1
|
Gao W, Qu B, Yuan H, Song J, Li W. Heavy metal mobility in contaminated sediments under seawater acidification. MARINE POLLUTION BULLETIN 2023; 192:115062. [PMID: 37216879 DOI: 10.1016/j.marpolbul.2023.115062] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
The behavior of heavy metals in contaminated sediment is of ecological significance considering the change of pH caused by ocean acidification. This study investigated the mobility of Cd, Cu, Ni, Pb, Fe, and Mn under experimental conditions for seawater acidification via enrichment of CO2 gas at different reaction set-ups. The results indicated that the concerned metals behaved differently in the water compared to the sediment. The heavy metals were considerably transferred from sediment to seawater, and the resultant intensity was controlled by the degree of acidification and the chemical state of specific metals. Moreover, labile fractions of heavy metals in sediments were more susceptible to acidification than other fractions. These findings were observed and confirmed using real-time monitoring conducted via the diffusion gradient technique (DGT). Overall, the results of this study provided new insights into exploring the coupling risk of heavy metals with ocean acidification.
Collapse
Affiliation(s)
- Wenjing Gao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Baoxiao Qu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Huamao Yuan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Jinming Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Weibing Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
2
|
|
3
|
Gros J, Arey JS, Socolofsky SA, Dissanayake AL. Dynamics of Live Oil Droplets and Natural Gas Bubbles in Deep Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11865-11875. [PMID: 32856452 DOI: 10.1021/acs.est.9b06242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Explaining the dynamics of gas-saturated live petroleum in deep water remains a challenge. Recently, Pesch et al. [ Environ. Eng. Sci. 2018, 35 (4), 289-299] reported laboratory experiments on methane-saturated oil droplets under emulated deep-water conditions, providing an opportunity to elucidate the underlying dynamical processes. We explain these observations with the Texas A&M Oil spill/Outfall Calculator (TAMOC), which models the pressure-, temperature-, and composition-dependent interactions between oil-gas phase transfer; aqueous dissolution; and densities and volumes of liquid oil droplets, gas bubbles, and two-phase droplet-bubble pairs. TAMOC reveals that aqueous dissolution removed >95% of the methane from ∼3.5 mm live oil droplets within 14.5 min, prior to gas bubble formation, during the experiments of Pesch et al. Additional simulations indicate that aqueous dissolution, fluid density changes, and gas-oil phase transitions (ebullition, condensation) may all contribute to the fates of live oil and gas in deep water, depending on the release conditions. Illustrative model scenarios suggest that 5 mm diameter gas bubbles released at a <470 m water depth can transport methane, ethane, and propane to the water surface. Ethane and propane can reach the water surface from much deeper releases of 5 mm diameter live oil droplets, during which ebullition occurs at water depths of <70 m.
Collapse
Affiliation(s)
- Jonas Gros
- RD2/Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1-3, D-24148 Kiel, Germany
| | - J Samuel Arey
- ExxonMobil Biomedical Sciences Inc., Annandale, New Jersey 08801, United States
| | - Scott A Socolofsky
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | | |
Collapse
|
4
|
Gros J, Schmidt M, Dale AW, Linke P, Vielstädte L, Bigalke N, Haeckel M, Wallmann K, Sommer S. Simulating and Quantifying Multiple Natural Subsea CO 2 Seeps at Panarea Island (Aeolian Islands, Italy) as a Proxy for Potential Leakage from Subseabed Carbon Storage Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10258-10268. [PMID: 31432678 DOI: 10.1021/acs.est.9b02131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbon dioxide (CO2) capture and storage (CCS) has been discussed as a potentially significant mitigation option for the ongoing climate warming. Natural CO2 release sites serve as natural laboratories to study subsea CO2 leakage in order to identify suitable analytical methods and numerical models to develop best-practice procedures for the monitoring of subseabed storage sites. We present a new model of bubble (plume) dynamics, advection-dispersion of dissolved CO2, and carbonate chemistry. The focus is on a medium-sized CO2 release from 294 identified small point sources around Panarea Island (South-East Tyrrhenian Sea, Aeolian Islands, Italy) in water depths of about 40-50 m. This study evaluates how multiple CO2 seep sites generate a temporally variable plume of dissolved CO2. The model also allows the overall flow rate of CO2 to be estimated based on field measurements of pH. Simulations indicate a release of ∼6900 t y-1 of CO2 for the investigated area and highlight an important role of seeps located at >20 m water depth in the carbon budget of the Panarea offshore gas release system. This new transport-reaction model provides a framework for understanding potential future leaks from CO2 storage sites.
