• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4633409)   Today's Articles (2021)   Subscriber (49958)
For: Saha A, Raghavachari K. Analysis of Different Fragmentation Strategies on a Variety of Large Peptides: Implementation of a Low Level of Theory in Fragment-Based Methods Can Be a Crucial Factor. J Chem Theory Comput 2016;11:2012-23. [PMID: 26574406 DOI: 10.1021/ct501045s] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Number Cited by Other Article(s)
1
Yu FCY, Vallejo JLG, Barca GMJ. Automatic molecular fragmentation by evolutionary optimisation. J Cheminform 2024;16:102. [PMID: 39160576 PMCID: PMC11331744 DOI: 10.1186/s13321-024-00896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]  Open
2
Gupta AK, Maier S, Thapa B, Raghavachari K. Toward Post-Hartree-Fock Accuracy for Protein-Ligand Affinities Using the Molecules-in-Molecules Fragmentation-Based Method. J Chem Theory Comput 2024;20:2774-2785. [PMID: 38530869 DOI: 10.1021/acs.jctc.3c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
3
Ricard TC, Zhu X, Iyengar SS. Capturing Weak Interactions in Surface Adsorbate Systems at Coupled Cluster Accuracy: A Graph-Theoretic Molecular Fragmentation Approach Improved through Machine Learning. J Chem Theory Comput 2023. [PMID: 38019639 DOI: 10.1021/acs.jctc.3c00955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
4
Hasan MN, Ray M, Saha A. Landscape of In Silico Tools for Modeling Covalent Modification of Proteins: A Review on Computational Covalent Drug Discovery. J Phys Chem B 2023;127:9663-9684. [PMID: 37921534 DOI: 10.1021/acs.jpcb.3c04710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
5
Olive LN, Dornshuld EV, Schaefer HF, Tschumper GS. Competition between Solvent···Solvent and Solvent···Solute Interactions in the Microhydration of the Tetrafluoroborate Anion, BF4-(H2O)n=1,2,3,4. J Phys Chem A 2023;127:8806-8820. [PMID: 37774368 DOI: 10.1021/acs.jpca.3c04014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
6
Tripathy V, Raghavachari K. Fragment-based models for dissociation of strong acids in water: Electrostatic embedding minimizes the dependence on the fragmentation schemes. J Chem Phys 2023;159:124106. [PMID: 38127382 DOI: 10.1063/5.0164089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/28/2023] [Indexed: 12/23/2023]  Open
7
Bowling PE, Broderick DR, Herbert JM. Fragment-Based Calculations of Enzymatic Thermochemistry Require Dielectric Boundary Conditions. J Phys Chem Lett 2023;14:3826-3834. [PMID: 37061921 DOI: 10.1021/acs.jpclett.3c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
8
França VLB, Amaral JL, Martins YA, Caetano EWS, Brunaldi K, Freire VN. Characterization of the binding interaction between atrazine and human serum albumin: Fluorescence spectroscopy, molecular dynamics and quantum biochemistry. Chem Biol Interact 2022;366:110130. [PMID: 36037875 DOI: 10.1016/j.cbi.2022.110130] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/03/2022]
9
Zhu X, Iyengar SS. Graph Theoretic Molecular Fragmentation for Multidimensional Potential Energy Surfaces Yield an Adaptive and General Transfer Machine Learning Protocol. J Chem Theory Comput 2022;18:5125-5144. [PMID: 35994592 DOI: 10.1021/acs.jctc.1c01241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
10
Maier S, Thapa B, Erickson J, Raghavachari K. Comparative assessment of QM-based and MM-based models for prediction of protein-ligand binding affinity trends. Phys Chem Chem Phys 2022;24:14525-14537. [PMID: 35661842 DOI: 10.1039/d2cp00464j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
11
Decomposition of the interaction energy of several flavonoids with Escherichia coli DNA Gyr using the SAPT (DFT) method: The relation between the interaction energy components, ligand structure, and biological activity. Biochim Biophys Acta Gen Subj 2022;1866:130111. [DOI: 10.1016/j.bbagen.2022.130111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 12/28/2022]
12
Kumar A, DeGregorio N, Iyengar SS. Graph-Theory-Based Molecular Fragmentation for Efficient and Accurate Potential Surface Calculations in Multiple Dimensions. J Chem Theory Comput 2021;17:6671-6690. [PMID: 34623129 DOI: 10.1021/acs.jctc.1c00065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
13
Wang Z, Liu W. iOI: An Iterative Orbital Interaction Approach for Solving the Self-Consistent Field Problem. J Chem Theory Comput 2021;17:4831-4845. [PMID: 34240856 DOI: 10.1021/acs.jctc.1c00445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
14
Zhang JH, Ricard TC, Haycraft C, Iyengar SS. Weighted-Graph-Theoretic Methods for Many-Body Corrections within ONIOM: Smooth AIMD and the Role of High-Order Many-Body Terms. J Chem Theory Comput 2021;17:2672-2690. [PMID: 33891416 DOI: 10.1021/acs.jctc.0c01287] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
15
Tripathy V, Saha A, Raghavachari K. Electrostatically embedded molecules-in-molecules approach and its application to molecular clusters. J Comput Chem 2021;42:719-734. [PMID: 33586802 DOI: 10.1002/jcc.26492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/25/2020] [Accepted: 01/16/2021] [Indexed: 11/06/2022]
16
