1
|
Dixit M, Hajari T, Meti MD, Srivastava S, Srivastava A, Daniel J. Ionic Pairing and Selective Solvation of Butylmethylimidazolium Chloride Ion Pairs in DMSO-Water Mixtures: A Comprehensive Examination via Molecular Dynamics Simulations and Potentials of Mean Force Analysis. J Phys Chem B 2024; 128:2168-2180. [PMID: 38415290 DOI: 10.1021/acs.jpcb.3c06876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Ionic liquids (ILs) with dimethyl sulfoxide (DMSO) and water act as a promising solvent medium for the dissolution of cellulose in an efficient manner. To develop a proper solvent system, it is really important to understand the thermodynamics of the molecular solutions consisting of ILs, DMSO, and water. The ion-pairing propensity of the ILs in the presence of DMSO and water plays a crucial role in governing the property of the solvent mixtures. Employing all-atom molecular dynamics simulations, we estimate the potentials of mean force between BMIM+ and Cl- ions in DMSO-water mixtures. Analysis reveals a significant increase in the thermodynamic stability of both contact ion pair (CIP) and solvent-assisted ion pair (SAIP) states with a rising DMSO mole fraction. Thermodynamic assessments highlight the entropic stabilization of CIP states and SAIP states in pure water, in DMSO-water mixtures, and in pure DMSO. The structural analysis reveals that in comparison to the DMSO local density, the local water density is relatively very high around ion pairs, more specifically in the solvation shell of a chloride ion. Preferential binding coefficients also consistently indicate exclusion of DMSO from the ion pair in DMSO-water mixtures. To enhance our understanding regarding the solvent molecules kinetics around the ion pairs, the survival probabilities of DMSO and water are computed. The calculations reveal that the water molecules prefer a prolonged stay in the solvation shell of Cl- ions.
Collapse
Affiliation(s)
- Mayank Dixit
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Timir Hajari
- Department of Chemistry, City College, 102/1, Raja Rammohan Sarani, Kolkata - 700009, India
| | - Manjunath D Meti
- Bio-physical Laboratory, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Srishti Srivastava
- Department of Zoology, Allahabad University, Prayagraj, Uttar Pradesh 211002, India
| | - Amar Srivastava
- Chemistry Department, Har Sahai (PG) College, Kanpur, Uttar Pradesh 208012, India
| | - Joseph Daniel
- Department of Chemistry, Christ Church College, Kanpur 208001, India
| |
Collapse
|
2
|
Pérez Ramos Á, Zheng Y, Peng J, Ridruejo Á. Structure, Partitioning, and Transport behavior of Microemulsion Electrolytes: Molecular Dynamics and Electrochemical Study. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
3
|
Mason TG, Freeman BD, Izgorodina EI. Influencing Molecular Dynamics Simulations of Ion-Exchange Membranes by Considering Comonomer Propagation. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Thomas G. Mason
- School of Chemistry, Monash University, Clayton, Melbourne, VIC3800, Australia
| | - Benny D. Freeman
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas78712, United States
| | | |
Collapse
|
4
|
MOLECULAR SIMULATIONS OF DEEP EUTECTIC SOLVENTS: A PERSPECTIVE ON STRUCTURE, DYNAMICS, AND PHYSICAL PROPERTIES. REVIEWS IN COMPUTATIONAL CHEMISTRY 2022. [DOI: 10.1002/9781119625933.ch4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Arenas P, Suárez I, Coto B. Combination of molecular dynamics simulation, COSMO-RS, and experimental study to understand extraction of naphthenic acid. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Corti HR, Appignanesi GA, Barbosa MC, Bordin JR, Calero C, Camisasca G, Elola MD, Franzese G, Gallo P, Hassanali A, Huang K, Laria D, Menéndez CA, de Oca JMM, Longinotti MP, Rodriguez J, Rovere M, Scherlis D, Szleifer I. Structure and dynamics of nanoconfined water and aqueous solutions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:136. [PMID: 34779954 DOI: 10.1140/epje/s10189-021-00136-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
This review is devoted to discussing recent progress on the structure, thermodynamic, reactivity, and dynamics of water and aqueous systems confined within different types of nanopores, synthetic and biological. Currently, this is a branch of water science that has attracted enormous attention of researchers from different fields interested to extend the understanding of the anomalous properties of bulk water to the nanoscopic domain. From a fundamental perspective, the interactions of water and solutes with a confining surface dramatically modify the liquid's structure and, consequently, both its thermodynamical and dynamical behaviors, breaking the validity of the classical thermodynamic and phenomenological description of the transport properties of aqueous systems. Additionally, man-made nanopores and porous materials have emerged as promising solutions to challenging problems such as water purification, biosensing, nanofluidic logic and gating, and energy storage and conversion, while aquaporin, ion channels, and nuclear pore complex nanopores regulate many biological functions such as the conduction of water, the generation of action potentials, and the storage of genetic material. In this work, the more recent experimental and molecular simulations advances in this exciting and rapidly evolving field will be reported and critically discussed.
