1
|
Tang Z, Fang Z, Wu X, Liu J, Tian L, Li X, Diao J, Ji B, Li D. Folding of N-terminally acetylated α-synuclein upon interaction with lipid membranes. Biophys J 2024:S0006-3495(24)00631-3. [PMID: 39306670 DOI: 10.1016/j.bpj.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
α-Synuclein (α-syn) is an abundant presynaptic neuronal protein whose aggregation is strongly associated with Parkinson's disease. It has been proposed that lipid membranes significantly affect α-syn's aggregation process. Extensive studies have been conducted to understand the interactions between α-syn and lipid membranes and have demonstrated that the N-terminus plays a critical role. However, the dynamics of the interactions and the conformational transitions of the N-terminus of α-syn at the atomistic scale details are still highly desired. In this study, we performed extensive enhanced sampling molecular dynamics simulations to quantify the folding and interactions of wild-type and N-terminally acetylated α-syn when interacting with lipid structures. We found that N-terminal acetylation significantly increases the helicity of the first few residues in solution or when interacting with lipid membranes. The observations in simulations showed that the binding of α-syn with lipid membranes mainly follows the induced-fit model, where the disordered α-syn binds with the lipid membrane through the electrostatic interactions and hydrophobic contacts with the packing defects; after stable insertion, N-terminal acetylation promotes the helical folding of the N-terminus to enhance the anchoring, thus increasing the binding affinity. We have shown the critical role of the first N-terminal residue methionine for recognition and anchoring to the negatively charged membrane. Although N-terminal acetylation neutralizes the positive charge of Met1 that may affect the electrostatic interactions of α-syn with membranes, the increase in helicity of the N-terminus should compensate for the binding affinity. This study provides detailed insight into the folding dynamics of α-syn's N-terminus with or without acetylation in solution and upon interaction with lipids, which clarifies how the N-terminal acetylation regulates the affinity of α-syn binding to lipid membranes. It also shows how packing defects and electrostatic effects coregulate the N-terminus of α-syn folding and its interaction with membranes.
Collapse
Affiliation(s)
- Zihan Tang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Zhou Fang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Xuwei Wu
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Jie Liu
- MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Liangfei Tian
- MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Xuejin Li
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Baohua Ji
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) and Wenzhou Institute of University of Chinese Academy of Science, Wenzhou, China
| | - Dechang Li
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Kamboukos A, Williams-Noonan BJ, Charchar P, Yarovsky I, Todorova N. Graphitic nanoflakes modulate the structure and binding of human amylin. NANOSCALE 2024; 16:16870-16886. [PMID: 39219407 DOI: 10.1039/d4nr01315h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Human amylin is an inherently disordered protein whose ability to form amyloid fibrils is linked to the onset of type II diabetes. Graphitic nanomaterials have potential in managing amyloid diseases as they can disrupt protein aggregation processes in biological settings, but optimising these materials to prevent fibrillation is challenging. Here, we employ bias-exchange molecular dynamics simulations to systematically study the structure and adsorption preferences of amylin on graphitic nanoflakes that vary in their physical dimensions and surface functionalisation. Our findings reveal that nanoflake size and surface oxidation both influence the structure and adsorption preferences of amylin. The purely hydrophobic substrate of pristine graphene (PG) nanoflakes encourages non-specific protein adsorption, leading to unrestricted lateral mobility once amylin adheres to the surface. Particularly on larger PG nanoflakes, this induces structural changes in amylin that may promote fibril formation, such as the loss of native helical content and an increase in β-sheet character. In contrast, oxidised graphene nanoflakes form hydrogen bonds between surface oxygen sites and amylin, and as such restricting protein mobility. Reduced graphene oxide (rGO) flakes, featuring lower amounts of surface oxidation, are amphiphilic and exhibit substantial regions of bare carbon which promote protein binding and reduced conformational flexibility, leading to conservation of the native structure of amylin. In comparison, graphene oxide (GO) nanoflakes, which are predominantly hydrophilic and have a high degree of surface oxidation, facilitate considerable protein structural variability, resulting in substantial contact area between the protein and GO, and subsequent protein unfolding. Our results indicate that tailoring the size, oxygen concentration and surface patterning of graphitic nanoflakes can lead to specific and robust protein binding, ultimately influencing the likelihood of fibril formation. These atomistic insights provide key design considerations for the development of graphitic nanoflakes that can modulate protein aggregation by sequestering protein monomers in the biological environment and inhibit conformational changes linked to amyloid fibril formation.
Collapse
Affiliation(s)
- Alexa Kamboukos
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia.
| | - Billy J Williams-Noonan
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia.
- School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Patrick Charchar
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia.
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia.
| | - Nevena Todorova
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia.
| |
Collapse
|
3
|
Williams-Noonan BJ, Kulkarni K, Todorova N, Franceschi M, Wilde C, Borgo MPD, Serpell LC, Aguilar MI, Yarovsky I. Atomic Scale Structure of Self-Assembled Lipidated Peptide Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311103. [PMID: 38489817 DOI: 10.1002/adma.202311103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Indexed: 03/17/2024]
Abstract
β-Peptides have great potential as novel biomaterials and therapeutic agents, due to their unique ability to self-assemble into low dimensional nanostructures, and their resistance to enzymatic degradation in vivo. However, the self-assembly mechanisms of β-peptides, which possess increased flexibility due to the extra backbone methylene groups present within the constituent β-amino acids, are not well understood due to inherent difficulties of observing their bottom-up growth pathway experimentally. A computational approach is presented for the bottom-up modelling of the self-assembled lipidated β3-peptides, from monomers, to oligomers, to supramolecular low-dimensional nanostructures, in all-atom detail. The approach is applied to elucidate the self-assembly mechanisms of recently discovered, distinct structural morphologies of low dimensional nanomaterials, assembled from lipidated β3-peptide monomers. The resultant structures of the nanobelts and the twisted fibrils are stable throughout subsequent unrestrained all-atom molecular dynamics simulations, and these assemblies display good agreement with the structural features obtained from X-ray fiber diffraction and atomic force microscopy data. This is the first reported, fully-atomistic model of a lipidated β3-peptide-based nanomaterial, and the computational approach developed here, in combination with experimental fiber diffraction analysis and atomic force microscopy, will be useful in elucidating the atomic scale structure of self-assembled peptide-based and other supramolecular nanomaterials.
