, New York10003, United States
- Courant Institute of Mathematical Sciences, New York University (NYU), New York, New York10003, United States
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai200062, China
- Simons Center for Computational Physical Chemistry, New York University, New York, New York10003, United States
| |
Collapse
|
6
|
Liu J, Jung KA, Segal D. Periodically Driven Quantum Thermal Machines from Warming up to Limit Cycle. PHYSICAL REVIEW LETTERS 2021; 127:200602. [PMID: 34860071 DOI: 10.1103/physrevlett.127.200602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Theoretical treatments of periodically driven quantum thermal machines (PD-QTMs) are largely focused on the limit-cycle stage of operation characterized by a periodic state of the system. Yet, this regime is not immediately accessible for experimental verification. Here, we present a general thermodynamic framework that handles the performance of PD-QTMs both before and during the limit-cycle stage of operation. It is achieved by observing that periodicity may break down at the ensemble average level, even in the limit-cycle phase. With this observation, and using conventional thermodynamic expressions for work and heat, we find that a complete description of the first law of thermodynamics for PD-QTMs requires a new contribution, which vanishes only in the limit-cycle phase under rather weak system-bath couplings. Significantly, this contribution is substantial at strong couplings even at limit cycle, thus largely affecting the behavior of the thermodynamic efficiency. We demonstrate our framework by simulating a quantum Otto engine building upon a driven resonant level model. Our results provide new insights towards a complete description of PD-QTMs, from turn-on to the limit-cycle stage and, particularly, shed light on the development of quantum thermodynamics at strong coupling.
Collapse
Affiliation(s)
- Junjie Liu
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6, Canada
| | - Kenneth A Jung
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Dvira Segal
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6, Canada
- Department of Physics, 60 Saint George St., University of Toronto, Toronto, Ontario M5S 1A7, Canada
| |
Collapse
|
7
|
Elenewski JE, Wójtowicz G, Rams MM, Zwolak M. Performance of reservoir discretizations in quantum transport simulations. J Chem Phys 2021; 155:124117. [PMID: 34598565 DOI: 10.1063/5.0065799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Quantum transport simulations often use explicit, yet finite, electronic reservoirs. These should converge to the correct continuum limit, albeit with a trade-off between discretization and computational cost. Here, we study this interplay for extended reservoir simulations, where relaxation maintains a bias or temperature drop across the system. Our analysis begins in the non-interacting limit, where we parameterize different discretizations to compare them on an even footing. For many-body systems, we develop a method to estimate the relaxation that best approximates the continuum by controlling virtual transitions in Kramers turnover for the current. While some discretizations are more efficient for calculating currents, there is little benefit with regard to the overall state of the system. Any gains become marginal for many-body, tensor network simulations, where the relative performance of discretizations varies when sweeping other numerical controls. These results indicate that typical reservoir discretizations have little impact on numerical costs for certain computational tools. The choice of a relaxation parameter is nonetheless crucial, and the method we develop provides a reliable estimate of the optimal relaxation for finite reservoirs.
Collapse
Affiliation(s)
- Justin E Elenewski
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Gabriela Wójtowicz
- Jagiellonian University, Institute of Theoretical Physics, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Marek M Rams
- Jagiellonian University, Institute of Theoretical Physics, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Michael Zwolak
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
8
|
Chu W, Li X. A projection-based reduced-order method for electron transport problems with long-range interactions. J Chem Phys 2021; 155:114105. [PMID: 34551554 DOI: 10.1063/5.0059355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Long-range interactions play a central role in electron transport. At the same time, they present a challenge for direct computer simulations since sufficiently large portions of the bath have to be included in the computation to accurately compute the Coulomb potential. This article presents a reduced-order approach by deriving an open quantum model for the reduced density matrix. To treat the transient dynamics, the problem is placed in a reduced-order framework. The dynamics described by the Liouville-von Neumann equation is projected to subspaces using a Petrov-Galerkin projection. In order to recover the global electron density profile as a vehicle to compute the Coulomb potential, we propose a domain decomposition approach, where the computational domain also includes segments of the bath that are selected using logarithmic grids. This approach leads to a multi-component self-energy that enters the effective Hamiltonian. We demonstrate the accuracy of the reduced model using a molecular junction built from lithium chains.