Collapse
Affiliation(s)
- Jonas Gros
- GEOMAR Helmholtz Centre for Ocean Research Kiel , RD2/Marine Geosystems Wischhofstrasse 1-3 , D-24148 Kiel , Germany
| | - Mark Schmidt
- GEOMAR Helmholtz Centre for Ocean Research Kiel , RD2/Marine Geosystems Wischhofstrasse 1-3 , D-24148 Kiel , Germany
| | - Andrew W Dale
- GEOMAR Helmholtz Centre for Ocean Research Kiel , RD2/Marine Geosystems Wischhofstrasse 1-3 , D-24148 Kiel , Germany
| | - Peter Linke
- GEOMAR Helmholtz Centre for Ocean Research Kiel , RD2/Marine Geosystems Wischhofstrasse 1-3 , D-24148 Kiel , Germany
| | - Lisa Vielstädte
- GEOMAR Helmholtz Centre for Ocean Research Kiel , RD2/Marine Geosystems Wischhofstrasse 1-3 , D-24148 Kiel , Germany
| | - Nikolaus Bigalke
- GEOMAR Helmholtz Centre for Ocean Research Kiel , RD2/Marine Geosystems Wischhofstrasse 1-3 , D-24148 Kiel , Germany
| | - Matthias Haeckel
- GEOMAR Helmholtz Centre for Ocean Research Kiel , RD2/Marine Geosystems Wischhofstrasse 1-3 , D-24148 Kiel , Germany
| | - Klaus Wallmann
- GEOMAR Helmholtz Centre for Ocean Research Kiel , RD2/Marine Geosystems Wischhofstrasse 1-3 , D-24148 Kiel , Germany
| | - Stefan Sommer
- GEOMAR Helmholtz Centre for Ocean Research Kiel , RD2/Marine Geosystems Wischhofstrasse 1-3 , D-24148 Kiel , Germany
| |
Collapse
|
5
|
Shim S, Wan J, Hilgenfeldt S, Panchal PD, Stone HA. Dissolution without disappearing: multicomponent gas exchange for CO2 bubbles in a microfluidic channel. LAB ON A CHIP 2014; 14:2428-2436. [PMID: 24874437 DOI: 10.1039/c4lc00354c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We studied the dissolution dynamics of CO2 gas bubbles in a microfluidic channel, both experimentally and theoretically. In the experiments, spherical CO2 bubbles in a flow of a solution of sodium dodecyl sulfate (SDS) first shrink rapidly before attaining an equilibrium size. In the rapid dissolution regime, the time to obtain a new equilibrium is 30 ms regardless of SDS concentration, and the equilibrium radius achieved varies with the SDS concentration. To explain the lack of complete dissolution, we interpret the results by considering the effects of other gases (O2, N2) that are already dissolved in the aqueous phase, and we develop a multicomponent dissolution model that includes the effect of surface tension and the liquid pressure drop along the channel. Solutions of the model for a stationary gas bubble show good agreement with the experimental results, which lead to our conclusion that the equilibrium regime is obtained by gas exchange between the bubbles and liquid phase. Also, our observations from experiments and model calculations suggest that SDS molecules on the gas-liquid interface form a diffusion barrier, which controls the dissolution behaviour and the eventual equilibrium radius of the bubble.
Collapse
Affiliation(s)
- Suin Shim
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA.
| | | | | | | | | |
Collapse
|
6
|
Bozzano G, Dente M. Dissolution of CO 2 and CH 4 Bubbles and Drops Rising from the Deep Ocean. Ind Eng Chem Res 2014. [DOI: 10.1021/ie403290q] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Giulia Bozzano
- Politecnico di Milano, Dipartimento di Chimica, Materiali
e Ingegneria Chimica
“Giulio Natta”, Piazza Leonardo da Vinci 32 20133 Milano, Italy
| | - Mario Dente
- Politecnico di Milano, Dipartimento di Chimica, Materiali
e Ingegneria Chimica
“Giulio Natta”, Piazza Leonardo da Vinci 32 20133 Milano, Italy
| |
Collapse
|
7
|
Guzmán-Marmolejo A, Segura A, Escobar-Briones E. Abiotic production of methane in terrestrial planets. ASTROBIOLOGY 2013; 13:550-9. [PMID: 23742231 PMCID: PMC3689174 DOI: 10.1089/ast.2012.0817] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×10(8) and 1.3×10(9) molecules cm(-2) s(-1) for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life.
