1
|
Pennington H, Birtles D, Shi ZW, Lee J. A Salt Bridge and Disulfide Bond within the Lassa Virus Fusion Domain Are Required for the Initiation of Membrane Fusion. ACS OMEGA 2024; 9:4920-4930. [PMID: 38313535 PMCID: PMC10831964 DOI: 10.1021/acsomega.3c08632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024]
Abstract
Infection with Lassa virus (LASV), an Old-World arenavirus that is endemic to West Africa, causes Lassa fever, a lethal hemorrhagic fever. Delivery of LASV's genetic material into the host cell is an integral component of its lifecycle. This is accomplished via membrane fusion, a process initiated by a hydrophobic sequence known as the fusion domain (FD). The LASV FD (G260-N295) consists of two structurally distinct regions: an N-terminal fusion peptide (FP: G260-T274) and an internal fusion loop (FL: C279-N295) that is connected by a short linker region (P275-Y278). However, the molecular mechanisms behind how the LASV FD initiates fusion remain unclear. Here, we demonstrate that the LASV FD adopts a fusogenic, helical conformation at a pH akin to that of the lysosomal compartment. Additionally, we identified a conserved disulfide bond (C279 and C292) and salt bridge (R282 and E289) within the FL that are pertinent to fusion. We found that the disulfide bond must be present so that the FD can bind to the lipid bilayer and subsequently initiate fusion. Moreover, the salt bridge is essential for the secondary structure of the FD such that it can associate with the lipid bilayer in the proper orientation for full functionality. In conclusion, our findings indicate that the LASV FD preferentially initiates fusion at a pH akin to that of the lysosome through a mechanism that requires a conserved salt bridge and, to a lesser extent, an intact disulfide bond within the internal FL.
Collapse
Affiliation(s)
- Hallie
N. Pennington
- Department of Chemistry and
Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, Maryland 20740, United States
| | - Daniel Birtles
- Department of Chemistry and
Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, Maryland 20740, United States
| | - Zoe W. Shi
- Department of Chemistry and
Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, Maryland 20740, United States
| | - Jinwoo Lee
- Department of Chemistry and
Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, Maryland 20740, United States
| |
Collapse
|
2
|
Tao P, Xiao Y. Using the generalized Born surface area model to fold proteins yields more effective sampling while qualitatively preserving the folding landscape. Phys Rev E 2020; 101:062417. [PMID: 32688556 DOI: 10.1103/physreve.101.062417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/01/2020] [Indexed: 11/07/2022]
Abstract
Protein folding is a long-standing problem and has been widely investigated using molecular dynamics simulations with both explicit and implicit solvents. However, to what extent the folding mechanisms observed in two water models agree remains an open question. In this study, ab initio folding simulations of ten proteins with different topologies are performed in two combinations of force fields and water models (ff14SB+TIP3P and ff14SBonlysc+GB-Neck2). Interestingly, the latter combination not only folds more proteins but also provides a better balance of different secondary structures than the former in the same number of integration time steps. More importantly, the folding pathways found in the two types of simulations are conserved and they may only differ in their weights. Our results suggest that simulations with an implicit solvent may also be suitable for the investigation of the mechanism of protein folding.
Collapse
Affiliation(s)
- Peng Tao
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Xiao
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
3
|
Kang W, Jiang F, Wu YD, Wales DJ. Multifunnel Energy Landscapes for Phosphorylated Translation Repressor 4E-BP2 and Its Mutants. J Chem Theory Comput 2019; 16:800-810. [PMID: 31774674 PMCID: PMC7462351 DOI: 10.1021/acs.jctc.9b01042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Upon phosphorylation of specific sites, eukaryotic translation initiation factor 4E (eIF4E) binding protein 2 (4E-BP2) undergoes a fundamental structural transformation from a disordered state to a four-stranded β-sheet, leading to decreased binding affinity for its partner. This change reflects the significant effects of phosphate groups on the underlying energy landscapes of proteins. In this study, we combine high-temperature molecular dynamics simulations and discrete path sampling to construct energy landscapes for a doubly phosphorylated 4E-BP218-62 and two mutants (a single site mutant D33K and a double mutant Y54A/L59A). The potential and free energy landscapes for these three systems are multifunneled with the folded state and several alternative states lying close in energy, suggesting perhaps a multifunneled and multifunctional protein. Hydrogen bonds between phosphate groups and other residues not only stabilize these low-lying conformations to different extents but also play an important role in interstate transitions. From the energy landscape perspective, our results explain some interesting experimental observations, including the low stability of doubly phosphorylated 4E-BP2 and its moderate binding to eIF4E and the inability of phosphorylated Y54A/L59A to fold.