Collapse
Affiliation(s)
- Horacio R Corti
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina.
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Marcia C Barbosa
- Institute of Physics, Federal University of Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
| | - J Rafael Bordin
- Department of Physics, Institute of Physics and Mathematics, 96050-500, Pelotas, RS, Brazil
| | - Carles Calero
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - M Dolores Elola
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Ali Hassanali
- Condensed Matter and Statistical Physics Section (CMSP), The International Center for Theoretical Physics (ICTP), Trieste, Italy
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Daniel Laria
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cintia A Menéndez
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Joan M Montes de Oca
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - M Paula Longinotti
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Rodriguez
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Escuela de Ciencia y Tecnología, Universidad Nacional de General San Martín, San Martín, Buenos Aires, Argentina
| | - Mauro Rovere
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Damián Scherlis
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Igal Szleifer
- Biomedical Engineering Department, Northwestern University, Evanston, USA
| |
Collapse
|
7
|
Madarász Á, Hamza A, Ferenc D, Bakó I. Two Faces of the Two-Phase Thermodynamic Model. J Chem Theory Comput 2021; 17:7187-7194. [PMID: 34648287 PMCID: PMC8582254 DOI: 10.1021/acs.jctc.1c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The quantum harmonic
model and the two-phase thermodynamic method
(2PT) are widely used to obtain quantum-corrected properties such
as isobaric heat capacities or molar entropies. 2PT heat capacities
were calculated inconsistently in the literature. For water, the classical
heat capacity was also considered, but for organic liquids, it was
omitted. We reanalyzed the performance of different quantum corrections
on the heat capacities of common organic solvents against experimental
data. We have pointed out serious flaws in previous 2PT studies. The
vibrational density of states was calculated incorrectly causing a
39% relative error in diffusion coefficients and 45% error in the
2PT heat capacities. The wrong conversion of isobaric and isochoric
heat capacities also caused about 40% error but in the other direction.
We have introduced the concept of anharmonic correction (AC), which
is simply the deviation of the classical heat capacity from that of
the harmonic oscillator model. This anharmonic contribution is around
+30 to 40 J/(mol K) for water depending on the water model and −8
to −10 J/(mol K) for hydrocarbons and halocarbons. AC is unrealistically
large, +40 J/(K mol) for alcohols and amines, indicating some deficiency
of the OPLS force field. The accuracy of the computations was also
assessed with the determination of the self-diffusion coefficients.
Collapse
Affiliation(s)
- Ádám Madarász
- Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Andrea Hamza
- Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Dávid Ferenc
- Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary.,Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Imre Bakó
- Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
8
|
Szabadi A, Elfgen R, Macchieraldo R, Kearns FL, Lee Woodcock H, Kirchner B, Schröder C. Comparison between ab initio and polarizable molecular dynamics simulations of 1-butyl-3-methylimidazolium tetrafluoroborate and chloride in water. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116521] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Trenzado JL, Rodríguez Y, Gutiérrez A, Cincotti A, Aparicio S. Experimental and molecular modeling study on the binary mixtures of [EMIM][BF4] and [EMIM][TFSI] ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
|
11
|
Diffusion of ions and solvent in propylene carbonate solutions for lithium-ion battery applications. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Demir B, Chan KY, Searles DJ. Structural Electrolytes Based on Epoxy Resins and Ionic Liquids: A Molecular-Level Investigation. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00824] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Baris Demir
- Centre for Theoretical and Computational Molecular Science, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kit-ying Chan
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawtorn, Melbourne, VIC 3122, Australia
| | - Debra J. Searles
- Centre for Theoretical and Computational Molecular Science, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
13
|