Collapse
Affiliation(s)
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Nevena Todorova
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Matteo Franceschi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Christopher Wilde
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Mark P Del Borgo
- Department of Pharmacology, Monash University, Clayton, Victoria, 3800, Australia
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QG, UK
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
4
|
Lebedenko OO, Salikov VA, Izmailov SA, Podkorytov IS, Skrynnikov NR. Using NMR diffusion data to validate MD models of disordered proteins: Test case of N-terminal tail of histone H4. Biophys J 2024; 123:80-100. [PMID: 37990496 PMCID: PMC10808029 DOI: 10.1016/j.bpj.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
MD simulations can provide uniquely detailed models of intrinsically disordered proteins (IDPs). However, these models need careful experimental validation. The coefficient of translational diffusion Dtr, measurable by pulsed field gradient NMR, offers a potentially useful piece of experimental information related to the compactness of the IDP's conformational ensemble. Here, we investigate, both experimentally and via the MD modeling, the translational diffusion of a 25-residue N-terminal fragment from histone H4 (N-H4). We found that the predicted values of Dtr, as obtained from mean-square displacement of the peptide in the MD simulations, are largely determined by the viscosity of the MD water (which has been reinvestigated as a part of our study). Beyond that, our analysis of the diffusion data indicates that MD simulations of N-H4 in the TIP4P-Ew water give rise to an overly compact conformational ensemble for this peptide. In contrast, TIP4P-D and OPC simulations produce the ensembles that are consistent with the experimental Dtr result. These observations are supported by the analyses of the 15N spin relaxation rates. We also tested a number of empirical methods to predict Dtr based on IDP's coordinates extracted from the MD snapshots. In particular, we show that the popular approach involving the program HYDROPRO can produce misleading results. This happens because HYDROPRO is not intended to predict the diffusion properties of highly flexible biopolymers such as IDPs. Likewise, recent empirical schemes that exploit the relationship between the small-angle x-ray scattering-informed conformational ensembles of IDPs and the respective experimental Dtr values also prove to be problematic. In this sense, the first-principle calculations of Dtr from the MD simulations, such as demonstrated in this work, should provide a useful benchmark for future efforts in this area.
Collapse
Affiliation(s)
- Olga O Lebedenko
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia
| | - Vladislav A Salikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia
| | - Sergei A Izmailov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia
| | - Ivan S Podkorytov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia
| | - Nikolai R Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, Russia; Department of Chemistry, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
5
|
Firouzi R, Sowlati-Hashjin S, Chávez-García C, Ashouri M, Karimi-Jafari MH, Karttunen M. Identification of Catechins' Binding Sites in Monomeric A β42 through Ensemble Docking and MD Simulations. Int J Mol Sci 2023; 24:ijms24098161. [PMID: 37175868 PMCID: PMC10179585 DOI: 10.3390/ijms24098161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
The assembly of the amyloid-β peptide (Aβ) into toxic oligomers and fibrils is associated with Alzheimer's disease and dementia. Therefore, disrupting amyloid assembly by direct targeting of the Aβ monomeric form with small molecules or antibodies is a promising therapeutic strategy. However, given the dynamic nature of Aβ, standard computational tools cannot be easily applied for high-throughput structure-based virtual screening in drug discovery projects. In the current study, we propose a computational pipeline-in the framework of the ensemble docking strategy-to identify catechins' binding sites in monomeric Aβ42. It is shown that both hydrophobic aromatic interactions and hydrogen bonding are crucial for the binding of catechins to Aβ42. Additionally, it has been found that all the studied ligands, especially EGCG, can act as potent inhibitors against amyloid aggregation by blocking the central hydrophobic region of Aβ. Our findings are evaluated and confirmed with multi-microsecond MD simulations. Finally, it is suggested that our proposed pipeline, with low computational cost in comparison with MD simulations, is a suitable approach for the virtual screening of ligand libraries against Aβ.
Collapse
Affiliation(s)
- Rohoullah Firouzi
- Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran 1496813151, Iran
| | | | - Cecilia Chávez-García
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Mitra Ashouri
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran P.O. Box 14155-6619, Iran
| | - Mohammad Hossein Karimi-Jafari
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran P.O. Box 14155-6619, Iran
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| |
Collapse
|
6
|
Saurabh S, Nadendla K, Purohit SS, Sivakumar PM, Cetinel S. Fuzzy Drug Targets: Disordered Proteins in the Drug-Discovery Realm. ACS OMEGA 2023; 8:9729-9747. [PMID: 36969402 PMCID: PMC10034788 DOI: 10.1021/acsomega.2c07708] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Intrinsically disordered proteins (IDPs) and regions (IDRs) form a large part of the eukaryotic proteome. Contrary to the structure-function paradigm, the disordered proteins perform a myriad of functions in vivo. Consequently, they are involved in various disease pathways and are plausible drug targets. Unlike folded proteins, that have a defined structure and well carved out drug-binding pockets that can guide lead molecule selection, the disordered proteins require alternative drug-development methodologies that are based on an acceptable picture of their conformational ensemble. In this review, we discuss various experimental and computational techniques that contribute toward understanding IDP "structure" and describe representative pursuances toward IDP-targeting drug development. We also discuss ideas on developing rational drug design protocols targeting IDPs.