Collapse
Affiliation(s)
- Wei Kang
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China.,College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China.,Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Fan Jiang
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Yun-Dong Wu
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China.,College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - David J Wales
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| |
Collapse
|
4
|
Kilburg D, Gallicchio E. Assessment of a Single Decoupling Alchemical Approach for the Calculation of the Absolute Binding Free Energies of Protein-Peptide Complexes. Front Mol Biosci 2018; 5:22. [PMID: 29568737 PMCID: PMC5852065 DOI: 10.3389/fmolb.2018.00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/21/2018] [Indexed: 01/24/2023] Open
Abstract
The computational modeling of peptide inhibitors to target protein-protein binding interfaces is growing in interest as these are often too large, too shallow, and too feature-less for conventional small molecule compounds. Here, we present a rare successful application of an alchemical binding free energy method for the calculation of converged absolute binding free energies of a series of protein-peptide complexes. Specifically, we report the binding free energies of a series of cyclic peptides derived from the LEDGF/p75 protein to the integrase receptor of the HIV1 virus. The simulations recapitulate the effect of mutations relative to the wild-type binding motif of LEDGF/p75, providing structural, energetic and dynamical interpretations of the observed trends. The equilibration and convergence of the calculations are carefully analyzed. Convergence is aided by the adoption of a single-decoupling alchemical approach with implicit solvation, which circumvents the convergence difficulties of conventional double-decoupling protocols. We hereby present the single-decoupling methodology and critically evaluate its advantages and limitations. We also discuss some of the challenges and potential pitfalls of binding free energy calculations for complex molecular systems which have generally limited their applicability to the quantitative study of protein-peptide binding equilibria.
Collapse
Affiliation(s)
- Denise Kilburg
- Department of Chemistry, Brooklyn College, Brooklyn, NY, United States.,Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, United States
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, Brooklyn, NY, United States.,Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Ph.D. Program in Biochemistry, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
5
|
Solis-Calero C, Zanatta G, Pessoa CDÓ, Carvalho HF, Freire VN. Explaining urokinase type plasminogen activator inhibition by amino-5-hydroxybenzimidazole and two naphthamidine-based compounds through quantum biochemistry. Phys Chem Chem Phys 2018; 20:22818-22830. [DOI: 10.1039/c8cp04315a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Urokinase plasminogen activator (uPA) is a biomarker and therapeutic target for several cancer types whose inhibition has been shown to slow tumor growth and metastasis.
Collapse
Affiliation(s)
- Christian Solis-Calero
- Department of Structural and Functional Biology
- State University of Campinas
- 13083-863 Campinas
- Brazil
| | - Geancarlo Zanatta
- Department of Physics
- Federal University of Ceará
- 60455-760 Fortaleza
- Brazil
| | - Claudia do Ó Pessoa
- Department of Physiology and Pharmacology
- Federal University of Ceará
- 60430-270 Fortaleza
- Brazil
| | - Hernandes F. Carvalho
- Department of Structural and Functional Biology
- State University of Campinas
- 13083-863 Campinas
- Brazil
| | - Valder N. Freire
- Department of Physics
- Federal University of Ceará
- 60455-760 Fortaleza
- Brazil
| |
Collapse
|
6
|
Yue Z, Chen W, Zgurskaya HI, Shen J. Constant pH Molecular Dynamics Reveals How Proton Release Drives the Conformational Transition of a Transmembrane Efflux Pump. J Chem Theory Comput 2017; 13:6405-6414. [PMID: 29117682 DOI: 10.1021/acs.jctc.7b00874] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AcrB is the inner-membrane transporter of an E. coli AcrAB-TolC tripartite efflux complex, which plays a major role in the intrinsic resistance to clinically important antibiotics. AcrB pumps a wide range of toxic substrates by utilizing the proton gradient between periplasm and cytoplasm. Crystal structures of AcrB revealed three distinct conformational states of the transport cycle, substrate access, binding, and extrusion or loose (L), tight (T), and open (O) states. However, the specific residue(s) responsible for proton binding/release and the mechanism of proton-coupled conformational cycling remain controversial. Here we use the newly developed membrane hybrid-solvent continuous constant pH molecular dynamics technique to explore the protonation states and conformational dynamics of the transmembrane domain of AcrB. Simulations show that both Asp407 and Asp408 are deprotonated in the L/T states, while only Asp408 is protonated in the O state. Remarkably, release of a proton from Asp408 in the O state results in large conformational changes, such as the lateral and vertical movement of transmembrane helices as well as the salt-bridge formation between Asp408 and Lys940 and other side chain rearrangements among essential residues. Consistent with the crystallographic differences between the O and L protomers, simulations offer dynamic details of how proton release drives the O-to-L transition in AcrB and address the controversy regarding the proton/drug stoichiometry. This work offers a significant step toward characterizing the complete cycle of proton-coupled drug transport in AcrB and further validates the membrane hybrid-solvent CpHMD technique for studies of proton-coupled transmembrane proteins which are currently poorly understood.