Collapse
Affiliation(s)
- Andrés Guzmán-Marmolejo
- Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | - Antígona Segura
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
- Member of the Virtual Planetary Laboratory, a NASA Astrobiology Institute lead team
| | - Elva Escobar-Briones
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| |
Collapse
|
8
|
Yang M, Song Y, Zhao Y, Liu Y, Jiang L, Li Q. MRI measurements of CO2 hydrate dissociation rate in a porous medium. Magn Reson Imaging 2011; 29:1007-13. [DOI: 10.1016/j.mri.2011.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/06/2011] [Accepted: 04/10/2011] [Indexed: 10/18/2022]
|
9
|
Tajima H, Nagaosa R, Yamasaki A, Kiyono F. An analysis of liquid CO2 drop formation with and without hydrate formation in static mixers. AIChE J 2010. [DOI: 10.1002/aic.12167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
|
11
|
Bigalke NK, Rehder G, Gust G. Experimental investigation of the rising behavior of CO2 droplets in seawater under hydrate-forming conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:5241-5246. [PMID: 18754375 DOI: 10.1021/es800228j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In a laboratory-based test series, seven experiments along a simulated Pacific hydrotherm at 152 degrees W, 40 degrees N were carried out to measure the rise velocities of liquefied CO2 droplets under (clathrate) hydrate forming conditions. The impact of a hydrate skin on the rising behavior was investigated by comparing the results with those from outside the field of hydrate stability at matching buoyancy. A thermostatted high-pressure tank was used to establish conditions along the natural oceanic hydrotherm. Under P-/T-conditions allowing hydrate formation, the majority of the droplets quickly developed a skin of CO2 hydrate upon contact with seawater. Rise rates of these droplets support the parametrization by Chen et al. (Tellus 2003, 55B, 723-730), which is based on empirical equations developed to match momentum of hydrate covered, deformed droplets. Our data do not support other parametrizations recently suggested in the literature. In the experiments from 5.7 MPa, 4.8 oC to 11.9 MPa, 2.8 degrees C positive and negative deviations from predicted rise rates occurred, which we propose were caused by lacking hydrate formation and reflect intact droplet surface mobility and droplet shape oscillations, respectively. This interpretation is supported by rise rates measured at P-/T-conditions outside the hydrate stability field atthe same liquid CO2-seawater density difference (delta rho) matching the rise rates of the deviating data within the stability field. The results also show that droplets without a hydrate skin ascend up to 50% faster than equally buoyant droplets with a hydrate skin. This feature has a significant impact on the vertical pattern of dissolution of liquid CO2 released into the ocean. The experiments and data presented considerably reduce the uncertainty of the parametrization of CO2 droplet rise velocity, which in the past emerged partly from their scarcity and contradictions in constraints of earlier experiments.
Collapse
Affiliation(s)
- Nikolaus K Bigalke
- Leibniz Institute of Marine Sciences at the University of Kiel, Wischhofstrasse 1-3, 24148 Kiel, Germany.