Collapse
Affiliation(s)
- Suman Saurabh
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Karthik Nadendla
- Center
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Lensfield
Road, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Shubh Sanket Purohit
- Department
of Clinical Haematology, Sahyadri Superspeciality
Hospital, Pune, Maharashtra 411038, India
| | - Ponnurengam Malliappan Sivakumar
- Institute
of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- School
of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Vietnam
- Nanotechnology
Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology
Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
- Faculty of
Engineering and Natural Sciences, Molecular Biology, Genetics and
Bioengineering Program, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
7
|
Rutledge BS, Choy WY, Duennwald ML. Folding or holding?-Hsp70 and Hsp90 chaperoning of misfolded proteins in neurodegenerative disease. J Biol Chem 2022; 298:101905. [PMID: 35398094 PMCID: PMC9079180 DOI: 10.1016/j.jbc.2022.101905] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/08/2023] Open
Abstract
The toxic accumulation of misfolded proteins as inclusions, fibrils, or aggregates is a hallmark of many neurodegenerative diseases. However, how molecular chaperones, such as heat shock protein 70 kDa (Hsp70) and heat shock protein 90 kDa (Hsp90), defend cells against the accumulation of misfolded proteins remains unclear. The ATP-dependent foldase function of both Hsp70 and Hsp90 actively transitions misfolded proteins back to their native conformation. By contrast, the ATP-independent holdase function of Hsp70 and Hsp90 prevents the accumulation of misfolded proteins. Foldase and holdase functions can protect against the toxicity associated with protein misfolding, yet we are only beginning to understand the mechanisms through which they modulate neurodegeneration. This review compares recent structural findings regarding the binding of Hsp90 to misfolded and intrinsically disordered proteins, such as tau, α-synuclein, and Tar DNA-binding protein 43. We propose that Hsp90 and Hsp70 interact with these proteins through an extended and dynamic interface that spans the surface of multiple domains of the chaperone proteins. This contrasts with many other Hsp90–client protein interactions for which only a single bound conformation of Hsp90 is proposed. The dynamic nature of these multidomain interactions allows for polymorphic binding of multiple conformations to vast regions of Hsp90. The holdase functions of Hsp70 and Hsp90 may thus allow neuronal cells to modulate misfolded proteins more efficiently by reducing the long-term ATP running costs of the chaperone budget. However, it remains unclear whether holdase functions protect cells by preventing aggregate formation or can increase neurotoxicity by inadvertently stabilizing deleterious oligomers.
Collapse
Affiliation(s)
| | - Wing-Yiu Choy
- Department of Biochemistry, Western University, London, Ontario, Canada
| | - Martin L Duennwald
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada.
| |
Collapse
|
8
|
Kulkarni P, Leite VBP, Roy S, Bhattacharyya S, Mohanty A, Achuthan S, Singh D, Appadurai R, Rangarajan G, Weninger K, Orban J, Srivastava A, Jolly MK, Onuchic JN, Uversky VN, Salgia R. Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma. BIOPHYSICS REVIEWS 2022; 3:011306. [PMID: 38505224 PMCID: PMC10903413 DOI: 10.1063/5.0080512] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 03/21/2024]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure. Hence, they are often misconceived to present a challenge to Anfinsen's dogma. However, IDPs exist as ensembles that sample a quasi-continuum of rapidly interconverting conformations and, as such, may represent proteins at the extreme limit of the Anfinsen postulate. IDPs play important biological roles and are key components of the cellular protein interaction network (PIN). Many IDPs can interconvert between disordered and ordered states as they bind to appropriate partners. Conformational dynamics of IDPs contribute to conformational noise in the cell. Thus, the dysregulation of IDPs contributes to increased noise and "promiscuous" interactions. This leads to PIN rewiring to output an appropriate response underscoring the critical role of IDPs in cellular decision making. Nonetheless, IDPs are not easily tractable experimentally. Furthermore, in the absence of a reference conformation, discerning the energy landscape representation of the weakly funneled IDPs in terms of reaction coordinates is challenging. To understand conformational dynamics in real time and decipher how IDPs recognize multiple binding partners with high specificity, several sophisticated knowledge-based and physics-based in silico sampling techniques have been developed. Here, using specific examples, we highlight recent advances in energy landscape visualization and molecular dynamics simulations to discern conformational dynamics and discuss how the conformational preferences of IDPs modulate their function, especially in phenotypic switching. Finally, we discuss recent progress in identifying small molecules targeting IDPs underscoring the potential therapeutic value of IDPs. Understanding structure and function of IDPs can not only provide new insight on cellular decision making but may also help to refine and extend Anfinsen's structure/function paradigm.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Vitor B. P. Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Supriyo Bhattacharyya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Srisairam Achuthan
- Center for Informatics, Division of Research Informatics, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Divyoj Singh
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rajeswari Appadurai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jose N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| | | | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| |
Collapse
|
9
|
Salem A, Wilson CJ, Rutledge BS, Dilliott A, Farhan S, Choy WY, Duennwald ML. Matrin3: Disorder and ALS Pathogenesis. Front Mol Biosci 2022; 8:794646. [PMID: 35083279 PMCID: PMC8784776 DOI: 10.3389/fmolb.2021.794646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the degeneration of both upper and lower motor neurons in the brain and spinal cord. ALS is associated with protein misfolding and inclusion formation involving RNA-binding proteins, including TAR DNA-binding protein (TDP-43) and fused in sarcoma (FUS). The 125-kDa Matrin3 is a highly conserved nuclear DNA/RNA-binding protein that is implicated in many cellular processes, including binding and stabilizing mRNA, regulating mRNA nuclear export, modulating alternative splicing, and managing chromosomal distribution. Mutations in MATR3, the gene encoding Matrin3, have been identified as causal in familial ALS (fALS). Matrin3 lacks a prion-like domain that characterizes many other ALS-associated RNA-binding proteins, including TDP-43 and FUS, however, our bioinformatics analyses and preliminary studies document that Matrin3 contains long intrinsically disordered regions that may facilitate promiscuous interactions with many proteins and may contribute to its misfolding. In addition, these disordered regions in Matrin3 undergo numerous post-translational modifications, including phosphorylation, ubiquitination and acetylation that modulate the function and misfolding of the protein. Here we discuss the disordered nature of Matrin3 and review the factors that may promote its misfolding and aggregation, two elements that might explain its role in ALS pathogenesis.