Collapse
Affiliation(s)
- Weiqi Chu
- Department of Mathematics, University of California, Los Angeles, California 90095, USA
| | - Xiantao Li
- Department of Mathematics, the Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
9
|
Evolution of a Non-Hermitian Quantum Single-Molecule Junction at Constant Temperature. ENTROPY 2021; 23:e23020147. [PMID: 33504072 PMCID: PMC7910896 DOI: 10.3390/e23020147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022]
Abstract
This work concerns the theoretical description of the quantum dynamics of molecular junctions with thermal fluctuations and probability losses. To this end, we propose a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments. Along the lines discussed in [A. Sergi et al., Symmetry 10 518 (2018)], we adopt the operator-valued Wigner formulation of quantum mechanics (wherein the density matrix depends on the points of the Wigner phase space associated to the system) and derive a non-linear equation of motion. Moreover, we introduce a model for a non-Hermitian quantum single-molecule junction (nHQSMJ). In this model the leads are mapped to a tunneling two-level system, which is in turn coupled to a harmonic mode (i.e., the molecule). A decay operator acting on the two-level system describes phenomenologically probability losses. Finally, the temperature of the molecule is controlled by means of a Nosé-Hoover chain thermostat. A numerical study of the quantum dynamics of this toy model at different temperatures is reported. We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction. The possibility that the formalism here presented can be extended to treat both more quantum states (∼10) and many more classical modes or atomic particles (∼103-105) is highlighted.
Collapse
|
10
|
Bustamante CM, Todorov TN, Sánchez CG, Horsfield A, Scherlis DA. A simple approximation to the electron-phonon interaction in population dynamics. J Chem Phys 2020; 153:234108. [PMID: 33353325 DOI: 10.1063/5.0031766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The modeling of coupled electron-ion dynamics including a quantum description of the nuclear degrees of freedom has remained a costly and technically difficult practice. The kinetic model for electron-phonon interaction provides an efficient approach to this problem, for systems evolving with low amplitude fluctuations, in a quasi-stationary state. In this work, we propose an extension of the kinetic model to include the effect of coherences, which are absent in the original approach. The new scheme, referred to as Liouville-von Neumann + Kinetic Equation (or LvN + KE), is implemented here in the context of a tight-binding Hamiltonian and employed to model the broadening, caused by the nuclear vibrations, of the electronic absorption bands of an atomic wire. The results, which show close agreement with the predictions given by Fermi's golden rule (FGR), serve as a validation of the methodology. Thereafter, the method is applied to the electron-phonon interaction in transport simulations, adopting to this end the driven Liouville-von Neumann equation to model open quantum boundaries. In this case, the LvN + KE model qualitatively captures the Joule heating effect and Ohm's law. It, however, exhibits numerical discrepancies with respect to the results based on FGR, attributable to the fact that the quasi-stationary state is defined taking into consideration the eigenstates of the closed system rather than those of the open boundary system. The simplicity and numerical efficiency of this approach and its ability to capture the essential physics of the electron-phonon coupling make it an attractive route to first-principles electron-ion dynamics.
Collapse
Affiliation(s)
- Carlos M Bustamante
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| | - Tchavdar N Todorov
- Atomistic Simulation Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Cristián G Sánchez
- Instituto Interdisciplinario de Ciencias Básicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, CONICET, Padre Jorge Contreras 1300, Mendoza M5502JMA, Argentina
| | - Andrew Horsfield
- Department of Materials, Thomas Young Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Damian A Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
11
|
Zwolak M. Analytic expressions for the steady-state current with finite extended reservoirs. J Chem Phys 2020; 153:224107. [PMID: 33317280 PMCID: PMC8356363 DOI: 10.1063/5.0029223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Open-system simulations of quantum transport provide a platform for the study of true steady states, Floquet states, and the role of temperature, time dynamics, and fluctuations, among other physical processes. They are rapidly gaining traction, especially techniques that revolve around "extended reservoirs," a collection of a finite number of degrees of freedom with relaxation that maintains a bias or temperature gradient, and have appeared under various guises (e.g., the extended or mesoscopic reservoir, auxiliary master equation, and driven Liouville-von Neumann approaches). Yet, there are still a number of open questions regarding the behavior and convergence of these techniques. Here, we derive general analytical solutions, and associated asymptotic analyses, for the steady-state current driven by finite reservoirs with proportional coupling to the system/junction. In doing so, we present a simplified and unified derivation of the non-interacting and many-body steady-state currents through arbitrary junctions, including outside of proportional coupling. We conjecture that the analytic solution for proportional coupling is the most general of its form for isomodal relaxation (i.e., relaxing proportional coupling will remove the ability to find compact, general analytical expressions for finite reservoirs). These results should be of broad utility in diagnosing the behavior and implementation of extended reservoir and related approaches, including the convergence to the Landauer limit (for non-interacting systems) and the Meir-Wingreen formula (for many-body systems).