| | | | | |
Collapse
|
12
|
Warzinski RP, Riestenberg DE, Gabitto J, Haljasmaa IV, Lynn RJ, Tsouris C. Formation and behavior of composite CO2 hydrate particles in a high-pressure water tunnel facility. Chem Eng Sci 2008. [DOI: 10.1016/j.ces.2008.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Alendal G, Haugan PM, Gangstø R, Caldeira K, Adams E, Brewer P, Peltzer E, Rehder G, Sato T, Chen B. Comment on "fate of rising CO2 droplets in seawater". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:3653-4; author reply 3655-6. [PMID: 16786707 DOI: 10.1021/es052458c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
14
|
Duncan PB, Needham D. Microdroplet dissolution into a second-phase solvent using a micropipet technique: test of the Epstein-Plesset model for an aniline-water system. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:4190-7. [PMID: 16618164 DOI: 10.1021/la053314e] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Epstein-Plesset model was originally derived for the dissolution of a single gas bubble in an infinite aqueous solution (Epstein, P. S.; Plesset, M. S. J. Chem. Phys. 1950, 18, 1505-1509). The micropipet manipulation technique was previously shown to test this theory on air microbubbles and air-filled lipid-coated microparticles accurately and appropriately (Duncan, P. B.; Needham, D. Langmuir 2004, 20, 2567-2578). This same theory is now tested to model liquid microdroplet dissolution in a well-defined solution environment. As presented previously for the gas-bubble system, holding a single microparticle at the end of a micropipet was not shown to affect the dissolution profile and allowed isotropic diffusion significantly, a necessary condition for the validation of the theory. Here, an aniline-water system with an initial droplet diameter of 50 microm was used as a model liquid-liquid system. A microdroplet of aniline in an aqueous solution presatureated with aniline at distinct levels was tested, as was the reverse system of a water droplet in an aniline solution. The dissolution lifetime was shown to increase with increasing medium saturation fraction according to the Epstein-Plesset time-dependent theory (including the time required to establish the stationary layer) neglecting interfacial tension. The droplet lifetime can be increased by an order of magnitude (from about 10 to 100 s) by increasing the saturation fraction from 0 to 0.9 and by another order of magnitude by increasing from 0.9 to 0.99. The technique proved to be an accurate and appropriate method to test the dissolution of single liquid microdroplets in a second liquid solution and establishes a systematic experimental and theoretical approach to the investigation of the formation of polymer and other microparticles.
Collapse
Affiliation(s)
- P Brent Duncan
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708-0300, USA
| | | |
Collapse
|
15
|
Tajima H, Yamasaki A, Kiyono F, Teng H. Size distribution of CO2 drops in a static mixer for ocean disposal. AIChE J 2006. [DOI: 10.1002/aic.10895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Dunk RM, Peltzer ET, Walz PM, Brewer PG. Seeing a deep ocean CO2 enrichment experiment in a new light: laser raman detection of dissolved CO2 in seawater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:9630-6. [PMID: 16475344 DOI: 10.1021/es0511725] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We used a newly developed in situ laser Raman spectrometer (LRS) for detection of elevated levels of dissolved CO2 in seawater. The experiment was carried out at 500 m depth, 6 degrees C, to examine new protocols for detection of CO2-enriched seawater emanating from a liquid CO2 source in the ocean, and to determine current detection limits under field conditions. A system of two interconnected 5 L chambers was built, with flow between them controlled by a valve and pump system, and this unit was mounted on an ROV. The first chamber was fitted with a pH electrode and the optical probe of the LRS. In the second chamber approximately 580 mL of liquid CO2 was introduced. Dissolution of CO2 across the CO2-seawater interface then occurred, the valves were opened, and a fixed volume of low-pH/CO2-enriched seawater was transferred to the first chamber for combined pH/Raman sensing, where we estimate a mean dissolution rate of approximately 0.5 (micromol/cm2)/s. This sequence was repeated, resulting in measurement of a progressively CO2 enriched seawater sample. The rapid in-growth of CO2 was readily detected as the Fermi dyad of the dissolved state with a detection limit of approximately 10 mM with spectral acquisition times of 150 s. The detection of background levels of CO2 species in seawater (approximately 2.2 mM, dominantly HCO3-) will require an improvement in instrument sensitivity by a factor of 5-10, which could be obtained by the use of a liquid core waveguide.
Collapse
Affiliation(s)
- Rachel M Dunk
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, California 95039, USA
| | | | | | | |
Collapse
|
17
|
Abstract
The sequestration of fossil fuel CO2 in the deep ocean has been discussed by a number of workers, and direct ocean experiments have been carried out to investigate the fate of rising CO2 droplets in seawater. However, no applicable theoretical models have been developed to calculate the dissolution rate of rising CO2 droplets with or without hydrate shells. Such models are important for the evaluation of the fate of CO2 injected into oceans. Here, I adapt a convective dissolution model to investigate the dynamics and kinetics of a single rising CO2 droplet (or noninteracting CO2 droplets) in seawater. The model has no free parameters; all of the required parameters are independently available from literature. The input parameters include: the initial depth, the initial size of the droplet, the temperature as a function of depth, density of CO2 liquid, the solubility of CO2 liquid or hydrate, the diffusivity of CO2, and viscosity of seawater. The effect of convection in enhancing mass transfer is treated using relations among dimensionless numbers. The calculated dissolution rate for CO2 droplets with a hydrate shell agrees with data in the literature. The theory can be used to explore the fate of CO2 injected into oceans under various temperature and pressure conditions.