Wang YL, Li B, Sarman S, Mocci F, Lu ZY, Yuan J, Laaksonen A, Fayer MD. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chem Rev 2020; 120:5798-5877. [PMID: 32292036 PMCID: PMC7349628 DOI: 10.1021/acs.chemrev.9b00693] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Ionic liquids (ILs) are a special category of molten salts solely composed of ions with varied molecular symmetry and charge delocalization. The versatility in combining varied cation-anion moieties and in functionalizing ions with different atoms and molecular groups contributes to their peculiar interactions ranging from weak isotropic associations to strong, specific, and anisotropic forces. A delicate interplay among intra- and intermolecular interactions facilitates the formation of heterogeneous microstructures and liquid morphologies, which further contributes to their striking dynamical properties. Microstructural and dynamical heterogeneities of ILs lead to their multifaceted properties described by an inherent designer feature, which makes ILs important candidates for novel solvents, electrolytes, and functional materials in academia and industrial applications. Due to a massive number of combinations of ion pairs with ion species having distinct molecular structures and IL mixtures containing varied molecular solvents, a comprehensive understanding of their hierarchical structural and dynamical quantities is of great significance for a rational selection of ILs with appropriate properties and thereafter advancing their macroscopic functionalities in applications. In this review, we comprehensively trace recent advances in understanding delicate interplay of strong and weak interactions that underpin their complex phase behaviors with a particular emphasis on understanding heterogeneous microstructures and dynamics of ILs in bulk liquids, in mixtures with cosolvents, and in interfacial regions.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Bin Li
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Sten Sarman
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
| | - Zhong-Yuan Lu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Changchun 130021, P. R. China
| | - Jiayin Yuan
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Aatto Laaksonen
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- State
Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Centre of
Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania
- Department
of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
14
|
Berta D, Ferenc D, Bakó I, Madarász Á. Nuclear Quantum Effects from the Analysis of Smoothed Trajectories: Pilot Study for Water. J Chem Theory Comput 2020; 16:3316-3334. [PMID: 32268067 PMCID: PMC7304866 DOI: 10.1021/acs.jctc.9b00703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Nuclear quantum effects
have significant contributions to thermodynamic
quantities and structural properties; furthermore, very expensive
methods are necessary for their accurate computation. In most calculations,
these effects, for instance, zero-point energies, are simply neglected
or only taken into account within the quantum harmonic oscillator
approximation. Herein, we present a new method, Generalized Smoothed
Trajectory Analysis, to determine nuclear quantum effects from molecular
dynamics simulations. The broad applicability is demonstrated with
the examples of a harmonic oscillator and different states of water.
Ab initio molecular dynamics simulations have been performed for ideal
gas up to the temperature of 5000 K. Classical molecular dynamics
have been carried out for hexagonal ice, liquid water, and vapor at
atmospheric pressure. With respect to the experimental heat capacity,
our method outperforms previous calculations in the literature in
a wide temperature range at lower computational cost than other alternatives.
Dynamic and structural nuclear quantum effects of water are also discussed.
Collapse
Affiliation(s)
- Dénes Berta
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary.,Department of Chemistry, Kings College London, 7 Trinity Street, SE1 1DB London, United Kingdom
| | - Dávid Ferenc
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Imre Bakó
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Ádám Madarász
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
15
|
Li S, Pokuri BSS, Ryno SM, Nkansah A, De'Vine C, Ganapathysubramanian B, Risko C. Determination of the Free Energies of Mixing of Organic Solutions through a Combined Molecular Dynamics and Bayesian Statistics Approach. J Chem Inf Model 2020; 60:1424-1431. [PMID: 31935097 DOI: 10.1021/acs.jcim.9b01113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As new generations of thin-film semiconductors are moving toward solution-based processing, the development of printing formulations will require information pertaining to the free energies of mixing of complex mixtures. From the standpoint of in silico material design, this move necessitates the development of methods that can accurately and quickly evaluate these formulations in order to maximize processing speed and reproducibility. Here, we make use of molecular dynamics (MD) simulations, in combination with the two-phase thermodynamic (2PT) model, to explore the free energy of mixing surfaces for a series of halogenated solvents and high-boiling point solvent additives used in the development of thin-film organic semiconductors. Although the combined methods generally show good agreement with available experimental data, the computational cost to traverse the free-energy landscape is considerable. Hence, we demonstrate how a Bayesian optimization scheme, coupled with the MD and 2PT approaches, can drastically reduce the number of simulations required, in turn shrinking both the computational cost and time.
Collapse
Affiliation(s)
- Shi Li
- Department of Chemistry & Center for Applied Energy Research (CAER), University of Kentucky, Lexington, Kentucky 40506, United States
| | | | - Sean M Ryno
- Department of Chemistry & Center for Applied Energy Research (CAER), University of Kentucky, Lexington, Kentucky 40506, United States
| | - Asare Nkansah
- Department of Chemistry & Center for Applied Energy Research (CAER), University of Kentucky, Lexington, Kentucky 40506, United States
| | - Camron De'Vine
- Department of Chemistry & Center for Applied Energy Research (CAER), University of Kentucky, Lexington, Kentucky 40506, United States
| | | | - Chad Risko
- Department of Chemistry & Center for Applied Energy Research (CAER), University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
16
|
Kawano M, Sadakane K, Iwase H, Matsugami M, Marekha BA, Idrissi A, Takamuku T. Mixing states of imidazolium-based ionic liquid, [C 4mim][TFSI], with cycloethers studied by SANS, IR, and NMR experiments and MD simulations. Phys Chem Chem Phys 2020; 22:5332-5346. [PMID: 32096511 DOI: 10.1039/c9cp05258e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mixing states of an imidazolium-based ionic liquid (IL), 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][TFSI]), with cycloethers, tetrahydrofuran (THF), 1,4-dioxane (1,4-DIO), and 1,3-dioxane (1,3-DIO), have been clarified on the meso- and microscopic scales using small-angle neutron scattering (SANS), IR, and NMR experiments and molecular dynamics (MD) simulations. SANS profiles of [C4mim][TFSI]-THF-d8 and -1,4-DIO-d8 solutions at various mole fractions xML of molecular liquid (ML) have shown that [C4mim][TFSI] is heterogeneously mixed with THF and 1,4-DIO on the mesoscopic scale, to a high extent in the case of the latter solution. In fact, [C4mim][TFSI] and 1,4-DIO are not miscible with each other above the 1,4-DIO mole fraction x1,4-DIO of 0.903, whereas the IL can be mixed with THF over the entire range of THF mole fraction xTHF. The results of IR and 1H and 13C NMR measurements and MD simulations showed that cycloether molecules are more strongly hydrogen-bonded with the imidazolium ring H atoms in the order of THF > 1,3-DIO > 1,4-DIO. Although 1,4-DIO and 1,3-DIO molecules are structural isomers, our results point out that 1,4-DIO cannot be strongly hydrogen-bonded with the ring H atoms. The solvation of [TFSI]- by cycloethers through the dipole-dipole interaction promotes hydrogen bonding between the ring H atoms and cycloethers. Thus, 1,4-DIO with the lowest dipole moment cannot easily eliminate [TFSI]- from the imidazolium ring. This results in the weakest hydrogen bonds of 1,4-DIO with the ring H atoms. 2D-NMR of 1H{1H} rotating-frame nuclear Overhauser effect spectroscopy (ROESY) showed the interaction of the three cycloethers with the butyl group of [C4mim]+. 1,4-DIO mainly interacts with the butyl group by the dispersion force, whereas THF interacts with the IL by both hydrogen bonding and dispersion force. This leads to the higher heterogeneity of the 1,4-DIO solutions compared to the THF solutions.
Collapse
Affiliation(s)
- Masahiro Kawano
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Honjo-machi, Saga 840-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Hasani M, Varela LM, Martinelli A. Short-Range Order and Transport Properties in Mixtures of the Protic Ionic Liquid [C 2HIm][TFSI] with Water or Imidazole. J Phys Chem B 2020; 124:1767-1777. [PMID: 31999926 DOI: 10.1021/acs.jpcb.9b10454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We investigate the effect of adding different molecular cosolvents, water or imidazole, to the protic ionic liquid 1-ethylimidazolium bis(trifluoromethanesulfonyl)imide, i.e., [C2HIm][TFSI]. We explore how the added cosolvent distributes within the ionic liquid by means of molecular dynamics simulations and X-ray scattering. We also analyze the degree of short-range heterogeneity in the resulting mixtures, finding that while imidazole easily mixes with the protic ionic liquid, water tends to form small clusters in its own water-rich domains. These differences are rationalized by invoking the nature of intermolecular interactions. In aqueous mixtures water-water hydrogen bonds are more likely to form than water-ion hydrogen bonds (water-TFSI bonds being particularly weak), while imidazole can interact with both cations and anions. Hence, the cation-anion association is negligibly influenced by the presence of water, whereas the addition of imidazole creates solvent-separated ion pairs and is thus able to also increase the ionicity. As a consequence of these structural and interactional features, transport properties like self-diffusion and ionic conductivity also show different composition dependencies. While the mobility of both ions and solvent is increased considerably by the addition of water, upon adding imidazole this property changes significantly only for molar fractions of imidazole above 0.6. At these molar fractions, which correspond to a base-excess composition, the imidazole/[C2HIm][TFSI] mixture behaves as a glass-forming liquid with suppressed phase transitions, while homomixtures such as imidazole/[HIm][TFSI] can display a eutectic point.
Collapse
Affiliation(s)
- Mohammad Hasani
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Luis Miguel Varela
- Department of Applied and Particle Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Anna Martinelli
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
18
|
Yoshii K, Uto T, Tachikawa N, Katayama Y. The effects of the position of the ether oxygen atom in pyrrolidinium-based room temperature ionic liquids on their physicochemical properties. Phys Chem Chem Phys 2020; 22:19480-19491. [DOI: 10.1039/d0cp02662j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A joint computational and experimental approach uncovered that the position effect of the ether oxygen atom in pyrrolidinium-based room temperature ionic liquids on the physicochemical properties.
Collapse
Affiliation(s)
- Kazuki Yoshii
- Department of Applied Chemistry
- Faculty of Science and Technology
- Yokohama
- Japan
- Department of Energy and Environment
| | - Takuya Uto
- Organization for Promotion of Tenure Track
- University of Miyazaki
- Miyazaki 889-2192
- Japan
| | - Naoki Tachikawa
- Department of Applied Chemistry
- Faculty of Science and Technology
- Yokohama
- Japan
| | - Yasushi Katayama
- Department of Applied Chemistry
- Faculty of Science and Technology
- Yokohama
- Japan
| |
Collapse
|
19
|
Dasari S, Mallik BS. Conformational dynamics of amyloid-β (16–22) peptide in aqueous ionic liquids. RSC Adv 2020; 10:33248-33260. [PMID: 35515066 PMCID: PMC9056671 DOI: 10.1039/d0ra06609e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 12/04/2022] Open
Abstract
Molecular dynamics simulations of amyloid-β (16–22) peptide dimer in water as well as at two different experimentally studied concentrations of hydrated ionic liquids (ILs), ethylammonium mesylate (EAM), ethylammonium nitrate (EAN), and triethylammonium mesylate (TEAM), were carried out employing an umbrella sampling method. We used the average Ψ angle of the peptide backbone as the reaction coordinate to observe the conformational changes of a peptide dimer. Secondary structural element values were calculated for the peptide dimer along the reaction coordinate to see the transition of the peptide dimer between β-sheet and α-helix conformations. We observe the β-sheet conformation as the global minimum on the free energy surfaces in both EAM and EAN ILs at both the concentrations and at a low concentration of TEAM. However, we observe α-helix conformation as the global minimum at a high concentration of TEAM. Our results are in good correlation with the experimental findings. We calculated the average number of intramolecular and intermolecular hydrogen bonds of α-helix and β-sheet conformations in all solutions, and they are in correlation with the secondary structure element values. To understand the peptide–IL interactions, atom–atom radial distribution functions of cation, anion, and water around amide oxygen and hydrogen atoms were calculated. The solvent-accessible surface area of the peptide dimer was calculated to understand the exposure of the peptide towards the solvent during conformational changes. Finally, van der Waals (vdW) and Coulomb interaction energies were calculated between peptide–cation, peptide–anion, and peptide–water to understand the stability of conformations in different concentrations. We find that the TEA cation has more vdW interaction energy compared to Coulomb interaction energy with peptide in 70% (w/w) TEAM, which mimics a membrane-like environment to induce α-helix conformation rather than β-sheet conformation. Molecular dynamics simulations of amyloid-β (16–22) peptide dimer at two different experimentally studied concentrations of hydrated ethylammonium mesylate, ethylammonium nitrate, and triethylammonium mesylate were carried out employing an umbrella sampling method.![]()
Collapse
Affiliation(s)
- Sathish Dasari
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Sangareddy-502285
- India
| | - Bhabani S. Mallik
- Department of Chemistry
- Indian Institute of Technology Hyderabad
- Sangareddy-502285
- India
| |
Collapse
|
20
|
Ishii Y, Matubayasi N. Self-Consistent Scheme Combining MD and Order- N DFT Methods: An Improved Set of Nonpolarizable Force Fields for Ionic Liquids. J Chem Theory Comput 2019; 16:651-665. [PMID: 31873016 DOI: 10.1021/acs.jctc.9b00793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nonpolarizable force field of ionic liquids is tuned by using the self-consistent scheme of molecular dynamics (MD) simulation and first-principles calculation based on the order-N density functional theory (DFT). The atomic charges are determined by using the whole MD cell for DFT calculation and accounts effectively for the many-body effects of charge transfer and intramolecular polarization. The charges represent effective interactions in the condensed phase within the framework of the nonpolarizable force field and can be an alternative for an explicitly many-body model incorporating, for example, polarizability. Here we demonstrate the performance of nonpolarizable force field determined with the MD-DFT self-consistent scheme in imidazolium-, pyrrolidinium-, and ammonium-based ionic liquids. The variation ranges of molecular charges are much larger with the compositions of the ionic liquid than with the thermodynamic conditions, and the charge-ordering structures become systematically weaker with the effective charges. For energetic properties, while the calculated heat of vaporization depends on the atomic and molecular charges, the corresponding heat capacity is not strongly affected by the DFT-based variation. For transport properties, the self-diffusion coefficient, electrical conductivity, and viscosity vary much more in the self-consistent scheme. The effective DFT charge is observed to enhance the fluidity of ionic liquids and improve the accuracy of electrical conductivity and viscosity. This is due to the weakened interactions among the ions, and the too slow motions observed with a full-charge model are well corrected through the iteration of MD and DFT. We therefore conclude that the set of nonpolarizable force fields obtained with the MD-DFT self-consistent scheme leads to better description of transport properties of ionic liquids.
Collapse
Affiliation(s)
- Yoshiki Ishii
- Division of Chemical Engineering, Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan.,Elements Strategy Initiative for Catalysts and Batteries , Kyoto University , Katsura , Kyoto 615-8520 , Japan
| |
Collapse
|
21
|
Insights on [BMIM][BF4] and [BMIM][PF6] ionic liquids and their binary mixtures with acetone and acetonitrile. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Cui K, Yethiraj A, Schmidt JR. Influence of Charge Scaling on the Solvation Properties of Ionic Liquid Solutions. J Phys Chem B 2019; 123:9222-9229. [DOI: 10.1021/acs.jpcb.9b08033] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kai Cui
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Arun Yethiraj
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - J. R. Schmidt
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
23
|
The possibility of cadmium extraction to the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate in the presence of hydrochloric acid: a molecular dynamics study of the water–IL interface. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2489-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Imidazolium Based Ionic Liquids as Electrolytes for Energy Efficient Electrical Double Layer Capacitor: Insights from Molecular Dynamics and Electrochemical Characterization. J SOLUTION CHEM 2019. [DOI: 10.1007/s10953-019-00898-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Bedrov D, Piquemal JP, Borodin O, MacKerell AD, Roux B, Schröder C. Molecular Dynamics Simulations of Ionic Liquids and Electrolytes Using Polarizable Force Fields. Chem Rev 2019; 119:7940-7995. [PMID: 31141351 PMCID: PMC6620131 DOI: 10.1021/acs.chemrev.8b00763] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 11/30/2022]
Abstract
Many applications in chemistry, biology, and energy storage/conversion research rely on molecular simulations to provide fundamental insight into structural and transport properties of materials with high ionic concentrations. Whether the system is comprised entirely of ions, like ionic liquids, or is a mixture of a polar solvent with a salt, e.g., liquid electrolytes for battery applications, the presence of ions in these materials results in strong local electric fields polarizing solvent molecules and large ions. To predict properties of such systems from molecular simulations often requires either explicit or mean-field inclusion of the influence of polarization on electrostatic interactions. In this manuscript, we review the pros and cons of different treatments of polarization ranging from the mean-field approaches to the most popular explicit polarization models in molecular dynamics simulations of ionic materials. For each method, we discuss their advantages and disadvantages and emphasize key assumptions as well as their adjustable parameters. Strategies for the development of polarizable models are presented with a specific focus on extracting atomic polarizabilities. Finally, we compare simulations using polarizable and nonpolarizable models for several classes of ionic systems, discussing the underlying physics that each approach includes or ignores, implications for implementation and computational efficiency, and the accuracy of properties predicted by these methods compared to experiments.
Collapse
Affiliation(s)
- Dmitry Bedrov
- Department
of Materials Science & Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, Utah 84112, United States
| | - Jean-Philip Piquemal
- Laboratoire
de Chimie Théorique, Sorbonne Université,
UMR 7616 CNRS, CC137, 4 Place Jussieu, Tour 12-13, 4ème étage, 75252 Paris Cedex 05, France
- Institut
Universitaire de France, 75005, Paris Cedex 05, France
- Department
of Biomedical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| | - Oleg Borodin
- Electrochemistry
Branch, Sensors and Electron Devices Directorate, Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20703, United
States
| | - Alexander D. MacKerell
- Department
of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, United
States
| | - Benoît Roux
- Department
of Biochemistry and Molecular Biology, Gordon Center for Integrative
Science, University of Chicago, 929 57th Street, Chicago, Illinois 60637, United States
| | - Christian Schröder
- Department
of Computational Biological Chemistry, University
of Vienna, Währinger Strasse 17, A-1090 Vienna, Austria
| |
Collapse
|
26
|
Sánchez-Badillo J, Gallo M, Guirado-López RA, López-Lemus J. Thermodynamic, structural and dynamic properties of ionic liquids [C 4mim][CF 3COO], [C 4mim][Br] in the condensed phase, using molecular simulations. RSC Adv 2019; 9:13677-13695. [PMID: 35519576 PMCID: PMC9063925 DOI: 10.1039/c9ra02058f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/23/2019] [Indexed: 11/21/2022] Open
Abstract
In this work a series of thermodynamic, structural, and dynamical properties for the 1-butyl-3-methylimidazolium trifluoroacetate ([C4mim][CF3COO]) and 1-butyl-3-methylimidazolium bromide, ([C4mim][Br]) ionic liquids (ILs) were calculated using Non-polarizable Force Fields (FF), parameterized using a methodology developed previously within the research group, for condensed phase applications. Properties such as the Vapor-Liquid Equilibrium (VLE) curve, critical points (ρ c, T c), Radial, Spatial and Combined Distribution Functions and self-diffusion coefficients were calculated using Equilibrium Molecular Dynamics simulations (EMD); other properties such as shear viscosities and thermal conductivities were calculated using Non-Equilibrium Molecular Dynamics simulations (NEMD). The results obtained in this work indicated that the calculated critical points are comparable with those available in the literature. The calculated structural information for these two ILs indicated that the anions interact mainly with hydrogen atoms from both the imidazolium ring and the methyl chain; the bromide anion displays twice the hydrogen coordination number than the oxygen atoms from the trifluoroacetate anion. Furthermore, Non-Covalent interactions (NCI index), determined by DFT calculations, revealed that some hydrogen bonds in the [C4mim][Br] IL displayed similar strength to those in the [C4mim][CF3COO] IL, in spite of the shorter O--H distances found in the latter IL. The majority of the calculated transport properties presented reasonable agreement with the experimental available data. Nonetheless, the self-diffusion coefficients determined in this work are under-estimated with respect to experimental values; however, by escalating the electrostatic atomic charges for the anion and cation to ±0.8e, only for this property, a remarkable improvement was obtained. Experimental evidence was recovered for most of the calculated properties and to the best of our knowledge, some new predictions were done mainly in thermodynamic states where data are not available. To validate the FF, developed previously within the research group, dynamic properties were also evaluated for a series of ILs such as [C4mim][PF6], [C4mim][BF4], [C4mim][OMs], and [C4mim][NTf2] ILs.