Collapse
Affiliation(s)
- Michael Zwolak
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
12
|
Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, Horton A, Adhikari L, Zelovich T, Doherty BW, Gurkan B, Maginn EJ, Ragauskas A, Dadmun M, Zawodzinski TA, Baker GA, Tuckerman ME, Savinell RF, Sangoro JR. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem Rev 2020; 121:1232-1285. [PMID: 33315380 DOI: 10.1021/acs.chemrev.0c00385] [Citation(s) in RCA: 841] [Impact Index Per Article: 168.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Deep eutectic solvents (DESs) are an emerging class of mixtures characterized by significant depressions in melting points compared to those of the neat constituent components. These materials are promising for applications as inexpensive "designer" solvents exhibiting a host of tunable physicochemical properties. A detailed review of the current literature reveals the lack of predictive understanding of the microscopic mechanisms that govern the structure-property relationships in this class of solvents. Complex hydrogen bonding is postulated as the root cause of their melting point depressions and physicochemical properties; to understand these hydrogen bonded networks, it is imperative to study these systems as dynamic entities using both simulations and experiments. This review emphasizes recent research efforts in order to elucidate the next steps needed to develop a fundamental framework needed for a deeper understanding of DESs. It covers recent developments in DES research, frames outstanding scientific questions, and identifies promising research thrusts aligned with the advancement of the field toward predictive models and fundamental understanding of these solvents.
Collapse
Affiliation(s)
- Benworth B Hansen
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Stephanie Spittle
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Brian Chen
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Derrick Poe
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yong Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jeffrey M Klein
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Alexandre Horton
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Laxmi Adhikari
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Tamar Zelovich
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Brian W Doherty
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Burcu Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Arthur Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Mark Dadmun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Thomas A Zawodzinski
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Mark E Tuckerman
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Robert F Savinell
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Joshua R Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| |
Collapse
|
13
|
Li X, Govind N, Isborn C, DePrince AE, Lopata K. Real-Time Time-Dependent Electronic Structure Theory. Chem Rev 2020; 120:9951-9993. [DOI: 10.1021/acs.chemrev.0c00223] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Christine Isborn
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, United States
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Kenneth Lopata
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
14
|
Chiang TM, Hsu LY. Quantum transport with electronic relaxation in electrodes: Landauer-type formulas derived from the driven Liouville-von Neumann approach. J Chem Phys 2020; 153:044103. [PMID: 32752664 DOI: 10.1063/5.0007750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We derive the exact steady-state solutions for the simplest model systems of resonant tunneling and tunneling with destructive quantum interference from the driven Liouville-von Neumann (DLvN) approach. Under the finite-state lead condition (the two electrodes have finite states), we analyze the asymptotic behavior of the steady-state current in the two limits of electronic relaxation. Under the infinite-state lead condition, the steady-state solutions of the two model systems can be cast as Landauer-type current formulas. According to the formulas, we show that the transmission functions near the resonant peak and the antiresonant dip can be significantly influenced by electronic relaxation in the electrodes. Moreover, under intermediate and strong electronic relaxation conditions, we analytically show that the steady-state current of the DLvN approach dramatically deviates from the Landauer current when destructive quantum interference occurs. In the regime of zero electronic relaxation, our results are reduced to the Landauer formula, indicating that the DLvN approach is equivalent to the Landauer approach when the leads have infinite states without any electronic relaxation.
Collapse
Affiliation(s)
- Tse-Min Chiang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Liang-Yan Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
15
|
Chu W, Li X. Reduced-Order Modeling Approach for Electron Transport in Molecular Junctions. J Chem Theory Comput 2020; 16:3746-3756. [DOI: 10.1021/acs.jctc.9b01090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weiqi Chu
- Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Mathematics, Pennsylvania State University, University Park, PA 16802, United States
| | - Xiantao Li
- Department of Mathematics, Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
16
|
Ramirez FF, Bustamente CM, González Lebrero MC, Scherlis DA. Transport and Spectroscopy in Conjugated Molecules: Two Properties and a Single Rationale. J Chem Theory Comput 2020; 16:2930-2940. [DOI: 10.1021/acs.jctc.9b01122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Francisco F. Ramirez
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Carlos M. Bustamente
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Mariano C. González Lebrero
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Damián A. Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
17
|
Wójtowicz G, Elenewski JE, Rams MM, Zwolak M. Open System Tensor Networks and Kramers' Crossover for Quantum Transport. PHYSICAL REVIEW. A 2020; 101:10.1103/PhysRevA.101.050301. [PMID: 33367191 PMCID: PMC7754794 DOI: 10.1103/physreva.101.050301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tensor networks are a powerful tool for many-body ground states with limited entanglement. These methods can nonetheless fail for certain time-dependent processes-such as quantum transport or quenches-where entanglement growth is linear in time. Matrix-product-state decompositions of the resulting out-of-equilibrium states require a bond dimension that grows exponentially, imposing a hard limit on simulation timescales. However, in the case of transport, if the reservoir modes of a closed system are arranged according to their scattering structure, the entanglement growth can be made logarithmic. Here, we apply this ansatz to open systems via extended reservoirs that have explicit relaxation. This enables transport calculations that can access steady states, time dynamics and noise, and periodic driving (e.g., Floquet states). We demonstrate the approach by calculating the transport characteristics of an open, interacting system. These results open a path to scalable and numerically systematic many-body transport calculations with tensor networks.