Ricard TC, Iyengar SS. Efficient and Accurate Approach To Estimate Hybrid Functional and Large Basis-Set Contributions to Condensed-Phase Systems and Molecule–Surface Interactions. J Chem Theory Comput 2020;16:4790-4812. [DOI: 10.1021/acs.jctc.9b01089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
17
Thapa B, Erickson J, Raghavachari K. Quantum Mechanical Investigation of Three-Dimensional Activity Cliffs Using the Molecules-in-Molecules Fragmentation-Based Method. J Chem Inf Model 2020;60:2924-2938. [PMID: 32407081 DOI: 10.1021/acs.jcim.9b01123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
18
Noffke BW, Beckett D, Li LS, Raghavachari K. Aromatic Fragmentation Based on a Ring Overlap Scheme: An Algorithm for Large Polycyclic Aromatic Hydrocarbons Using the Molecules-in-Molecules Fragmentation-Based Method. J Chem Theory Comput 2020;16:2160-2171. [DOI: 10.1021/acs.jctc.9b00566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
19
Liu KY, Herbert JM. Energy-Screened Many-Body Expansion: A Practical Yet Accurate Fragmentation Method for Quantum Chemistry. J Chem Theory Comput 2019;16:475-487. [PMID: 31765559 DOI: 10.1021/acs.jctc.9b01095] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
20
Sadhukhan T, Beckett D, Thapa B, Raghavachari K. Coupling Constants, High Spin, and Broken Symmetry States of Organic Radicals: an Assessment of the Molecules-in-Molecules Fragmentation-Based Method. J Chem Theory Comput 2019;15:5998-6009. [DOI: 10.1021/acs.jctc.9b00563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
21
Herbert JM. Fantasy versus reality in fragment-based quantum chemistry. J Chem Phys 2019;151:170901. [PMID: 31703524 DOI: 10.1063/1.5126216] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]  Open
22
Kumar A, Iyengar SS. Fragment-Based Electronic Structure for Potential Energy Surfaces Using a Superposition of Fragmentation Topologies. J Chem Theory Comput 2019;15:5769-5786. [DOI: 10.1021/acs.jctc.9b00608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
23
Thapa B, Raghavachari K. Energy Decomposition Analysis of Protein–Ligand Interactions Using Molecules-in-Molecules Fragmentation-Based Method. J Chem Inf Model 2019;59:3474-3484. [DOI: 10.1021/acs.jcim.9b00432] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
24
Debnath S, Sengupta A, Jose KVJ, Raghavachari K. Fragment-Based Approaches for Supramolecular Interaction Energies: Applications to Foldamers and Their Complexes with Anions. J Chem Theory Comput 2018;14:6226-6239. [DOI: 10.1021/acs.jctc.8b00525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
25
Ricard TC, Iyengar SS. Efficiently Capturing Weak Interactions in ab Initio Molecular Dynamics with on-the-Fly Basis Set Extrapolation. J Chem Theory Comput 2018;14:5535-5552. [DOI: 10.1021/acs.jctc.8b00803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
26
Thapa B, Beckett D, Erickson J, Raghavachari K. Theoretical Study of Protein–Ligand Interactions Using the Molecules-in-Molecules Fragmentation-Based Method. J Chem Theory Comput 2018;14:5143-5155. [DOI: 10.1021/acs.jctc.8b00531] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
27
Beckett D, El-Baba TJ, Clemmer DE, Raghavachari K. Electronic Energies Are Not Enough: An Ion Mobility-Aided, Quantum Chemical Benchmark Analysis of H+GPGG Conformers. J Chem Theory Comput 2018;14:5406-5418. [DOI: 10.1021/acs.jctc.8b00648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
28
Khire SS, Bartolotti LJ, Gadre SR. Harmonizing accuracy and efficiency: A pragmatic approach to fragmentation of large molecules. J Chem Phys 2018;149:064112. [PMID: 30111143 DOI: 10.1063/1.5036595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]  Open
29
Thapa B, Beckett D, Jovan Jose KV, Raghavachari K. Assessment of Fragmentation Strategies for Large Proteins Using the Multilayer Molecules-in-Molecules Approach. J Chem Theory Comput 2018;14:1383-1394. [DOI: 10.1021/acs.jctc.7b01198] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
30
Liu KY, Herbert JM. Understanding the many-body expansion for large systems. III. Critical role of four-body terms, counterpoise corrections, and cutoffs. J Chem Phys 2017;147:161729. [DOI: 10.1063/1.4986110] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]  Open
31
Zhang D, Liu J, Wang T, Sun L. Why does β-cyclodextrin prefer to bind nucleotides with an adenine base rather than other 2'-deoxyribonucleoside 5'-monophosphates? J Mol Model 2017;23:149. [PMID: 28365823 DOI: 10.1007/s00894-017-3325-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/17/2017] [Indexed: 01/23/2023]
32
Askerka M, Ho J, Batista ER, Gascón JA, Batista VS. The MOD-QM/MM Method: Applications to Studies of Photosystem II and DNA G-Quadruplexes. Methods Enzymol 2016;577:443-81. [PMID: 27498648 PMCID: PMC5304415 DOI: 10.1016/bs.mie.2016.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
33
Yuan D, Shen X, Li W, Li S. Are fragment-based quantum chemistry methods applicable to medium-sized water clusters? Phys Chem Chem Phys 2016;18:16491-500. [DOI: 10.1039/c6cp01931e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
34
Sahu N, Khire SS, Gadre SR. Structures, energetics and vibrational spectra of (H2O)32clusters: a journey from model potentials to correlated theory. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1062150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA