1
|
Xu B, Su Q, Yang Y, Huang S, Yang Y, Shi X, Choo KH, Ng HY, Lee CH. Quorum Quenching in Membrane Bioreactors for Fouling Retardation: Complexity Provides Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39012227 DOI: 10.1021/acs.est.4c04535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The occurrence of biofouling restricts the widespread application of membrane bioreactors (MBRs) in wastewater treatment. Regulation of quorum sensing (QS) is a promising approach to control biofouling in MBRs, yet the underlying mechanisms are complex and remain to be illustrated. A fundamental understanding of the relationship between QS and membrane biofouling in MBRs is lacking, which hampers the development and application of quorum quenching (QQ) techniques in MBRs (QQMBRs). While many QQ microorganisms have been isolated thus far, critical criteria for selecting desirable QQ microorganisms are still missing. Furthermore, there are inconsistent results regarding the QQ lifecycle and the effects of QQ on the physicochemical characteristics and microbial communities of the mixed liquor and biofouling assemblages in QQMBRs, which might result in unreliable and inefficient QQ applications. This review aims to comprehensively summarize timely QQ research and highlight the important yet often ignored perspectives of QQ for biofouling control in MBRs. We consider what this "information" can and cannot tell us and explore its values in addressing specific and important questions in QQMBRs. Herein, we first examine current analytical methods of QS signals and discuss the critical roles of QS in fouling-forming microorganisms in MBRs, which are the cornerstones for the development of QQ technologies. To achieve targeting QQ strategies in MBRs, we propose the substrate specificity and degradation capability of isolated QQ microorganisms and the surface area and pore structures of QQ media as the critical criteria to select desirable functional microbes and media, respectively. To validate the biofouling retardation efficiency, we further specify the QQ effects on the physicochemical properties, microbial community composition, and succession of mixed liquor and biofouling assemblages in MBRs. Finally, we provide scale-up considerations of QQMBRs in terms of the debated QQ lifecycle, practical synergistic strategies, and the potential cost savings of MBRs. This review presents the limitations of classic QS/QQ hypotheses in MBRs, advances the understanding of the role of QS/QQ in biofouling development/retardation in MBRs, and builds a bridge between the fundamental understandings and practical applications of QQ technology.
Collapse
Affiliation(s)
- Boyan Xu
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Qingxian Su
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
- Department of Environmental Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Yuxin Yang
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Shujuan Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, PR China
| | - Yue Yang
- Corporate Sustainability Office, TÜV SÜD, Westendstr. 199, 80686 München, Germany
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, PR China
| | - Kwang-Ho Choo
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Republic of Korea
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Chung-Hak Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Li H, Wang Q, Wang Y, Liu Y, Zhou J, Wang T, Zhu L, Guo J. EDTA enables to alleviate impacts of metal ions on conjugative transfer of antibiotic resistance genes. WATER RESEARCH 2024; 257:121659. [PMID: 38692255 DOI: 10.1016/j.watres.2024.121659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/28/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Various heavy metals are reported to be able to accelerate horizontal transfer of antibiotic resistance genes (ARGs). In real water environmental settings, ubiquitous complexing agents would affect the environmental behaviors of heavy metal ions due to the formation of metal-organic complexes. However, little is known whether the presence of complexing agents would change horizontal gene transfer due to heavy metal exposure. This study aimed to fill this gap by investigating the impacts of a typical complexing agent ethylenediaminetetraacetic acid (EDTA) on the conjugative transfer of plasmid-mediated ARGs induced by a range of heavy metal ions. At the environmentally relevant concentration (0.64 mg L-1) of metal ions, all the tested metal ions (Mg2+, Ca2+, Co2+, Pb2+, Ni2+, Cu2+, and Fe3+) promoted conjugative transfer of ARGs, while an inhibitory effect was observed at a relatively higher concentration (3.20 mg L-1). In contrast, EDTA (0.64 mg L-1) alleviated the effects of metal ions on ARGs conjugation transfer, evidenced by 11 %-66 % reduction in the conjugate transfer frequency. Molecular docking and dynamics simulations disclosed that this is attributed to the stronger binding of metal ions with the lipids in cell membranes. Under metal-EDTA exposure, gene expressions related to oxidative stress response, cell membrane permeability, intercellular contact, energy driving force, mobilization, and channels of plasmid transfer were suppressed compared with the metal ions exposure. This study offers insights into the alleviation mechanisms of complexing agents on ARGs transfer induced by free metal ions.