Collapse
Affiliation(s)
- Ahmed Salem
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Carter J. Wilson
- Department of Applied Mathematics, Western University, London, ON, Canada
| | - Benjamin S. Rutledge
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Allison Dilliott
- Department of Neurology and Neurosurgery, McGill Universty, Montreal, QC, Canada
| | - Sali Farhan
- Department of Neurology and Neurosurgery, McGill Universty, Montreal, QC, Canada
- Department of Human Genetics, McGill Universty, Montreal, QC, Canada
| | - Wing-Yiu Choy
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Martin L. Duennwald
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
10
|
Lambrughi M, Maiani E, Aykac Fas B, Shaw GS, Kragelund BB, Lindorff-Larsen K, Teilum K, Invernizzi G, Papaleo E. Ubiquitin Interacting Motifs: Duality Between Structured and Disordered Motifs. Front Mol Biosci 2021; 8:676235. [PMID: 34262938 PMCID: PMC8273247 DOI: 10.3389/fmolb.2021.676235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 01/11/2023] Open
Abstract
Ubiquitin is a small protein at the heart of many cellular processes, and several different protein domains are known to recognize and bind ubiquitin. A common motif for interaction with ubiquitin is the Ubiquitin Interacting Motif (UIM), characterized by a conserved sequence signature and often found in multi-domain proteins. Multi-domain proteins with intrinsically disordered regions mediate interactions with multiple partners, orchestrating diverse pathways. Short linear motifs for binding are often embedded in these disordered regions and play crucial roles in modulating protein function. In this work, we investigated the structural propensities of UIMs using molecular dynamics simulations and NMR chemical shifts. Despite the structural portrait depicted by X-crystallography of stable helical structures, we show that UIMs feature both helical and intrinsically disordered conformations. Our results shed light on a new class of disordered UIMs. This group is here exemplified by the C-terminal domain of one isoform of ataxin-3 and a group of ubiquitin-specific proteases. Intriguingly, UIMs not only bind ubiquitin. They can be a recruitment point for other interactors, such as parkin and the heat shock protein Hsc70-4. Disordered UIMs can provide versatility and new functions to the client proteins, opening new directions for research on their interactome.
Collapse
Affiliation(s)
- Matteo Lambrughi
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milano, Italy
| | - Emiliano Maiani
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Burcu Aykac Fas
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Gary S Shaw
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Gaetano Invernizzi
- Structural Biology and NMR Laboratory and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark.,Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
11
|
Wang W. Recent advances in atomic molecular dynamics simulation of intrinsically disordered proteins. Phys Chem Chem Phys 2021; 23:777-784. [PMID: 33355572 DOI: 10.1039/d0cp05818a] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intrinsically disordered proteins (IDPs) play important roles in cellular functions. The inherent structural heterogeneity of IDPs makes the high-resolution experimental characterization of IDPs extremely difficult. Molecular dynamics (MD) simulation could provide the atomic-level description of the structural and dynamic properties of IDPs. This perspective reviews the recent progress in atomic MD simulation studies of IDPs, including the development of force fields and sampling methods, as well as applications in IDP-involved protein-protein interactions. The employment of large-scale simulations and advanced sampling techniques allows more accurate estimation of the thermodynamics and kinetics of IDP-mediated protein interactions, and the holistic landscape of the binding process of IDPs is emerging.
Collapse
Affiliation(s)
- Wenning Wang
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
12
|
Kang C, Sun R. Molecular Dynamics Study of the Interaction between the N-terminal of α-Synuclein and a Lipid Bilayer Mimicking Synaptic Vesicles. J Phys Chem B 2020; 125:1036-1048. [DOI: 10.1021/acs.jpcb.0c08620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Christopher Kang
- Department of Chemistry, University of Hawai’i at Manoa, 2545 McCarthy
Mall, Honolulu 96822-2275, Hawaii, United States
| | - Rui Sun
- Department of Chemistry, University of Hawai’i at Manoa, 2545 McCarthy
Mall, Honolulu 96822-2275, Hawaii, United States
| |
Collapse
|
13
|
Tavanti F, Pedone A, Menziani MC. Disclosing the Interaction of Gold Nanoparticles with Aβ(1-40) Monomers through Replica Exchange Molecular Dynamics Simulations. Int J Mol Sci 2020; 22:ijms22010026. [PMID: 33375086 PMCID: PMC7792802 DOI: 10.3390/ijms22010026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Amyloid-β aggregation is one of the principal causes of amyloidogenic diseases that lead to the loss of neuronal cells and to cognitive impairments. The use of gold nanoparticles treating amyloidogenic diseases is a promising approach, because the chemistry of the gold surface can be tuned in order to have a specific binding, obtaining effective tools to control the aggregation. In this paper, we show, by means of Replica Exchange Solute Tempering Molecular Simulations, how electrostatic interactions drive the absorption of Amyloid-β monomers onto citrates-capped gold nanoparticles. Importantly, upon binding, amyloid monomers show a reduced propensity in forming β-sheets secondary structures that are characteristics of mature amyloid fibrils.