Collapse
Affiliation(s)
- Joel Sánchez-Badillo
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Zona Universitaria Av. Manuel Nava No. 6 San Luis Potosí C.P. 78210 Mexico
| | - Marco Gallo
- Tecnológico Nacional de México/ITCJ Av. Tecnológico No. 1340, Cd. Juárez Chihuahua C.P. 32500 Mexico
| | - Ricardo A Guirado-López
- Instituto de Física "Manuel Sandoval Vallarta", Universidad Autónoma de San Luis Potosí Álvaro Obregón No. 64 San Luis Potosí C.P. 78000 Mexico
| | - Jorge López-Lemus
- Facultad de Ciencias, Universidad Autónoma del Estado de México Toluca Estado de México C.P. 50000 Mexico
| |
Collapse
|
27
|
Meti MD, Dixit M, Hajari T, Tembe B. Ion pairing and preferential solvation of butylmethylimidazolium chloride ion pair in water-ethanol mixtures by using molecular dynamics simulations. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Doherty B, Acevedo O. OPLS Force Field for Choline Chloride-Based Deep Eutectic Solvents. J Phys Chem B 2018; 122:9982-9993. [DOI: 10.1021/acs.jpcb.8b06647] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brian Doherty
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
29
|
Alcalde R, Atilhan M, Aparicio S. Intermolecular forces in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide + ethanol mixtures. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.02.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Gutiérrez A, Atilhan M, Alcalde R, Trenzado J, Aparicio S. Insights on the mixtures of imidazolium based ionic liquids with molecular solvents. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.167] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Doherty B, Zhong X, Acevedo O. Virtual Site OPLS Force Field for Imidazolium-Based Ionic Liquids. J Phys Chem B 2018; 122:2962-2974. [DOI: 10.1021/acs.jpcb.7b11996] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brian Doherty
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Xiang Zhong
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
32
|
Sarman S, Wang YL, Rohlmann P, Glavatskih S, Laaksonen A. Rheology of phosphonium ionic liquids: a molecular dynamics and experimental study. Phys Chem Chem Phys 2018; 20:10193-10203. [DOI: 10.1039/c7cp08349a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comparison between the theoretical and experimental viscosity of an ionic liquid.
Collapse
Affiliation(s)
- Sten Sarman
- Department of Materials and Environmental Chemistry
- Arrhenius Laboratory
- Stockholm University
- 106 91 Stockholm
- Sweden
| | - Yong-Lei Wang
- Department of Materials and Environmental Chemistry
- Arrhenius Laboratory
- Stockholm University
- 106 91 Stockholm
- Sweden
| | - Patrick Rohlmann
- Department of Machine Design
- Royal Institute of Technology
- 100 44 Stockholm
- Sweden
| | - Sergei Glavatskih
- Department of Machine Design
- Royal Institute of Technology
- 100 44 Stockholm
- Sweden
- Department of Electrical Energy, Metals, Mechanical Constructions and Systems
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry
- Arrhenius Laboratory
- Stockholm University
- 106 91 Stockholm
- Sweden
| |
Collapse
|
33
|
Herrera C, Alcalde R, Atilhan M, Aparicio S. Microscopic characterization of mixtures of amino acid ionic liquids and organic solvents. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.11.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Doherty B, Zhong X, Gathiaka S, Li B, Acevedo O. Revisiting OPLS Force Field Parameters for Ionic Liquid Simulations. J Chem Theory Comput 2017; 13:6131-6145. [DOI: 10.1021/acs.jctc.7b00520] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Brian Doherty
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Xiang Zhong
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Symon Gathiaka
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Bin Li
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
35
|
Higashi H, Kumita M, Seto T, Otani Y. Calculation of self-diffusion coefficients of the [BMIM][TFSA]/water system by molecular dynamics simulation. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1319055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hidenori Higashi
- Faculty of Natural Systems, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Mikio Kumita
- Faculty of Natural Systems, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Takafumi Seto
- Faculty of Natural Systems, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Yoshio Otani
- Faculty of Natural Systems, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
36
|
Kondratyuk ND, Norman GE, Stegailov VV. Self-consistent molecular dynamics calculation of diffusion in higher n-alkanes. J Chem Phys 2016; 145:204504. [PMID: 27908129 DOI: 10.1063/1.4967873] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diffusion is one of the key subjects of molecular modeling and simulation studies. However, there is an unresolved lack of consistency between Einstein-Smoluchowski (E-S) and Green-Kubo (G-K) methods for diffusion coefficient calculations in systems of complex molecules. In this paper, we analyze this problem for the case of liquid n-triacontane. The non-conventional long-time tails of the velocity autocorrelation function (VACF) are found for this system. Temperature dependence of the VACF tail decay exponent is defined. The proper inclusion of the long-time tail contributions to the diffusion coefficient calculation results in the consistency between G-K and E-S methods. Having considered the major factors influencing the precision of the diffusion rate calculations in comparison with experimental data (system size effects and force field parameters), we point to hydrogen nuclear quantum effects as, presumably, the last obstacle to fully consistent n-alkane description.