Collapse
Affiliation(s)
- Zhi Yue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy , Baltimore, Maryland 21201, United States
| | | | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy , Baltimore, Maryland 21201, United States
| |
Collapse
|
7
|
Chen J. Effective Approximation of Molecular Volume Using Atom-Centered Dielectric Functions in Generalized Born Models. J Chem Theory Comput 2015; 6:2790-803. [PMID: 26616080 DOI: 10.1021/ct100251y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The generalized Born (GB) theory is a prime choice for implicit treatment of solvent that provides a favorable balance between efficiency and accuracy for reliable simulation of protein conformational equilibria. In GB, the dielectric boundary is a key physical property that needs to be properly described. While it is widely accepted that the molecular surface (MS) should provide the most physical description, most existing GB models are based on van der Waals (vdW)-like surfaces for computational simplicity and efficiency. A simple and effective approximation to molecular volume is explored here using atom-centered dielectric functions within the context of a generalized Born model with simple switching (GBSW). The new model, termed GBSW/MS2, is as efficient as the original vdW-like-surface-based GBSW model, but is able to reproduce the Born radii calculated from the "exact" Poisson-Boltzmann theory with a correlation of 0.95. More importantly, examination of the potentials of mean force of hydrogen-bonding and charge-charge interactions demonstrates that GBSW/MS2 correctly captures the first desolvation peaks, a key signature of true MS. Physical parameters including atomic input radii and peptide backbone torsion were subsequently optimized on the basis of solvation free energies of model compounds, potentials of mean force of their interactions, and conformational equilibria of a set of helical and β-hairpin model peptides. The resulting GBSW/MS2 protein force field reasonably recapitulates the structures and stabilities of these model peptides. Several remaining limitations and possible future developments are also discussed.
Collapse
Affiliation(s)
- Jianhan Chen
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
8
|
Cumberworth A, Bui JM, Gsponer J. Free energies of solvation in the context of protein folding: Implications for implicit and explicit solvent models. J Comput Chem 2015; 37:629-40. [DOI: 10.1002/jcc.24235] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/25/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Jörg Gsponer
- Center for High-Throughput Biology, UBC; Vancouver Canada
| |
Collapse
|
9
|
Sroczyński D, Malinowski Z, Szcześniak AK, Pakulska W. New 1(2H)-phthalazinone derivatives as potent nonpeptidic HIV-1 protease inhibitors: molecular docking studies, molecular dynamics simulation, oral bioavailability and ADME prediction. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1067808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Wickstrom L, Deng N, He P, Mentes A, Nguyen C, Gilson MK, Kurtzman T, Gallicchio E, Levy RM. Parameterization of an effective potential for protein-ligand binding from host-guest affinity data. J Mol Recognit 2015; 29:10-21. [PMID: 26256816 DOI: 10.1002/jmr.2489] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/06/2015] [Accepted: 06/07/2015] [Indexed: 12/13/2022]
Abstract
Force field accuracy is still one of the "stalemates" in biomolecular modeling. Model systems with high quality experimental data are valuable instruments for the validation and improvement of effective potentials. With respect to protein-ligand binding, organic host-guest complexes have long served as models for both experimental and computational studies because of the abundance of binding affinity data available for such systems. Binding affinity data collected for cyclodextrin (CD) inclusion complexes, a popular model for molecular recognition, is potentially a more reliable resource for tuning energy parameters than hydration free energy measurements. Convergence of binding free energy calculations on CD host-guest systems can also be obtained rapidly, thus offering the opportunity to assess the robustness of these parameters. In this work, we demonstrate how implicit solvent parameters can be developed using binding affinity experimental data and the binding energy distribution analysis method (BEDAM) and validated using the Grid Inhomogeneous Solvation Theory analysis. These new solvation parameters were used to study protein-ligand binding in two drug targets against the HIV-1 virus and improved the agreement between the calculated and the experimental binding affinities. This work illustrates how benchmark sets of high quality experimental binding affinity data and physics-based binding free energy models can be used to evaluate and optimize force fields for protein-ligand systems. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lauren Wickstrom
- Borough of Manhattan Community College, Department of Science, The City University of New York, New York, NY, 10007, USA
| | - Nanjie Deng
- Center for Biophysics and Computational Biology/ICMS, Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Peng He
- Center for Biophysics and Computational Biology/ICMS, Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Ahmet Mentes
- Center for Biophysics and Computational Biology/ICMS, Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Crystal Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093-0736, USA
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093-0736, USA
| | - Tom Kurtzman
- Department of Chemistry, Lehman College, The City University of New York, Bronx, NY, 10468, USA
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
| | - Ronald M Levy
- Center for Biophysics and Computational Biology/ICMS, Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| |
Collapse
|
11
|