Collapse
Affiliation(s)
- Francesco Tavanti
- CNR-NANO Research Center, Via Campi 213/a, 41125 Modena, Italy
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (A.P.); (M.C.M.)
- Correspondence:
| | - Alfonso Pedone
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (A.P.); (M.C.M.)
| | - Maria Cristina Menziani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (A.P.); (M.C.M.)
| |
Collapse
|
14
|
Sala D, Cosentino U, Ranaudo A, Greco C, Moro G. Dynamical Behavior and Conformational Selection Mechanism of the Intrinsically Disordered Sic1 Kinase-Inhibitor Domain. Life (Basel) 2020; 10:life10070110. [PMID: 32664566 PMCID: PMC7399826 DOI: 10.3390/life10070110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 01/04/2023] Open
Abstract
Intrinsically Disordered Peptides and Proteins (IDPs) in solution can span a broad range of conformations that often are hard to characterize by both experimental and computational methods. However, obtaining a significant representation of the conformational space is important to understand mechanisms underlying protein functions such as partner recognition. In this work, we investigated the behavior of the Sic1 Kinase-Inhibitor Domain (KID) in solution by Molecular Dynamics (MD) simulations. Our results point out that application of common descriptors of molecular shape such as Solvent Accessible Surface (SAS) area can lead to misleading outcomes. Instead, more appropriate molecular descriptors can be used to define 3D structures. In particular, we exploited Weighted Holistic Invariant Molecular (WHIM) descriptors to get a coarse-grained but accurate definition of the variegated Sic1 KID conformational ensemble. We found that Sic1 is able to form a variable amount of folded structures even in absence of partners. Among them, there were some conformations very close to the structure that Sic1 is supposed to assume in the binding with its physiological complexes. Therefore, our results support the hypothesis that this protein relies on the conformational selection mechanism to recognize the correct molecular partners.
Collapse
Affiliation(s)
- Davide Sala
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, P.zza della Scienza 2, 20126 Milano, Italy;
| | - Ugo Cosentino
- Dipartimento di Scienze dell’Ambiente e della Terra, Università di Milano-Bicocca, P.zza della Scienza 1, 20126 Milano, Italy; (U.C.); (A.R.)
| | - Anna Ranaudo
- Dipartimento di Scienze dell’Ambiente e della Terra, Università di Milano-Bicocca, P.zza della Scienza 1, 20126 Milano, Italy; (U.C.); (A.R.)
| | - Claudio Greco
- Dipartimento di Scienze dell’Ambiente e della Terra, Università di Milano-Bicocca, P.zza della Scienza 1, 20126 Milano, Italy; (U.C.); (A.R.)
- Correspondence: (C.G.); (G.M.)
| | - Giorgio Moro
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, P.zza della Scienza 2, 20126 Milano, Italy;
- Correspondence: (C.G.); (G.M.)
| |
Collapse
|
15
|
Paul S, Nair NN, Vashisth H. Phase space and collective variable based simulation methods for studies of rare events. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1634268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sanjib Paul
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, USA
| | - Nisanth N. Nair
- Department of Chemistry, Indian Institute of Technology, Kanpur, India
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
16
|
Heightman TD, Callahan JF, Chiarparin E, Coyle JE, Griffiths-Jones C, Lakdawala AS, McMenamin R, Mortenson PN, Norton D, Peakman TM, Rich SJ, Richardson C, Rumsey WL, Sanchez Y, Saxty G, Willems HMG, Wolfe L, Woolford AJA, Wu Z, Yan H, Kerns JK, Davies TG. Structure–Activity and Structure–Conformation Relationships of Aryl Propionic Acid Inhibitors of the Kelch-like ECH-Associated Protein 1/Nuclear Factor Erythroid 2-Related Factor 2 (KEAP1/NRF2) Protein–Protein Interaction. J Med Chem 2019; 62:4683-4702. [DOI: 10.1021/acs.jmedchem.9b00279] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tom D. Heightman
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | - James F. Callahan
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | | | - Joseph E. Coyle
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | | | - Ami S. Lakdawala
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Rachel McMenamin
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | - Paul N. Mortenson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | - David Norton
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | - Torren M. Peakman
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | - Sharna J. Rich
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | | | - William L. Rumsey
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Yolanda Sanchez
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Gordon Saxty
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | | | - Lawrence Wolfe
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | | | - Zining Wu
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Hongxing Yan
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Jeffrey K. Kerns
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Thomas G. Davies
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| |
Collapse
|
17
|
Su X, Wang K, Liu N, Chen J, Li Y, Duan M. All‐atom structure ensembles of islet amyloid polypeptides determined by enhanced sampling and experiment data restraints. Proteins 2019; 87:541-550. [DOI: 10.1002/prot.25677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/22/2018] [Accepted: 02/17/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Xinyue Su
- CAS Key Laboratory of magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, Chinese Academy of Sciences Wuhan China
- Department of PhysicsCentral China Normal University Wuhan China
| | - Ke Wang
- CAS Key Laboratory of magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, Chinese Academy of Sciences Wuhan China
- Department of ChemistryUniversity of Chinese Academy of Sciences Beijing China
| | - Na Liu
- CAS Key Laboratory of magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, Chinese Academy of Sciences Wuhan China
- Department of ChemistryUniversity of Chinese Academy of Sciences Beijing China
| | - Jiawen Chen
- CAS Key Laboratory of magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, Chinese Academy of Sciences Wuhan China
| | - Yong Li
- Department of PhysicsCentral China Normal University Wuhan China
| | - Mojie Duan
- CAS Key Laboratory of magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, Chinese Academy of Sciences Wuhan China
| |
Collapse
|
18
|
Kohut G, Sieradzan A, Zsila F, Juhász T, Bősze S, Liwo A, Samsonov SA, Beke-Somfai T. The molecular mechanism of structural changes in the antimicrobial peptide CM15 upon complex formation with drug molecule suramin: a computational analysis. Phys Chem Chem Phys 2019; 21:10644-10659. [DOI: 10.1039/c9cp00471h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stabilization of helical conformations of CM15 upon interactions with suramin.
Collapse
Affiliation(s)
- Gergely Kohut
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- H-1117 Budapest
- Hungary
| | - Adam Sieradzan
- Faculty of Chemistry
- University of Gdańsk
- 80-308 Gdańsk
- Poland
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- H-1117 Budapest
- Hungary
| | - Tünde Juhász
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- H-1117 Budapest
- Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry
- Hungarian Academy of Sciences
- Eötvös Loránd University
- H-1518 Budapest
- Hungary
| | - Adam Liwo
- Faculty of Chemistry
- University of Gdańsk
- 80-308 Gdańsk
- Poland
| | | | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- H-1117 Budapest
- Hungary
| |
Collapse
|
19
|
Awasthi S, Nair NN. Exploring high‐dimensional free energy landscapes of chemical reactions. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1398] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shalini Awasthi
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh India
| | - Nisanth N. Nair
- Department of Chemistry Indian Institute of Technology Kanpur Uttar Pradesh India
| |
Collapse
|
20
|
Karttunen M, Choy WY, Cino EA. Prediction of Binding Energy of Keap1 Interaction Motifs in the Nrf2 Antioxidant Pathway and Design of Potential High-Affinity Peptides. J Phys Chem B 2018; 122:5851-5859. [PMID: 29745220 DOI: 10.1021/acs.jpcb.8b03295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor and principal regulator of the antioxidant pathway. The Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) binds to motifs in the N-terminal region of Nrf2, promoting its degradation. There is interest in developing ligands that can compete with Nrf2 for binding to Kelch, thereby activating its transcriptional activities and increasing antioxidant levels. Using experimental Δ Gbind values of Kelch-binding motifs determined previously, a revised hydrophobicity-based model was developed for estimating Δ Gbind from amino acid sequence and applied to rank potential uncharacterized Kelch-binding motifs identified from interaction databases and BLAST searches. Model predictions and molecular dynamics (MD) simulations suggested that full-length MAD2A binds Kelch more favorably than a high-affinity 20-mer Nrf2 E78P peptide, but that the motif in isolation is not a particularly strong binder. Endeavoring to develop shorter peptides for activating Nrf2, new designs were created based on the E78P peptide, some of which showed considerable propensity to form binding-competent structures in MD, and were predicted to interact with Kelch more favorably than the E78P peptide. The peptides could be promising new ligands for enhancing the oxidative stress response.
Collapse
Affiliation(s)
- Mikko Karttunen
- Department of Chemistry and Department of Applied Mathematics , The University of Western Ontario , London , Ontario , Canada N6A 5B7
| | - Wing-Yiu Choy
- Department of Biochemistry , The University of Western Ontario , London , Ontario , Canada N6A 5C1
| | - Elio A Cino
- Department of Biochemistry and Immunology , Federal University of Minas Gerais , Belo Horizonte 31270-901 , Brazil
| |
Collapse
|
21
|
Bernetti M, Masetti M, Pietrucci F, Blackledge M, Jensen MR, Recanatini M, Mollica L, Cavalli A. Structural and Kinetic Characterization of the Intrinsically Disordered Protein SeV NTAIL through Enhanced Sampling Simulations. J Phys Chem B 2017; 121:9572-9582. [DOI: 10.1021/acs.jpcb.7b08925] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mattia Bernetti
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum − Università di Bologna, Via Belmeloro 6, 40126, Bologna, Italy
- CompuNet, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Matteo Masetti
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum − Università di Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Fabio Pietrucci
- Institut
de Minéralogie,
de Physique des Matériaux et de Cosmochimie, Sorbonne Universités−Université
Pierre et Marie Curie Paris 6, CNRS UMR 7590, IRD UMR 206, Museum national d’Histoire naturelle, F-75005 Paris, France
| | - Martin Blackledge
- Protein
Dynamics and Flexibility by NMR Group, Institut de Biologie Structurale, 38044 Grenoble, France
| | - Malene Ringkjobing Jensen
- Protein
Dynamics and Flexibility by NMR Group, Institut de Biologie Structurale, 38044 Grenoble, France
| | - Maurizio Recanatini
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum − Università di Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Luca Mollica
- CompuNet, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Andrea Cavalli
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum − Università di Bologna, Via Belmeloro 6, 40126, Bologna, Italy
- CompuNet, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| |
Collapse
|
22
|
An Efficient Method for Estimating the Hydrodynamic Radius of Disordered Protein Conformations. Biophys J 2017; 113:550-557. [PMID: 28793210 DOI: 10.1016/j.bpj.2017.06.042] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/31/2017] [Accepted: 06/13/2017] [Indexed: 12/12/2022] Open
Abstract
Intrinsically disordered proteins play important roles throughout biology, yet our understanding of the relationship between their sequences, structural properties, and functions remains incomplete. The dynamic nature of these proteins, however, makes them difficult to characterize structurally. Many disordered proteins can attain both compact and expanded conformations, and the level of expansion may be regulated and important for function. Experimentally, the level of compaction and shape is often determined either by small-angle x-ray scattering experiments or pulsed-field-gradient NMR diffusion measurements, which provide ensemble-averaged estimates of the radius of gyration and hydrodynamic radius, respectively. Often, these experiments are interpreted using molecular simulations or are used to validate them. We here provide, to our knowledge, a new and efficient method to calculate the hydrodynamic radius of a disordered protein chain from a model of its structural ensemble. In particular, starting from basic concepts in polymer physics, we derive a relationship between the radius of gyration of a structure and its hydrodynamic ratio, which in turn can be used, for example, to compare a simulated ensemble of conformations to NMR diffusion measurements. The relationship may also be valuable when using NMR diffusion measurements to restrain molecular simulations.