Collapse
Affiliation(s)
- Nikolay D Kondratyuk
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow 125412, Russia
| | - Genri E Norman
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow 125412, Russia
| | - Vladimir V Stegailov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow 125412, Russia
| |
Collapse
|
37
|
Chaudhari MI, Nair JR, Pratt LR, Soto FA, Balbuena PB, Rempe SB. Scaling Atomic Partial Charges of Carbonate Solvents for Lithium Ion Solvation and Diffusion. J Chem Theory Comput 2016; 12:5709-5718. [DOI: 10.1021/acs.jctc.6b00824] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mangesh I. Chaudhari
- Center
for Biological and Engineering Sciences, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jijeesh R. Nair
- Department
of Applied Science and Technology, Politecnico di Torino, Turin 10129, Italy
| | - Lawrence R. Pratt
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Fernando A. Soto
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Perla B. Balbuena
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Susan B. Rempe
- Center
for Biological and Engineering Sciences, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
38
|
Crystal structures, thermal analysis and electrochemical behaviors of functionalized pyridinium ionic liquids comprising one 1-ethyl acetate group. Chem Res Chin Univ 2016. [DOI: 10.1007/s40242-016-5252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Affiliation(s)
- Robert Hayes
- Discipline
of Chemistry, The University of Newcastle, NSW 2308, Callaghan, Australia
| | - Gregory G. Warr
- School
of Chemistry, The University of Sydney, NSW 2006, Sydney, Australia
| | - Rob Atkin
- Discipline
of Chemistry, The University of Newcastle, NSW 2308, Callaghan, Australia
| |
Collapse
|
40
|
Wu Y, Hu N, Yue L, Wei L, Guan W. Effects of polarizability on the structural and thermodynamics properties of [Cnmim][Gly] ionic liquids (n = 1–4) using EEM/MM molecular dynamic simulations. J Chem Phys 2015; 142:064503. [DOI: 10.1063/1.4907281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yang Wu
- Key Laboratory of Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Na Hu
- Key Laboratory of Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Lili Yue
- Key Laboratory of Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Lihong Wei
- Key Laboratory of Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Wei Guan
- Key Laboratory of Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
41
|
Migliorati V, Serva A, Aquilanti G, Pascarelli S, D'Angelo P. Local order and long range correlations in imidazolium halide ionic liquids: a combined molecular dynamics and XAS study. Phys Chem Chem Phys 2015; 17:16443-53. [DOI: 10.1039/c5cp01613d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
EXAFS spectroscopy and molecular dynamics simulations have been combined to unveil the effect of the cation and anion nature on the local order and long range interactions of imidazolium halide ionic liquids.
Collapse
Affiliation(s)
| | - Alessandra Serva
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | - Giuliana Aquilanti
- Elettra-Sincrotrone Trieste S.C.p.A s.s. 14
- km 163.5
- I-34149 Basovizza
- Italy
| | | | - Paola D'Angelo
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| |
Collapse
|
42
|
Singh AP, Gardas RL, Senapati S. Divergent trend in density versus viscosity of ionic liquid/water mixtures: a molecular view from guanidinium ionic liquids. Phys Chem Chem Phys 2015; 17:25037-48. [DOI: 10.1039/c5cp02841h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquids (ILs) have shown great potential in the dissolution and stability of biomolecules when a low-to-moderate quantity of water is added.
Collapse
Affiliation(s)
- Akhil Pratap Singh
- Bhupat and Jyoti Mehta School of Biosciences
- Department of Biotechnology
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Ramesh L. Gardas
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Sanjib Senapati
- Bhupat and Jyoti Mehta School of Biosciences
- Department of Biotechnology
- Indian Institute of Technology Madras
- Chennai 600036
- India
| |
Collapse
|