Collapse
Affiliation(s)
- Gabriela Wójtowicz
- Jagiellonian University, Institute of Theoretical Physics, Lojasiewicza 11, 30-348 Kraków, Poland
| | - Justin E. Elenewski
- Biophysics Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD, USA
| | - Marek M. Rams
- Jagiellonian University, Institute of Theoretical Physics, Lojasiewicza 11, 30-348 Kraków, Poland
| | - Michael Zwolak
- Biophysics Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| |
Collapse
|
18
|
Oz A, Hod O, Nitzan A. Numerical Approach to Nonequilibrium Quantum Thermodynamics: Nonperturbative Treatment of the Driven Resonant Level Model Based on the Driven Liouville von-Neumann Formalism. J Chem Theory Comput 2019; 16:1232-1248. [DOI: 10.1021/acs.jctc.9b00999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103, United States
| |
Collapse
|
19
|
Pohl V, Marsoner Steinkasserer LE, Tremblay JC. Imaging Time-Dependent Electronic Currents through a Graphene-Based Nanojunction. J Phys Chem Lett 2019; 10:5387-5394. [PMID: 31448920 DOI: 10.1021/acs.jpclett.9b01732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To assist the design of efficient molecular junctions, a precise understanding of the charge transport mechanisms through nanoscaled devices is of prime importance. In the present contribution, we present time- and space-resolved electron transport simulations through a nanojunction under time-dependent potential biases. We use the driven Liouville-von Neumann approach to simulate the time evolution of the one-electron density matrix under nonequilibrium conditions, which allows us to capture the ultrafast scattering dynamics, the electronic relaxation process, and the quasi-stationary current limit from the same simulation. Using local projection techniques, we map the coherent electronic current density, unraveling insightful mechanistic details of the transport on time scales ranging from atto- to picoseconds. Memory effects dominate the early time transport process, and they reveal different current patterns on short time scales in comparison to those in the long-time regime. For nanotransistors with high switching rates, the scattering perspective on electron transport should thus be favored.
Collapse
Affiliation(s)
- Vincent Pohl
- Quantum on Demand , c/o Freie Universität Berlin , Altensteinstr. 40 , 14195 Berlin , Germany
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | | | - Jean Christophe Tremblay
- Laboratoire de Physique et Chimie Théoriques , CNRS-Université de Lorraine , UMR 7019, ICPM, 1 Bd Arago , 57070 Metz , France
| |
Collapse
|
20
|
Bustamante CM, Ramírez FF, Sánchez CG, Scherlis DA. Multiscale approach to electron transport dynamics. J Chem Phys 2019; 151:084105. [DOI: 10.1063/1.5112372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Carlos M. Bustamante
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Francisco F. Ramírez
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Cristián G. Sánchez
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina and CONICET & Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, CP5500, Argentina
| | - Damián A. Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
21
|
Ridley M, Gull E, Cohen G. Lead geometry and transport statistics in molecular junctions. J Chem Phys 2019; 150:244107. [DOI: 10.1063/1.5096244] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael Ridley
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Emanuel Gull
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| | - Guy Cohen
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
22
|
Oz I, Hod O, Nitzan A. Evaluation of dynamical properties of open quantum systems using the driven Liouville-von Neumann approach: methodological considerations. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1584338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Inbal Oz
- Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, IL, Israel
- The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, IL, Israel
| | - Oded Hod
- Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, IL, Israel
- The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, IL, Israel
| | - Abraham Nitzan
- Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, IL, Israel
- The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, IL, Israel
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Li X. Absorbing boundary conditions for time-dependent Schrödinger equations: A density-matrix formulation. J Chem Phys 2019; 150:114111. [PMID: 30902003 DOI: 10.1063/1.5079326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This paper presents some absorbing boundary conditions for simulations based on the time-dependent Schrödinger equations. The boundary conditions are expressed in terms of the elements of the density-matrix, and it is derived from the full model over a much larger domain. To make the implementation much more efficient, several approximations for the convolution integral will be constructed with guaranteed stability. These approximations lead to modified density-matrix equations at the boundary. The effectiveness is examined via numerical tests.