Collapse
|
23
|
Schor M, Mey ASJS, MacPhee CE. Analytical methods for structural ensembles and dynamics of intrinsically disordered proteins. Biophys Rev 2016; 8:429-439. [PMID: 28003858 PMCID: PMC5135723 DOI: 10.1007/s12551-016-0234-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/14/2016] [Indexed: 01/02/2023] Open
Abstract
Intrinsically disordered proteins, proteins that do not have a well-defined three-dimensional structure, make up a significant proportion of our proteome and are particularly prevalent in signaling and regulation. Although their importance has been realized for two decades, there is a lack of high-resolution experimental data. Molecular dynamics simulations have been crucial in reaching our current understanding of the dynamical structural ensemble sampled by intrinsically disordered proteins. In this review, we discuss enhanced sampling simulation methods that are particularly suitable to characterize the structural ensemble, along with examples of applications and limitations. The dynamics within the ensemble can be rigorously analyzed using Markov state models. We discuss recent developments that make Markov state modeling a viable approach for studying intrinsically disordered proteins. Finally, we briefly discuss challenges and future directions when applying molecular dynamics simulations to study intrinsically disordered proteins.
Collapse
Affiliation(s)
- Marieke Schor
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | | | - Cait E. MacPhee
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
24
|
Bereau T, Bennett WFD, Pfaendtner J, Deserno M, Karttunen M. Folding and insertion thermodynamics of the transmembrane WALP peptide. J Chem Phys 2016; 143:243127. [PMID: 26723612 DOI: 10.1063/1.4935487] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA)n (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural properties have been illuminated in a large number of experimental and simulation studies. In this combined coarse-grained and atomistic simulation study, we probe the thermodynamics of a single WALP peptide, focusing on both the insertion across the water-membrane interface, as well as folding in both water and a membrane. The potential of mean force characterizing the peptide's insertion into the membrane shows qualitatively similar behavior across peptides and three force fields. However, the Martini force field exhibits a pronounced secondary minimum for an adsorbed interfacial state, which may even become the global minimum-in contrast to both atomistic simulations and the alternative PLUM force field. Even though the two coarse-grained models reproduce the free energy of insertion of individual amino acids side chains, they both underestimate its corresponding value for the full peptide (as compared with atomistic simulations), hinting at cooperative physics beyond the residue level. Folding of WALP in the two environments indicates the helix as the most stable structure, though with different relative stabilities and chain-length dependence.
Collapse
Affiliation(s)
- Tristan Bereau
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - W F Drew Bennett
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Mikko Karttunen
- Department of Mathematics and Computer Science & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MetaForum, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
25
|
Mollica L, Bessa LM, Hanoulle X, Jensen MR, Blackledge M, Schneider R. Binding Mechanisms of Intrinsically Disordered Proteins: Theory, Simulation, and Experiment. Front Mol Biosci 2016; 3:52. [PMID: 27668217 PMCID: PMC5016563 DOI: 10.3389/fmolb.2016.00052] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
In recent years, protein science has been revolutionized by the discovery of intrinsically disordered proteins (IDPs). In contrast to the classical paradigm that a given protein sequence corresponds to a defined structure and an associated function, we now know that proteins can be functional in the absence of a stable three-dimensional structure. In many cases, disordered proteins or protein regions become structured, at least locally, upon interacting with their physiological partners. Many, sometimes conflicting, hypotheses have been put forward regarding the interaction mechanisms of IDPs and the potential advantages of disorder for protein-protein interactions. Whether disorder may increase, as proposed, e.g., in the “fly-casting” hypothesis, or decrease binding rates, increase or decrease binding specificity, or what role pre-formed structure might play in interactions involving IDPs (conformational selection vs. induced fit), are subjects of intense debate. Experimentally, these questions remain difficult to address. Here, we review experimental studies of binding mechanisms of IDPs using NMR spectroscopy and transient kinetic techniques, as well as the underlying theoretical concepts and numerical methods that can be applied to describe these interactions at the atomic level. The available literature suggests that the kinetic and thermodynamic parameters characterizing interactions involving IDPs can vary widely and that there may be no single common mechanism that can explain the different binding modes observed experimentally. Rather, disordered proteins appear to make combined use of features such as pre-formed structure and flexibility, depending on the individual system and the functional context.
