1
|
Garashchuk S, Großmann F. Assessing the Accuracy of Quantum Dynamics Performed in the Time-Dependent Basis Representation. J Phys Chem A 2024; 128:8265-8278. [PMID: 39270133 DOI: 10.1021/acs.jpca.4c03657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
A full quantum-mechanical (QM) description of large amplitude nuclear motion, associated with chemical reactions or isomerization of high-dimensional molecular systems, is inherently challenging due to the exponential scaling of the QM complexity with system size. To ameliorate the scaling bottleneck in studies of realistic systems, typically modeled in the configuration space, the nuclear wave functions are represented in terms of time-dependent basis functions. Such bases are expected to give an accurate description with a modest number of basis functions employed, by adapting them to the wave function solving the time-dependent Schrödinger equation. It is not, however, straightforward to estimate the accuracy of the resulting solution: in QM the energy conservation, a convenient such measure for a classical trajectory evolving in a time-independent potential, is not a sufficient criterion of the dynamics' accuracy. In this work, we argue that the expectation value of the Hamiltonian's "variance", quantifying the basis completeness, is a suitable practical measure of the quantum dynamics' accuracy. Illustrations are given for several chemistry-relevant test systems, modeled employing time-independent as well as time-dependent bases, including the coupled and variational coherent states methods and the quantum-trajectory guided adaptable Gaussians (QTAG) as the latter basis type. A novel semilocal definition of the QTAG basis time-evolution for placing the basis functions "in the right place at the right time" is also presented.
Collapse
Affiliation(s)
- Sophya Garashchuk
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Frank Großmann
- Institute for Theoretical Physics, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
2
|
Zeng J, Yao Y. Variational Squeezed Davydov Ansatz for Realistic Chemical Systems with Nonlinear Vibronic Coupling. J Chem Theory Comput 2022; 18:1255-1263. [PMID: 35100509 DOI: 10.1021/acs.jctc.1c00859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical systems normally possess strong nonlinear vibronic couplings at both zero and finite temperature. For the lowest-order quadratic couplings, here, we introduce a squeezing operator into a variational coherent-state-based method, Davydov ansatz, to simulate the quantum dynamics and the respective spectroscopy. Two molecular systems, pyrazine and the 2-pyridone dimer, are taken as calculated model systems, both of which involve nontrivial quadratic vibronic couplings in high- and low-frequency regions, respectively. Upon a comparison with the benchmarks, the method manifests its advantage for nonlinear couplings. The squeezed bases are also proven to be applicable for the finite temperature by adapting with the thermofield dynamics.
Collapse
Affiliation(s)
- Jiarui Zeng
- Department of Physics, South China University of Technology, Guangzhou 510640, China
| | - Yao Yao
- Department of Physics, South China University of Technology, Guangzhou 510640, China.,State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Stolyarov EV, White AJ, Mozyrsky D. Mixed quantum-classical approach to model non-adiabatic electron-nuclear dynamics: Detailed balance and improved surface hopping method. J Chem Phys 2020; 153:074116. [PMID: 32828087 DOI: 10.1063/5.0014284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We develop a density matrix formalism to describe coupled electron-nuclear dynamics. To this end, we introduce an effective Hamiltonian formalism that describes electronic transitions and small (quantum) nuclear fluctuations along a classical trajectory of the nuclei. Using this Hamiltonian, we derive equations of motion for the electronic occupation numbers and for the nuclear coordinates and momenta. We show that, in the limit, when the number of nuclear degrees of freedom coupled to a given electronic transition is sufficiently high (i.e., the strong decoherence limit), the equations of motion for the electronic occupation numbers become Markovian. Furthermore, the transition rates in these (rate) equations are asymmetric with respect to the lower-to-higher energy transitions and vice versa. In thermal equilibrium, such asymmetry corresponds to the detailed balance condition. We also study the equations for the electronic occupations in the non-Markovian regime and develop a surface hopping algorithm based on our formalism. To treat the decoherence effects, we introduce additional "virtual" nuclear wave packets whose interference with the "real" (physical) wave packets leads to the reduction in coupling between the electronic states (i.e., decoherence) as well as to the phase shifts that improve the accuracy of the numerical approach. Remarkably, the same phase shifts lead to the detailed balance condition in the strong decoherence limit.