Romanowska J, Kokh DB, Fuller JC, Wade RC. Computational Approaches for Studying Drug Binding Kinetics. THERMODYNAMICS AND KINETICS OF DRUG BINDING 2015. [DOI: 10.1002/9783527673025.ch11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Xue Y, Yuwen T, Zhu F, Skrynnikov NR. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos. Biochemistry 2014; 53:6473-95. [PMID: 25207671 DOI: 10.1021/bi500904f] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Intrinsically disordered proteins (IDPs) often rely on electrostatic interactions to bind their structured targets. To obtain insight into the mechanism of formation of the electrostatic encounter complex, we investigated the binding of the peptide Sos (PPPVPPRRRR), which serves as a minimal model for an IDP, to the c-Crk N-terminal SH3 domain. Initially, we measured ¹⁵N relaxation rates at two magnetic field strengths and determined the binding shifts for the complex of Sos with wild-type SH3. We have also recorded a 3 μs molecular dynamics (MD) trajectory of this complex using the Amber ff99SB*-ILDN force field. The comparison of the experimental and simulated data shows that MD simulation consistently overestimates the strength of salt bridge interactions at the binding interface. The series of simulations using other advanced force fields also failed to produce any satisfactory results. To address this issue, we have devised an empirical correction to the Amber ff99SB*-ILDN force field whereby the Lennard-Jones equilibrium distance for the nitrogen-oxygen pair across the Arg-to-Asp and Arg-to-Glu salt bridges has been increased by 3%. Implementing this correction resulted in a good agreement between the simulations and the experiment. Adjusting the strength of salt bridge interactions removed a certain amount of strain contained in the original MD model, thus improving the binding of the hydrophobic N-terminal portion of the peptide. The arginine-rich C-terminal portion of the peptide, freed from the effect of the overstabilized salt bridges, was found to interconvert more rapidly between its multiple conformational states. The modified MD protocol has also been successfully used to simulate the entire binding process. In doing so, the peptide was initially placed high above the protein surface. It then arrived at the correct bound pose within ∼2 Å of the crystallographic coordinates. This simulation allowed us to analyze the details of the dynamic binding intermediate, i.e., the electrostatic encounter complex. However, an experimental characterization of this transient, weakly populated state remains out of reach. To overcome this problem, we designed the double mutant of c-Crk N-SH3 in which mutations Y186L and W169F abrogate tight Sos binding and shift the equilibrium toward the intermediate state resembling the electrostatic encounter complex. The results of the combined NMR and MD study of this engineered system will be reported in the next part of this paper.
Collapse
Affiliation(s)
- Yi Xue
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | | | | | | |
Collapse
|
13
|
Temelso B, Alser KA, Gauthier A, Palmer AK, Shields GC. Structural Analysis of α-Fetoprotein (AFP)-like Peptides with Anti-Breast-Cancer Properties. J Phys Chem B 2014; 118:4514-26. [DOI: 10.1021/jp500017b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Berhane Temelso
- Dean’s
Office, College of Arts and Sciences, and Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
- Dean’s Office, College of Science and Technology, and Department of Chemistry & Physics, Armstrong Atlantic State University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| | - Katherine A. Alser
- Dean’s
Office, College of Arts and Sciences, and Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Arianne Gauthier
- Dean’s Office, College of Science and Technology, and Department of Chemistry & Physics, Armstrong Atlantic State University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| | - Amber Kay Palmer
- Dean’s Office, College of Science and Technology, and Department of Chemistry & Physics, Armstrong Atlantic State University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| | - George C. Shields
- Dean’s
Office, College of Arts and Sciences, and Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
- Dean’s Office, College of Science and Technology, and Department of Chemistry & Physics, Armstrong Atlantic State University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| |
Collapse
|
14
|
Jaeqx S, Oomens J, Rijs AM. Gas-phase salt bridge interactions between glutamic acid and arginine. Phys Chem Chem Phys 2013; 15:16341-52. [PMID: 23999680 DOI: 10.1039/c3cp52508b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The gas-phase side chain-side chain (SC-SC) interaction and possible proton transfer between glutamic acid (Glu) and arginine (Arg) residues are studied under low-temperature conditions in an overall neutral peptide. Conformation-specific IR spectra, obtained with the free electron laser FELIX, in combination with density functional theory (DFT) calculations, provide insight into the occurrence of intramolecular proton transfer and detailed information on the conformational preferences of the peptides Z-Glu-Alan-Arg-NHMe (n = 0,1,3). Low-energy structures are obtained using molecular dynamics simulations via the simulated annealing approach, resulting in three types of SC-SC interactions, in particular two types of pair-wise interactions and one bifurcated interaction. These low-energy structures are optimized and frequency calculations are performed using the B3LYP functional, for structural analysis, and the M05-2x functional, for relative energies, employing the 6-311+G(d,p) basis set. Comparison of experimental and computed spectra suggests that only a single conformation was present for each of the three peptides. Despite the increasing spacing between the Glu and Arg residues, the peptides have several types of interactions in common, in particular specific SC-SC and dispersion interactions between the Arg side chain and the phenyl ring of the Z-cap. Comparison with previous experiments on Ac-Glu-Ala-Phe-Ala-Arg-NHMe as well as molecular dynamics simulations further suggest that the pairwise interaction observed here is indeed energetically most favorable for short peptide sequences.