Collapse
Affiliation(s)
- Youxue Zhang
- Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan 48109-1005, USA.
| |
Collapse
|
18
|
Riestenberg DE, Tsouris C, Brewer PG, Peltzer ET, Walz P, Chow AC, Adams EE. Field studies on the formation of sinking CO2 particles for ocean carbon sequestration: effects of injector geometry on particle density and dissolution rate and model simulation of plume behavior. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:7287-93. [PMID: 16201660 DOI: 10.1021/es050125+] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We have carried out the second phase of field studies to determine the effectiveness of a coflow injector which mixes liquid CO2 and ambient seawater to produce a hydrate slurry as a possible CO2 delivery method for ocean carbon sequestration. The experiments were carried out at ocean depths of 1000-1300 m in Monterey Bay, CA, using a larger injector than that initially employed under remotely operated vehicle control and imaging of the product. Solidlike composite particles comprised of water, solid CO2 hydrate, and liquid CO2 were produced in both studies. In the recent injections, the particles consistently sank at rates of approximately 5 cm s(-1). The density of the sinking particles suggested that approximately 40% of the injected CO2 was converted to hydrate, while image analysis of the particle shrinking rate indicated a CO2 dissolution rate of 0.76-1.29 micromol cm(-2) s(-1). Plume modeling of the hydrate composite particles suggests that while discrete particles may sink 10-70 m, injections with CO2 mass fluxes of 1-1000 kg s(-1) would result in sinking plumes 120-1000 m belowthe injection point.
Collapse
Affiliation(s)
- David E Riestenberg
- Oak Ridge National Laboratory, Post Office Box 2008, Oak Ridge, Tennessee 37831, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Nakayama N. First results from a controlled deep sea CO2perturbation experiment: Evidence for rapid equilibration of the oceanic CO2system at depth. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004jc002597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Chen B. Modeling near-field dispersion from direct injection of carbon dioxide into the ocean. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004jc002567] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Tsouris C, Brewer P, Peltzer E, Walz P, Riestenberg D, Liang L, West OR. Hydrate composite particles for ocean carbon sequestration: field verification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2004; 38:2470-2475. [PMID: 15116855 DOI: 10.1021/es034990a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This paper reports on the formation and dissolution of CO2/seawater/CO2 hydrate composite particles produced during field experiments in Monterey Bay, CA using a CO2 injector system previously developed in the laboratory. The injector consisted of a coflow reactor wherein water was introduced as a jet into liquid CO2, causing vigorous mixing of the two immiscible fluids to promote the formation of CO2 hydrate that is stable at ambient pressures and temperatures typical of ocean depths greater than approximately 500 m. Using flow rate ratios of water and CO2 of 1:1 and 5:1, particulate composites of CO2 hydrate/liquid CO2/seawater phases were produced in seawater at depths between 1100 and 1300 m. The resultant composite particles were tracked by a remotely operated vehicle system as they freely traveled in an imaging box that had no bottom or top walls. Results from the field experiments were consistent with laboratory experiments, which were conducted in a 70 L high-pressure vessel to simulate the conditions in the ocean at intermediate depths. The particle velocity and volume histories were monitored and used to calculate the conversion of CO2 into hydrate and its subsequent dissolution rate after release into the ocean. The dissolution rate of the composite particles was found to be higher than that reported for pure CO2 droplets. However, when the rate was corrected to correspond to pure CO2, the difference was very small. Results indicate that a higher conversion of liquid CO2 to CO2 hydrate is needed to form negatively buoyant particles in seawater when compared to freshwater, due primarily to the increased density of the liquid phase but also due to processes involving brine rejection during hydrate formation.
Collapse
Affiliation(s)
- Costas Tsouris
- Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6181, USA.
| | | | | | | | | | | | | |
Collapse
|