Collapse
Affiliation(s)
- E V Stolyarov
- Institute of Physics of the National Academy of Sciences of Ukraine, pr. Nauky 46, 03028 Kyiv, Ukraine
| | - A J White
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - D Mozyrsky
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
4
|
Titov E, Humeniuk A, Mitrić R. Comparison of moving and fixed basis sets for nonadiabatic quantum dynamics at conical intersections. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Xie X, Liu Y, Yao Y, Schollwöck U, Liu C, Ma H. Time-dependent density matrix renormalization group quantum dynamics for realistic chemical systems. J Chem Phys 2019; 151:224101. [DOI: 10.1063/1.5125945] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiaoyu Xie
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuyang Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yao Yao
- Department of Physics and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ulrich Schollwöck
- Department of Physics, Arnold Sommerfeld Center for Theoretical Physics (ASC), Fakultät für Physik, Ludwig-Maximilians-Universität München, München D-80333, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, München D-80799, Germany
| | - Chungen Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Garashchuk S, Rassolov V. Quantum Trajectory Dynamics Based on Local Approximations to the Quantum Potential and Force. J Chem Theory Comput 2019; 15:3906-3916. [DOI: 10.1021/acs.jctc.9b00027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sophya Garashchuk
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Vitaly Rassolov
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
7
|
Saller MAC, Kelly A, Richardson JO. On the identity of the identity operator in nonadiabatic linearized semiclassical dynamics. J Chem Phys 2019; 150:071101. [DOI: 10.1063/1.5082596] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Aaron Kelly
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | | |
Collapse
|
8
|
Richings GW, Robertson C, Habershon S. Improved on-the-Fly MCTDH Simulations with Many-Body-Potential Tensor Decomposition and Projection Diabatization. J Chem Theory Comput 2018; 15:857-870. [DOI: 10.1021/acs.jctc.8b00819] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gareth W. Richings
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry, CV4 7AL, U.K
| | - Christopher Robertson
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry, CV4 7AL, U.K
| | - Scott Habershon
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry, CV4 7AL, U.K
| |
Collapse
|
9
|
Yao Y, Sun KW, Luo Z, Ma H. Full Quantum Dynamics Simulation of a Realistic Molecular System Using the Adaptive Time-Dependent Density Matrix Renormalization Group Method. J Phys Chem Lett 2018; 9:413-419. [PMID: 29298068 DOI: 10.1021/acs.jpclett.7b03224] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The accurate theoretical interpretation of ultrafast time-resolved spectroscopy experiments relies on full quantum dynamics simulations for the investigated system, which is nevertheless computationally prohibitive for realistic molecular systems with a large number of electronic and/or vibrational degrees of freedom. In this work, we propose a unitary transformation approach for realistic vibronic Hamiltonians, which can be coped with using the adaptive time-dependent density matrix renormalization group (t-DMRG) method to efficiently evolve the nonadiabatic dynamics of a large molecular system. We demonstrate the accuracy and efficiency of this approach with an example of simulating the exciton dissociation process within an oligothiophene/fullerene heterojunction, indicating that t-DMRG can be a promising method for full quantum dynamics simulation in large chemical systems. Moreover, it is also shown that the proper vibronic features in the ultrafast electronic process can be obtained by simulating the two-dimensional (2D) electronic spectrum by virtue of the high computational efficiency of the t-DMRG method.
Collapse
Affiliation(s)
- Yao Yao
- Department of Physics and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510640, China
| | - Ke-Wei Sun
- School of Science, Hangzhou Dianzi University , Hangzhou 310018, China
| | - Zhen Luo
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Haibo Ma
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| |
Collapse
|
10
|
DeGregorio N, Iyengar SS. Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions. J Chem Theory Comput 2017; 14:30-47. [DOI: 10.1021/acs.jctc.7b00927] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nicole DeGregorio
- Department of Chemistry and
Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Srinivasan S. Iyengar
- Department of Chemistry and
Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
11
|
Affiliation(s)
- Haibo Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zhen Luo
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yao Yao
- Department of Physics, South China University of Technology, Guangzhou, China
| |
Collapse
|
12
|
Saller MAC, Habershon S. Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets. J Chem Theory Comput 2017; 13:3085-3096. [DOI: 10.1021/acs.jctc.7b00021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maximilian A. C. Saller
- Department of Chemistry and
Centre for Scientific Computing, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Scott Habershon
- Department of Chemistry and
Centre for Scientific Computing, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
13
|
Baker LA, Greenough SE, Stavros VG. A Perspective on the Ultrafast Photochemistry of Solution-Phase Sunscreen Molecules. J Phys Chem Lett 2016; 7:4655-4665. [PMID: 27791379 DOI: 10.1021/acs.jpclett.6b02104] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sunscreens are one of the most common ways of providing on-demand additional photoprotection to the skin. Ultrafast transient absorption spectroscopy has recently proven to be an invaluable tool in understanding how the components of commercial sunscreen products display efficient photoprotection. Important examples of how this technique has unravelled the photodynamics of common components are given in this Perspective, and some of the remaining unanswered questions are discussed.
Collapse
Affiliation(s)
- Lewis A Baker
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Simon E Greenough
- Department of Chemistry, University of Sheffield , Sheffield S3 7HF, United Kingdom
| | - Vasilios G Stavros
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
14
|
Alborzpour JP, Tew DP, Habershon S. Efficient and accurate evaluation of potential energy matrix elements for quantum dynamics using Gaussian process regression. J Chem Phys 2016; 145:174112. [DOI: 10.1063/1.4964902] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jonathan P. Alborzpour
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David P. Tew
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Scott Habershon
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
15
|
Heaps CW, Mazziotti DA. Accurate non-adiabatic quantum dynamics from pseudospectral sampling of time-dependent Gaussian basis sets. J Chem Phys 2016. [DOI: 10.1063/1.4959872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Charles W. Heaps
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - David A. Mazziotti
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
16
|
Heaps CW, Mazziotti DA. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces. J Chem Phys 2016; 144:164108. [DOI: 10.1063/1.4946807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Gu B, Garashchuk S. Quantum Dynamics with Gaussian Bases Defined by the Quantum Trajectories. J Phys Chem A 2016; 120:3023-31. [DOI: 10.1021/acs.jpca.5b10029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bing Gu
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sophya Garashchuk
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|