Collapse
Affiliation(s)
- Sander Jaeqx
- Radboud University Nijmegen, Institute for Molecules and Materials, FELIX Facility, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | | | | |
Collapse
|
15
|
Atzori A, Baker AE, Chiu M, Bryce RA, Bonnet P. Effect of sequence and stereochemistry reversal on p53 peptide mimicry. PLoS One 2013; 8:e68723. [PMID: 23922660 PMCID: PMC3726663 DOI: 10.1371/journal.pone.0068723] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 06/01/2013] [Indexed: 11/18/2022] Open
Abstract
Peptidomimetics effective in modulating protein-protein interactions and resistant to proteolysis have potential in therapeutic applications. An appealing yet underperforming peptidomimetic strategy is to employ D-amino acids and reversed sequences to mimic a lead peptide conformation, either separately or as the combined retro-inverso peptide. In this work, we examine the conformations of inverse, reverse and retro-inverso peptides of p53(15-29) using implicit solvent molecular dynamics simulation and circular dichroism spectroscopy. In order to obtain converged ensembles for the peptides, we find enhanced sampling is required via the replica exchange molecular dynamics method. From these replica exchange simulations, the D-peptide analogues of p53(15-29) result in a predominantly left-handed helical conformation. When the parent sequence is reversed sequence as either the L-peptide and D-peptide, these peptides display a greater helical propensity, feature reflected by NMR and CD studies in TFE/water solvent. The simulations also indicate that, while approximately similar orientations of the side-chains are possible by the peptide analogues, their ability to mimic the parent peptide is severely compromised by backbone orientation (for D-amino acids) and side-chain orientation (for reversed sequences). A retro-inverso peptide is disadvantaged as a mimic in both aspects, and further chemical modification is required to enable this concept to be used fruitfully in peptidomimetic design. The replica exchange molecular simulation approach adopted here, with its ability to provide detailed conformational insights into modified peptides, has potential as a tool to guide structure-based design of new improved peptidomimetics.
Collapse
Affiliation(s)
- Alessio Atzori
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United Kingdom
| | - Audrey E. Baker
- Biologics Research, Janssen Research and Development Inc., Radnor, Pennsylvania, United States of America
| | - Mark Chiu
- Biologics Research, Janssen Research and Development Inc., Radnor, Pennsylvania, United States of America
| | - Richard A. Bryce
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail: (RB); (PB)
| | - Pascal Bonnet
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Beerse, Belgium
- * E-mail: (RB); (PB)
| |
Collapse
|
16
|
Nguyen H, Roe DR, Simmerling C. Improved Generalized Born Solvent Model Parameters for Protein Simulations. J Chem Theory Comput 2013; 9:2020-2034. [PMID: 25788871 DOI: 10.1021/ct3010485] [Citation(s) in RCA: 348] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The generalized Born (GB) model is one of the fastest implicit solvent models and it has become widely adopted for Molecular Dynamics (MD) simulations. This speed comes with tradeoffs, and many reports in the literature have pointed out weaknesses with GB models. Because the quality of a GB model is heavily affected by empirical parameters used in calculating solvation energy, in this work we have refit these parameters for GB-Neck, a recently developed GB model, in order to improve the accuracy of both the solvation energy and effective radii calculations. The data sets used for fitting are significantly larger than those used in the past. Comparing to other pairwise GB models like GB-OBC and the original GB-Neck, the new GB model (GB-Neck2) has better agreement to Poisson-Boltzmann (PB) in terms of reproducing solvation energies for a variety of systems ranging from peptides to proteins. Secondary structure preferences are also in much better agreement with those obtained from explicit solvent MD simulations. We also obtain near-quantitative reproduction of experimental structure and thermal stability profiles for several model peptides with varying secondary structure motifs. Extension to non-protein systems will be explored in the future.