Collapse
Affiliation(s)
- Luca Mollica
- CompuNet, Drug Discovery and Development, Istituto Italiano di Tecnologia Genova, Italy
| | - Luiza M Bessa
- NMR & Molecular Interactions, Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle Lille, France
| | - Xavier Hanoulle
- NMR & Molecular Interactions, Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle Lille, France
| | | | - Martin Blackledge
- Institut de Biologie Structurale, CEA, CNRS, Université Grenoble Alpes Grenoble, France
| | - Robert Schneider
- NMR & Molecular Interactions, Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle Lille, France
| |
Collapse
|
26
|
Zerze GH, Miller CM, Granata D, Mittal J. Free energy surface of an intrinsically disordered protein: comparison between temperature replica exchange molecular dynamics and bias-exchange metadynamics. J Chem Theory Comput 2016; 11:2776-82. [PMID: 26575570 DOI: 10.1021/acs.jctc.5b00047] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Intrinsically disordered proteins (IDPs), which are expected to be largely unstructured under physiological conditions, make up a large fraction of eukaryotic proteins. Molecular dynamics simulations have been utilized to probe structural characteristics of these proteins, which are not always easily accessible to experiments. However, exploration of the conformational space by brute force molecular dynamics simulations is often limited by short time scales. Present literature provides a number of enhanced sampling methods to explore protein conformational space in molecular simulations more efficiently. In this work, we present a comparison of two enhanced sampling methods: temperature replica exchange molecular dynamics and bias exchange metadynamics. By investigating both the free energy landscape as a function of pertinent order parameters and the per-residue secondary structures of an IDP, namely, human islet amyloid polypeptide, we found that the two methods yield similar results as expected. We also highlight the practical difference between the two methods by describing the path that we followed to obtain both sets of data.
Collapse
Affiliation(s)
- Gül H Zerze
- Department of Chemical and Biomolecular Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| | - Cayla M Miller
- Department of Chemical and Biomolecular Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| | - Daniele Granata
- Institute of Computational and Molecular Science, Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
27
|
Cino EA, Choy WY, Karttunen M. Characterization of the Free State Ensemble of the CoRNR Box Motif by Molecular Dynamics Simulations. J Phys Chem B 2016; 120:1060-8. [DOI: 10.1021/acs.jpcb.5b11565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Elio A. Cino
- Department
of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Wing-Yiu Choy
- Department
of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Mikko Karttunen
- Department of Mathematics and Computer Science & the Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MetaForum, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
28
|
Mitrea DM, Kriwacki RW. Phase separation in biology; functional organization of a higher order. Cell Commun Signal 2016; 14:1. [PMID: 26727894 PMCID: PMC4700675 DOI: 10.1186/s12964-015-0125-7] [Citation(s) in RCA: 469] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022] Open
Abstract
Inside eukaryotic cells, macromolecules are partitioned into membrane-bounded compartments and, within these, some are further organized into non-membrane-bounded structures termed membrane-less organelles. The latter structures are comprised of heterogeneous mixtures of proteins and nucleic acids and assemble through a phase separation phenomenon similar to polymer condensation. Membrane-less organelles are dynamic structures maintained through multivalent interactions that mediate diverse biological processes, many involved in RNA metabolism. They rapidly exchange components with the cellular milieu and their properties are readily altered in response to environmental cues, often implicating membrane-less organelles in responses to stress signaling. In this review, we discuss: (1) the functional roles of membrane-less organelles, (2) unifying structural and mechanistic principles that underlie their assembly and disassembly, and (3) established and emerging methods used in structural investigations of membrane-less organelles.
Collapse
Affiliation(s)
- Diana M Mitrea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA.
| |
Collapse
|
29
|
Do TN, Choy WY, Karttunen M. Binding of Disordered Peptides to Kelch: Insights from Enhanced Sampling Simulations. J Chem Theory Comput 2015; 12:395-404. [PMID: 26636721 DOI: 10.1021/acs.jctc.5b00868] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Keap1 protein plays an essential role in regulating cellular oxidative stress response and is a crucial binding hub for multiple proteins, several of which are intrinsically disordered proteins (IDP). Among Kelch's IDP binding partners, NRF2 and PTMA are the two most interesting cases. They share a highly similar binding motif; however, NRF2 binds to Kelch with a binding affinity of approximately 100-fold higher than that of PTMA. In this study, we perform an exhaustive sampling composed of 6 μs well-tempered metadynamics and 2 μs unbiased molecular dynamics (MD) simulations aiming at characterizing the binding mechanisms and structural properties of these two peptides. Our results agree with previous experimental observations that PTMA is remarkably more disordered than NRF2 in both the free and bound states. This explains PTMA's lower binding affinity. Our extensive sampling also provides valuable insights into the vast conformational ensembles of both NRF2 and PTMA, supports the hypothesis of coupled folding-binding, and confirms the essential role of linear motifs in IDP binding.
Collapse
Affiliation(s)
- Trang Nhu Do
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo , 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Wing-Yiu Choy
- Department of Biochemistry, University of Western Ontario , 1151 Richmond Street, London, ON, Canada N6A 3K7
| | - Mikko Karttunen
- Department of Mathematics and Computer Science & Institute for Complex Molecular Systems, Eindhoven University of Technology , P.O. Box 513, MetaForum, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
30
|
Ahalawat N, Arora S, Murarka RK. Structural Ensemble of CD4 Cytoplasmic Tail (402–419) Reveals a Nearly Flat Free-Energy Landscape with Local α-Helical Order in Aqueous Solution. J Phys Chem B 2015; 119:11229-42. [DOI: 10.1021/acs.jpcb.5b03092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Navjeet Ahalawat
- Department
of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Simran Arora
- Department
of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Rajesh K. Murarka
- Department
of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
31
|
Papaleo E. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity. Front Mol Biosci 2015; 2:28. [PMID: 26075210 PMCID: PMC4445042 DOI: 10.3389/fmolb.2015.00028] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/08/2015] [Indexed: 12/11/2022] Open
Abstract
In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.
Collapse
Affiliation(s)
- Elena Papaleo
- Structural Biology and Nuclear Magnetic Resonance Laboratory, Department of Biology, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|