Collapse
Affiliation(s)
- Xiantao Li
- Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802-6400, USA
| |
Collapse
|
24
|
Crawford TD, Kumar A, Bazanté AP, Di Remigio R. Reduced‐scaling coupled cluster response theory: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- T. Daniel Crawford
- Department of Chemistry Virginia Tech, Blacksburg Virginia
- The Molecular Sciences Software Institute Blacksburg Virginia
| | - Ashutosh Kumar
- Department of Chemistry Virginia Tech, Blacksburg Virginia
| | | | - Roberto Di Remigio
- Department of Chemistry Virginia Tech, Blacksburg Virginia
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry University of Tromsø ‐ The Arctic University of Norway Tromsø Norway
| |
Collapse
|
25
|
Zwolak M. Communication: Gibbs phenomenon and the emergence of the steady-state in quantum transport. J Chem Phys 2018; 149:241102. [PMID: 30599719 PMCID: PMC6602063 DOI: 10.1063/1.5061759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Simulations are increasingly employing explicit reservoirs-internal, finite regions-to drive electronic or particle transport. This naturally occurs in simulations of transport via ultracold atomic gases. Whether the simulation is numerical or physical, these approaches rely on the rapid development of the steady state. We demonstrate that steady state formation is a manifestation of the Gibbs phenomenon well-known in signal processing and in truncated discrete Fourier expansions. Each particle separately develops into an individual steady state due to the spreading of its wave packet in energy. The rise to the steady state for an individual particle depends on the particle energy-and thus can be slow-and ringing oscillations appear due to filtering of the response through the electronic bandwidth. However, the rise to the total steady state-the one from all particles-is rapid, with time scale π/W, where W is the bandwidth. Ringing oscillations are now also filtered through the bias window, and they decay with a higher power. The Gibbs constant-the overshoot of the first ring-can appear in the simulation error. These results shed light on the formation of the steady state and support the practical use of explicit reservoirs to simulate transport at the nanoscale or using ultracold atomic lattices.
Collapse
Affiliation(s)
- Michael Zwolak
- Biophysics Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
26
|
Elenewski JE, Gruss D, Zwolak M. Communication: Master equations for electron transport: The limits of the Markovian limit. J Chem Phys 2018; 147:151101. [PMID: 29055298 DOI: 10.1063/1.5000747] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Master equations are increasingly popular for the simulation of time-dependent electronic transport in nanoscale devices. Several recent Markovian approaches use "extended reservoirs"-explicit degrees of freedom associated with the electrodes-distinguishing them from many previous classes of master equations. Starting from a Lindblad equation, we develop a common foundation for these approaches. Due to the incorporation of explicit electrode states, these methods do not require a large bias or even "true Markovianity" of the reservoirs. Nonetheless, their predictions are only physically relevant when the Markovian relaxation is weaker than the thermal broadening and when the extended reservoirs are "sufficiently large," in a sense that we quantify. These considerations hold despite complete positivity and respect for Pauli exclusion at any relaxation strength.
Collapse
Affiliation(s)
- Justin E Elenewski
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Daniel Gruss
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Michael Zwolak
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
27
|
Pal PP, Ramakrishna S, Seideman T. Emergence of Landauer transport from quantum dynamics: A model Hamiltonian approach. J Chem Phys 2018; 148:144707. [PMID: 29655338 DOI: 10.1063/1.5009815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Landauer expression for computing current-voltage characteristics in nanoscale devices is efficient but not suited to transient phenomena and a time-dependent current because it is applicable only when the charge carriers transition into a steady flux after an external perturbation. In this article, we construct a very general expression for time-dependent current in an electrode-molecule-electrode arrangement. Utilizing a model Hamiltonian (consisting of the subsystem energy levels and their electronic coupling terms), we propagate the Schrödinger wave function equation to numerically compute the time-dependent population in the individual subsystems. The current in each electrode (defined in terms of the rate of change of the corresponding population) has two components, one due to the charges originating from the same electrode and the other due to the charges initially residing at the other electrode. We derive an analytical expression for the first component and illustrate that it agrees reasonably with its numerical counterpart at early times. Exploiting the unitary evolution of a wavefunction, we construct a more general Landauer style formula and illustrate the emergence of Landauer transport from our simulations without the assumption of time-independent charge flow. Our generalized Landauer formula is valid at all times for models beyond the wide-band limit, non-uniform electrode density of states and for time and energy-dependent electronic coupling between the subsystems. Subsequently, we investigate the ingredients in our model that regulate the onset time scale of this steady state. We compare the performance of our general current expression with the Landauer current for time-dependent electronic coupling. Finally, we comment on the applicability of the Landauer formula to compute hot-electron current arising upon plasmon decoherence.
Collapse
Affiliation(s)
- Partha Pratim Pal
- Department of Chemistry, Northwestern University, Evanston, Illinois 60608, USA
| | - S Ramakrishna
- Department of Chemistry, Northwestern University, Evanston, Illinois 60608, USA
| | - Tamar Seideman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60608, USA
| |
Collapse
|
28
|
Prucker V, Bockstedte M, Thoss M, Coto PB. Dynamical simulation of electron transfer processes in self-assembled monolayers at metal surfaces using a density matrix approach. J Chem Phys 2018; 148:124705. [DOI: 10.1063/1.5020238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- V. Prucker
- Institut für Theoretische Physik und Interdisziplinäres Zentrum für Molekulare Materialien, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany
| | - M. Bockstedte
- Department Chemistry and Physics of Materials, Universität Salzburg, Jakob-Haringer-Str. 2a, A-5020 Salzburg, Austria
- Lehrstuhl für Theoretische Festkörperphysik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany
| | - M. Thoss
- Institut für Theoretische Physik und Interdisziplinäres Zentrum für Molekulare Materialien, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany
| | - P. B. Coto
- Institut für Theoretische Physik und Interdisziplinäres Zentrum für Molekulare Materialien, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany
| |
Collapse
|
29
|
Kurth S, Stefanucci G. Transport through correlated systems with density functional theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:413002. [PMID: 28684662 DOI: 10.1088/1361-648x/aa7e36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present recent advances in density functional theory (DFT) for applications in the field of quantum transport, with particular emphasis on transport through strongly correlated systems. We review the foundations of the popular Landauer-Büttiker(LB) + DFT approach. This formalism, when using approximations to the exchange-correlation (xc) potential with steps at integer occupation, correctly captures the Kondo plateau in the zero bias conductance at zero temperature but completely fails to capture the transition to the Coulomb blockade (CB) regime as the temperature increases. To overcome the limitations of LB + DFT, the quantum transport problem is treated from a time-dependent (TD) perspective using TDDFT, an exact framework to deal with nonequilibrium situations. The steady-state limit of TDDFT shows that in addition to an xc potential in the junction, there also exists an xc correction to the applied bias. Open shell molecules in the CB regime provide the most striking examples of the importance of the xc bias correction. Using the Anderson model as guidance we estimate these corrections in the limit of zero bias. For the general case we put forward a steady-state DFT which is based on one-to-one correspondence between the pair of basic variables, steady density on and steady current across the junction and the pair local potential on and bias across the junction. Like TDDFT, this framework also leads to both an xc potential in the junction and an xc correction to the bias. Unlike TDDFT, these potentials are independent of history. We highlight the universal features of both xc potential and xc bias corrections for junctions in the CB regime and provide an accurate parametrization for the Anderson model at arbitrary temperatures and interaction strengths, thus providing a unified DFT description for both Kondo and CB regimes and the transition between them.
Collapse
Affiliation(s)
- S Kurth
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Dpto. de Física de Materiales, Universidad del País Vasco UPV/EHU, Av. Tolosa 72, E-20018 San Sebastián, Spain. IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, E-48013 Bilbao, Spain. Author to whom any correspondence should be addressed
| | | |
Collapse
|
30
|
Goings JJ, Lestrange PJ, Li X. Real‐time time‐dependent electronic structure theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1341] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Xiaosong Li
- Department of ChemistryUniversity of Washington Seattle WA USA
| |
Collapse
|
31
|
Morzan UN, Ramírez FF, González Lebrero MC, Scherlis DA. Electron transport in real time from first-principles. J Chem Phys 2017; 146:044110. [PMID: 28147541 DOI: 10.1063/1.4974095] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
While the vast majority of calculations reported on molecular conductance have been based on the static non-equilibrium Green's function formalism combined with density functional theory (DFT), in recent years a few time-dependent approaches to transport have started to emerge. Among these, the driven Liouville-von Neumann equation [C. G. Sánchez et al., J. Chem. Phys. 124, 214708 (2006)] is a simple and appealing route relying on a tunable rate parameter, which has been explored in the context of semi-empirical methods. In the present study, we adapt this formulation to a density functional theory framework and analyze its performance. In particular, it is implemented in an efficient all-electron DFT code with Gaussian basis functions, suitable for quantum-dynamics simulations of large molecular systems. At variance with the case of the tight-binding calculations reported in the literature, we find that now the initial perturbation to drive the system out of equilibrium plays a fundamental role in the stability of the electron dynamics. The equation of motion used in previous tight-binding implementations with massive electrodes has to be modified to produce a stable and unidirectional current during time propagation in time-dependent DFT simulations using much smaller leads. Moreover, we propose a procedure to get rid of the dependence of the current-voltage curves on the rate parameter. This method is employed to obtain the current-voltage characteristic of saturated and unsaturated hydrocarbons of different lengths, with very promising prospects.
Collapse
Affiliation(s)
- Uriel N Morzan
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Francisco F Ramírez
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Mariano C González Lebrero
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Damián A Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
32
|
Zelovich T, Hansen T, Liu ZF, Neaton JB, Kronik L, Hod O. Parameter-free driven Liouville-von Neumann approach for time-dependent electronic transport simulations in open quantum systems. J Chem Phys 2017. [DOI: 10.1063/1.4976731] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Tamar Zelovich
- Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Thorsten Hansen
- Department of Chemistry, Copenhagen University, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Zhen-Fei Liu
- Department of Physics, University of California, Berkeley, Berkeley, California 94720-7300, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jeffrey B. Neaton
- Department of Physics, University of California, Berkeley, Berkeley, California 94720-7300, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Kavli Energy NanoSciences Institute, Berkeley, California 94720, USA
| | - Leeor Kronik
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Oded Hod
- Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
33
|
Galperin M. Photonics and spectroscopy in nanojunctions: a theoretical insight. Chem Soc Rev 2017; 46:4000-4019. [DOI: 10.1039/c7cs00067g] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Green function methods for photonics and spectroscopy in nanojunctions.
Collapse
Affiliation(s)
- Michael Galperin
- Department of Chemistry & Biochemistry
- University of California San Diego
- La Jolla
- USA
| |
Collapse
|
34
|
Hod O, Rodríguez-Rosario CA, Zelovich T, Frauenheim T. Driven Liouville von Neumann Equation in Lindblad Form. J Phys Chem A 2016; 120:3278-85. [PMID: 26807992 DOI: 10.1021/acs.jpca.5b12212] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Driven Liouville von Neumann approach [J. Chem. Theory Comput. 2014, 10, 2927-2941] is a computationally efficient simulation method for modeling electron dynamics in molecular electronics junctions. Previous numerical simulations have shown that the method can reproduce the exact single-particle dynamics while avoiding density matrix positivity violation found in previous implementations. In this study we prove that in the limit of infinite lead models the underlying equation of motion can be cast in Lindblad form. This provides a formal justification for the numerically observed density matrix positivity conservation.
Collapse
Affiliation(s)
- Oded Hod
- Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University , Tel Aviv 6997801, Israel
| | - César A Rodríguez-Rosario
- Bremen Center for Computational Materials Science, University of Bremen , Am Falturm 1, Bremen, 28359, Germany
| | - Tamar Zelovich
- Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University , Tel Aviv 6997801, Israel
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen , Am Falturm 1, Bremen, 28359, Germany
| |
Collapse
|
35
|
Gruss D, Velizhanin KA, Zwolak M. Landauer's formula with finite-time relaxation: Kramers' crossover in electronic transport. Sci Rep 2016; 6:24514. [PMID: 27094206 PMCID: PMC4837356 DOI: 10.1038/srep24514] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/30/2016] [Indexed: 12/23/2022] Open
Abstract
Landauer’s formula is the standard theoretical tool to examine ballistic transport in nano- and meso-scale junctions, but it necessitates that any variation of the junction with time must be slow compared to characteristic times of the system, e.g., the relaxation time of local excitations. Transport through structurally dynamic junctions is, however, increasingly of interest for sensing, harnessing fluctuations, and real-time control. Here, we calculate the steady-state current when relaxation of electrons in the reservoirs is present and demonstrate that it gives rise to three regimes of behavior: weak relaxation gives a contact-limited current; strong relaxation localizes electrons, distorting their natural dynamics and reducing the current; and in an intermediate regime the Landauer view of the system only is recovered. We also demonstrate that a simple equation of motion emerges, which is suitable for efficiently simulating time-dependent transport.