Collapse
Affiliation(s)
- Hai Nguyen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794 ; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794
| | - Daniel R Roe
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794 ; Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112
| | - Carlos Simmerling
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794 ; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
17
|
Zeng J, Duan L, Zhang JZ, Mei Y. A numerically stable restrained electrostatic potential charge fitting method. J Comput Chem 2012; 34:847-53. [DOI: 10.1002/jcc.23208] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/08/2012] [Accepted: 11/28/2012] [Indexed: 12/11/2022]
|
18
|
Peterson TA, Benallie RL, Bradford AM, Pias SC, Yazzie J, Lor SN, Haulsee ZM, Park CK, Johnson DL, Rohrschneider LR, Spuches A, Lyons BA. Dimerization in the Grb7 protein. J Mol Recognit 2012; 25:427-34. [PMID: 22811067 DOI: 10.1002/jmr.2205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In previous studies, we showed that the tyrosine phosphorylation state of growth factor receptor-bound protein 7 (Grb7) affects its ability to bind to the transcription regulator FHL2 and the cortactin-interacting protein, human HS-1-associated protein-1. Here, we present results describing the importance of dimerization in the Grb7-Src homology 2 (SH2) domain in terms of its structural integrity and the ability to bind phosphorylated tyrosine peptide ligands. A tyrosine phosphorylation-mimic mutant (Y80E-Grb7-SH2) is largely dimerization deficient and binds a tyrosine-phosphorylated peptide representative of the receptor tyrosine kinase (RTK) erbB2 with differing thermodynamic characteristics than the wild-type SH2 domain. Another dimerization-deficient mutant (F99R-Grb7-SH2) binds the phosphorylated erbB2 peptide with similarly changed thermodynamic characteristics. Both Y80E-Grb7-SH2 and F99R-Grb7-SH2 are structured by circular dichroism measurements but show reduced thermal stability relative to the wild type-Grb7-SH2 domain as measured by circular dichroism and nuclear magnetic resonance. It is well known that the dimerization state of RTKs (as binding partners to adaptor proteins such as Grb7) plays an important role in their regulation. Here, we propose the phosphorylation state of Grb7-SH2 domain tyrosine residues could control Grb7 dimerization, and dimerization may be an important regulatory step in Grb7 binding to RTKs such as erbB2. In this manner, additional dimerization-dependent regulation could occur downstream of the membrane-bound kinase in RTK-mediated signaling pathways.
Collapse
Affiliation(s)
- Tabitha A Peterson
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ren P, Chun J, Thomas DG, Schnieders MJ, Marucho M, Zhang J, Baker NA. Biomolecular electrostatics and solvation: a computational perspective. Q Rev Biophys 2012; 45:427-91. [PMID: 23217364 PMCID: PMC3533255 DOI: 10.1017/s003358351200011x] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view toward describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g. solvent structure, polarization, ion binding, and non-polar behavior) in order to provide a background to understand the different types of solvation models.
Collapse
Affiliation(s)
- Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin
| | | | | | | | - Marcelo Marucho
- Department of Physics and Astronomy, The University of Texas at San Antonio
| | - Jiajing Zhang
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Nathan A. Baker
- To whom correspondence should be addressed. Pacific Northwest National Laboratory, PO Box 999, MSID K7-29, Richland, WA 99352. Phone: +1-509-375-3997,
| |
Collapse
|
20
|
Shao Q, Shi J, Zhu W. Enhanced sampling molecular dynamics simulation captures experimentally suggested intermediate and unfolded states in the folding pathway of Trp-cage miniprotein. J Chem Phys 2012; 137:125103. [DOI: 10.1063/1.4754656] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Chaudhury S, Olson MA, Tawa G, Wallqvist A, Lee MS. Efficient Conformational Sampling in Explicit Solvent Using a Hybrid Replica Exchange Molecular Dynamics Method. J Chem Theory Comput 2012; 8:677-87. [DOI: 10.1021/ct200529b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sidhartha Chaudhury
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Mark A. Olson
- Department of Cell Biology and Biochemistry, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | - Gregory Tawa
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Anders Wallqvist
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Michael S. Lee
- Computational Sciences and Engineering Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland
| |
Collapse
|
22
|
Onufriev AV, Sigalov G. A strategy for reducing gross errors in the generalized Born models of implicit solvation. J Chem Phys 2011; 134:164104. [PMID: 21528947 DOI: 10.1063/1.3578686] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The "canonical" generalized Born (GB) formula [C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson, J. Am. Chem. Soc. 112, 6127 (1990)] is known to provide accurate estimates for total electrostatic solvation energies ΔG(el) of biomolecules if the corresponding effective Born radii are accurate. Here we show that even if the effective Born radii are perfectly accurate, the canonical formula still exhibits significant number of gross errors (errors larger than 2k(B)T relative to numerical Poisson equation reference) in pairwise interactions between individual atomic charges. Analysis of exact analytical solutions of the Poisson equation (PE) for several idealized nonspherical geometries reveals two distinct spatial modes of the PE solution; these modes are also found in realistic biomolecular shapes. The canonical GB Green function misses one of two modes seen in the exact PE solution, which explains the observed gross errors. To address the problem and reduce gross errors of the GB formalism, we have used exact PE solutions for idealized nonspherical geometries to suggest an alternative analytical Green function to replace the canonical GB formula. The proposed functional form is mathematically nearly as simple as the original, but depends not only on the effective Born radii but also on their gradients, which allows for better representation of details of nonspherical molecular shapes. In particular, the proposed functional form captures both modes of the PE solution seen in nonspherical geometries. Tests on realistic biomolecular structures ranging from small peptides to medium size proteins show that the proposed functional form reduces gross pairwise errors in all cases, with the amount of reduction varying from more than an order of magnitude for small structures to a factor of 2 for the largest ones.
Collapse
Affiliation(s)
- Alexey V Onufriev
- Department of Computer Science, 2050 Torgersen Hall, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | | |
Collapse
|
23
|
Wallace JA, Shen JK. Continuous Constant pH Molecular Dynamics in Explicit Solvent with pH-Based Replica Exchange. J Chem Theory Comput 2011; 7:2617-29. [PMID: 26606635 DOI: 10.1021/ct200146j] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A computational tool that offers accurate pKa values and atomically detailed knowledge of protonation-coupled conformational dynamics is valuable for elucidating mechanisms of energy transduction processes in biology, such as enzyme catalysis and electron transfer as well as proton and drug transport. Toward this goal we present a new technique of embedding continuous constant pH molecular dynamics within an explicit-solvent representation. In this technique we make use of the efficiency of the generalized-Born (GB) implicit-solvent model for estimating the free energy of protein solvation while propagating conformational dynamics using the more accurate explicit-solvent model. Also, we employ a pH-based replica exchange scheme to significantly enhance both protonation and conformational state sampling. Benchmark data of five proteins including HP36, NTL9, BBL, HEWL, and SNase yield an average absolute deviation of 0.53 and a root mean squared deviation of 0.74 from experimental data. This level of accuracy is obtained with 1 ns simulations per replica. Detailed analysis reveals that explicit-solvent sampling provides increased accuracy relative to the previous GB-based method by preserving the native structure, providing a more realistic description of conformational flexibility of the hydrophobic cluster, and correctly modeling solvent mediated ion-pair interactions. Thus, we anticipate that the new technique will emerge as a practical tool to capture ionization equilibria while enabling an intimate view of ionization coupled conformational dynamics that is difficult to delineate with experimental techniques alone.
Collapse
Affiliation(s)
- Jason A Wallace
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Jana K Shen
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| |
Collapse
|
24
|
Abstract
We have developed a treecode-based O(N log N) algorithm for the generalized Born (GB) implicit solvation model. Our treecode-based GB (tGB) is based on the GBr6 [J. Phys. Chem. B 111, 3055 (2007)], an analytical GB method with a pairwise descreening approximation for the R6 volume integral expression. The algorithm is composed of a cutoff scheme for the effective Born radii calculation, and a treecode implementation of the GB charge-charge pair interactions. Test results demonstrate that the tGB algorithm can reproduce the vdW surface based Poisson solvation energy with an average relative error less than 0.6% while providing an almost linear-scaling calculation for a representative set of 25 proteins with different sizes (from 2815 atoms to 65456 atoms). For a typical system of 10k atoms, the tGB calculation is three times faster than the direct summation as implemented in the original GBr6 model. Thus, our tGB method provides an efficient way for performing implicit solvent GB simulations of larger biomolecular systems at longer time scales.
Collapse
Affiliation(s)
- Zhenli Xu
- Department of Mathematics, and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | |
Collapse
|
25
|
Wood GPF, Rothlisberger U. Secondary Structure Assignment of Amyloid-β Peptide Using Chemical Shifts. J Chem Theory Comput 2011; 7:1552-63. [PMID: 26610144 DOI: 10.1021/ct200156e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The distinct conformational dependence of chemical shifts caused by α-helices and β-sheets renders NMR chemical shift analysis a powerful tool for the structural determination of proteins. However, the time scale of NMR experiments can make a secondary structure assignment of highly flexible peptides or proteins, which may be converting between conformational substates, problematic. For instance the amyloid-β monomer, according to NMR chemical shifts, adopts a predominately random coil structure in aqueous solution (with <3% α-helical content). Molecular dynamics simulations, on the other hand, suggest that α-helical content can be significant (10-25%). In this paper, we explore the possible reasons for this discrepancy and show that the different results from experiments and theory are not necessarily mutually exclusive but may reflect a general problem of secondary structure assignment of conformationally flexible biomolecules.