Collapse
Affiliation(s)
- Daniel Gruss
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.,Maryland Nanocenter, University of Maryland, College Park, MD 20742, USA.,Department of Physics, Oregon State University, Corvallis, OR 97331, USA
| | - Kirill A Velizhanin
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Michael Zwolak
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
36
|
Liu R, Wang CK, Li ZL. A method to study electronic transport properties of molecular junction: one-dimension transmission combined with three-dimension correction approximation (OTCTCA). Sci Rep 2016; 6:21946. [PMID: 26911451 PMCID: PMC4766509 DOI: 10.1038/srep21946] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/03/2016] [Indexed: 11/09/2022] Open
Abstract
Based on the ab initio calculation, a method of one-dimension transmission combined with three-dimension correction approximation (OTCTCA) is developed to investigate electron-transport properties of molecular junctions. The method considers that the functional molecule provides a spatial distribution of effective potential field for the electronic transport. The electrons are injected from one electrode by bias voltage, then transmit through the potential field around the functional molecule, at last are poured into the other electrode with a specific transmission probability which is calculated from one-dimension Schrödinger equation combined with three-dimension correction. The electron-transport properties of alkane diamines and 4, 4′-bipyridine molecular junctions are studied by applying OTCTCA method. The numerical results show that the conductance obviously exponentially decays with the increase of molecular length. When stretching molecular junctions, steps with a certain width are presented in conductance traces. Especially, in stretching process of 4, 4′-bipyridine molecular junction, if the terminal N atom is broken from flat part of electrode tip and exactly there is a surface Au atom on the tip nearby the N atom, the molecule generally turns to absorb on the surface Au atom, which further results in another lower conductance step in the traces as the experimental probing.
Collapse
Affiliation(s)
- Ran Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Chuan-Kui Wang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Zong-Liang Li
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
37
|
Zelovich T, Kronik L, Hod O. Molecule-lead coupling at molecular junctions: relation between the real- and state-space perspectives. J Chem Theory Comput 2015; 11:4861-9. [PMID: 26574274 DOI: 10.1021/acs.jctc.5b00612] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present insights into the lead-molecule coupling scheme in molecular electronics junctions. Using a "site-to-state" transformation that provides direct access to the coupling matrix elements between the molecular states and the eigenstate manifold of each lead, we find coupling bands whose character depends on the geometry and dimensionality of the lead. We use a standard tight-binding model to elucidate the origin of the coupling bands and explain their nature via simple "particle-in-a-box" type considerations. We further show that these coupling bands can shed light on the charge transport behavior of the junction. The picture presented in this study is not limited to the case of molecular electronics junctions and is relevant to any scenario where a finite molecular entity is coupled to a (semi)infinite system.
Collapse
Affiliation(s)
- Tamar Zelovich
- Department of Chemical Physics, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University , Tel Aviv 6997801, Israel
| | - Leeor Kronik
- Department of Materials and Interfaces, Weizmann Institute of Science , Rehovoth 76100, Israel
| | - Oded Hod
- Department of Chemical Physics, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University , Tel Aviv 6997801, Israel
| |
Collapse
|
38
|
Peralta JE, Hod O, Scuseria GE. Magnetization Dynamics from Time-Dependent Noncollinear Spin Density Functional Theory Calculations. J Chem Theory Comput 2015; 11:3661-8. [DOI: 10.1021/acs.jctc.5b00494] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Juan E. Peralta
- Department
of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, United States
| | - Oded Hod
- Department
of Chemical Physics, School of Chemistry, Raymond and Beverly Sackler
Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | | |
Collapse
|
39
|
Dou W, Nitzan A, Subotnik JE. Surface hopping with a manifold of electronic states. III. Transients, broadening, and the Marcus picture. J Chem Phys 2015; 142:234106. [DOI: 10.1063/1.4922513] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Wenjie Dou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Abraham Nitzan
- School of Chemistry, The Sackler Faculty of Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
40
|
Nguyen TS, Nanguneri R, Parkhill J. How electronic dynamics with Pauli exclusion produces Fermi-Dirac statistics. J Chem Phys 2015; 142:134113. [DOI: 10.1063/1.4916822] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Triet S. Nguyen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Ravindra Nanguneri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - John Parkhill
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
41
|
Cao H, Zhang M, Tao T, Song M, Zhang C. Electric response of a metal-molecule-metal junction to laser pulse by solving hierarchical equations of motion. J Chem Phys 2015; 142:084705. [DOI: 10.1063/1.4913466] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Hui Cao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, People’s Republic of China
| | - Mingdao Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, People’s Republic of China
| | - Tao Tao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, People’s Republic of China
| | - Mingxia Song
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, People’s Republic of China
| | - Chaozhi Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, People’s Republic of China
| |
Collapse
|