Collapse
Affiliation(s)
- Geoffrey P F Wood
- Laboratory of Computational Chemistry and Biochemistry, BCH 4107 EPF Lausanne, CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, BCH 4107 EPF Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
26
|
Yamazaki T, Kovalenko A. Spatial Decomposition of Solvation Free Energy Based on the 3D Integral Equation Theory of Molecular Liquid: Application to Miniproteins. J Phys Chem B 2010; 115:310-8. [DOI: 10.1021/jp1082938] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takeshi Yamazaki
- National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada, and Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, T6G 2G8, Canada
| | - Andriy Kovalenko
- National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada, and Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, T6G 2G8, Canada
| |
Collapse
|
27
|
Shang Y, Nguyen H, Wickstrom L, Okur A, Simmerling C. Improving the description of salt bridge strength and geometry in a Generalized Born model. J Mol Graph Model 2010; 29:676-84. [PMID: 21168352 DOI: 10.1016/j.jmgm.2010.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
The Generalized Born (GB) solvent model is widely used in molecular dynamics simulations because it can be less computationally expensive and it samples conformational changes more efficiently than explicit solvent simulations. Meanwhile, great efforts have been made in the past to improve its precision and accuracy. Previous studies have shown that reducing intrinsic GB radii of some hydrogen atoms would improve AMBER GB-HCT solvent model's accuracy on salt bridges. Here we present our finding that similar correction also shows dramatic improvement for the AMBER GB-OBC solvent model. Potential of mean force and cluster analysis for small peptide replica exchange molecular dynamics simulations suggested that new radii GB simulation with ff99SB/GB-OBC corrected salt bridge strength and achieved significantly higher geometry similarity with TIP3P simulation. Improved performance in 60 ns HIV-1 protease GB simulation further validated this approach for large systems.
Collapse
Affiliation(s)
- Yi Shang
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | | | | | | |
Collapse
|
28
|
Yeh IC, Wallqvist A. Structure and dynamics of end-to-end loop formation of the penta-peptide Cys-Ala-Gly-Gln-Trp in implicit solvents. J Phys Chem B 2009; 113:12382-90. [PMID: 19685925 DOI: 10.1021/jp904064z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate the effects of implicit solvents on peptide structure and dynamics, we performed extensive molecular dynamics simulations on the penta-peptide Cys-Ala-Gly-Gln-Trp. Two different implicit solvent models based on the CHARMM22 all-atom force field were used. Structural properties of the peptide such as distributions of end-to-end distances and dihedral angles obtained from molecular dynamics simulations with implicit solvent models were in a good agreement with those obtained from a previous explicit solvent simulation using the same force field. Representative structures observed in explicit solvent were sampled by implicit solvent models but with different relative probabilities. However, we observed significant differences in dynamical properties in explicit and implicit solvent models when we used traditional methods for the temperature control, such as Nose-Hoover or Berendsen thermostats. The explicitly solvated peptide displayed the slowest dynamics in both end-to-end contact formation and intrinsic diffusive motion of end-to-end distances. A closer agreement between implicit and explicit solvated peptide dynamics was observed when Langevin dynamics with a friction coefficient of 10 ps(-1) was used to maintain the temperature of the systems.
Collapse
Affiliation(s)
- In-Chul Yeh
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702-5012, USA.
| | | |
Collapse
|
29
|
Abstract
The AGBNP2 implicit solvent model, an evolution of the Analytical Generalized Born plus Non-Polar (AGBNP) model we have previously reported, is presented with the aim of modeling hydration effects beyond those described by conventional continuum dielectric representations. A new empirical hydration free energy component based on a procedure to locate and score hydration sites on the solute surface is introduced to model first solvation shell effects, such as hydrogen bonding, which are poorly described by continuum dielectric models. This new component is added to the Generalized Born and non-polar AGBNP terms. Also newly introduced is an analytical Solvent Excluded Volume (SEV) model which improves the solute volume description by reducing the effect of spurious high-dielectric interstitial spaces present in conventional van der Waals representations. The AGBNP2 model is parametrized and tested with respect to experimental hydration free energies of small molecules and the results of explicit solvent simulations. Modeling the granularity of water is one of the main design principles employed for the the first shell solvation function and the SEV model, by requiring that water locations have a minimum available volume based on the size of a water molecule. It is shown that the new volumetric model produces Born radii and surface areas in good agreement with accurate numerical evaluations of these quantities. The results of molecular dynamics simulations of a series of mini-proteins show that the new model produces conformational ensembles in substantially better agreement with reference explicit solvent ensembles than the original AGBNP model with respect to both structural and energetics measures.
Collapse
Affiliation(s)
- Emilio Gallicchio
- Department of Chemistry and Chemical Biology and BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway NJ 08854
| | | | | |
Collapse
|
30
|
Sussman F, Villaverde MC, Estévez JC, Estévez RJ. Searching the Conformational Space of Cyclic β-Amino Acid Peptides. J Phys Chem B 2009; 113:9669-80. [DOI: 10.1021/jp811321n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fredy Sussman
- Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M. Carmen Villaverde
- Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Juan Carlos Estévez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ramón J. Estévez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
31
|
Contribution of arginine-glutamate salt bridges to helix stability. J Mol Model 2009; 15:1213-9. [DOI: 10.1007/s00894-009-0482-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
|