Collapse
Affiliation(s)
- Hu Li
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, PR China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Qi Wang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yanjie Wang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yue Liu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jian Zhou
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tiecheng Wang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
3
|
Zhao T, Liu Y, Wu Y, Zhao M, Zhao Y. Controllable and biocompatible 3D bioprinting technology for microorganisms: Fundamental, environmental applications and challenges. Biotechnol Adv 2023; 69:108243. [PMID: 37647974 DOI: 10.1016/j.biotechadv.2023.108243] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/23/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
3D bioprinting is a new 3D manufacturing technology, that can be used to accurately distribute and load microorganisms to form microbial active materials with multiple complex functions. Based on the 3D printing of human cells in tissue engineering, 3D bioprinting technology has been developed. Although 3D bioprinting technology is still immature, it shows great potential in the environmental field. Due to the precise programming control and multi-printing pathway, 3D bioprinting technology provides a high-throughput method based on micron-level patterning for a wide range of environmental microbiological engineering applications, which makes it an on-demand, multi-functional manufacturing technology. To date, 3D bioprinting technology has been employed in microbial fuel cells, biofilm material preparation, microbial catalysts and 4D bioprinting with time dimension functions. Nevertheless, current 3D bioprinting technology faces technical challenges in improving the mechanical properties of materials, developing specific bioinks to adapt to different strains, and exploring 4D bioprinting for intelligent applications. Hence, this review systematically analyzes the basic technical principles of 3D bioprinting, bioinks materials and their applications in the environmental field, and proposes the challenges and future prospects of 3D bioprinting in the environmental field. Combined with the current development of microbial enhancement technology in the environmental field, 3D bioprinting will be developed into an enabling platform for multifunctional microorganisms and facilitate greater control of in situ directional reactions.
Collapse
Affiliation(s)
- Tianyang Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
4
|
Qiao Z, Guo Y, Wang Z. A multi-functional rinsing model based on cake properties for predicting rinsing efficiency and calculating energy consumption in MBR. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Sahreen S, Mukhtar H, Imre K, Morar A, Herman V, Sharif S. Exploring the Function of Quorum Sensing Regulated Biofilms in Biological Wastewater Treatment: A Review. Int J Mol Sci 2022; 23:ijms23179751. [PMID: 36077148 PMCID: PMC9456111 DOI: 10.3390/ijms23179751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Quorum sensing (QS), a type of bacterial cell–cell communication, produces autoinducers which help in biofilm formation in response to cell population density. In this review, biofilm formation, the role of QS in biofilm formation and development with reference to biological wastewater treatment are discussed. Autoinducers, for example, acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2, present in both Gram-negative and Gram-positive bacteria, with their mechanism, are also explained. Over the years, wastewater treatment (WWT) by QS-regulated biofilms and their optimization for WWT have gained much attention. This article gives a comprehensive review of QS regulation methods, QS enrichment methods and QS inhibition methods in biological waste treatment systems. Typical QS enrichment methods comprise adding QS molecules, adding QS accelerants and cultivating QS bacteria, while typical QS inhibition methods consist of additions of quorum quenching (QQ) bacteria, QS-degrading enzymes, QS-degrading oxidants, and QS inhibitors. Potential applications of QS regulated biofilms for WWT have also been summarized. At last, the knowledge gaps present in current researches are analyzed, and future study requirements are proposed.
Collapse
Affiliation(s)
- Sania Sahreen
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
- Correspondence: (H.M.); (K.I.); Tel.: +92-3334245581 (H.M.); +40-256277186 (K.I.)
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
- Correspondence: (H.M.); (K.I.); Tel.: +92-3334245581 (H.M.); +40-256277186 (K.I.)
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
| | - Sundas Sharif
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
6
|
Suwaileh W, Zargar M, Abdala A, Siddiqui F, Khiadani M, Abdel-Wahab A. Concentration polarization control in stand-alone and hybrid forward osmosis systems: Recent technological advancements and future directions. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Membrane Biofouling Control by Surface Modification of Quaternary Ammonium Compound Using Atom-Transfer Radical-Polymerization Method with Silica Nanoparticle as Interlayer. MEMBRANES 2020; 10:membranes10120417. [PMID: 33322470 PMCID: PMC7764448 DOI: 10.3390/membranes10120417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 11/17/2022]
Abstract
A facile approach to fabricate antibiofouling membrane was developed by grafting quaternary ammonium compounds (QACs) onto polyvinylidene fluoride (PVDF) membrane via surface-initiated activators regenerated by electron transfer atom-transfer radical-polymerization (ARGET ATRP) method. During the modification process, a hydrophilic silica nanoparticle layer was also immobilized onto the membrane surface as an interlayer through silicification reaction for QAC grafting, which imparted the membrane with favorable surface properties (e.g., hydrophilic and negatively charged surface). The QAC-modified membrane (MQ) showed significantly improved hydrophilicity and permeability mainly due to the introduction of silica nanoparticles and exposure of hydrophilic quaternary ammonium groups instead of long alkyl chains. Furthermore, the coverage of QAC onto membrane surface enabled MQ membrane to have clear antibacterial effect, with an inhibition rate ~99.9% of Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive), respectively. According to the batch filtration test, MQ had better antibiofouling performance compared to the control membrane, which was ascribed to enhanced hydrophilicity and antibacterial activity. Furthermore, the MQ membrane also exhibited impressive stability of QAC upon suffering repeated fouling–cleaning tests. The modification protocols provide a new robust way to fabricate high-performance antibiofouling QAC-based membranes for wastewater treatment.
Collapse
|
8
|
Feng X, Wu Q, Che L, Ren N. Analyzing the inhibitory effect of metabolic uncoupler on bacterial initial attachment and biofilm development and the underlying mechanism. ENVIRONMENTAL RESEARCH 2020; 185:109390. [PMID: 32251913 DOI: 10.1016/j.envres.2020.109390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
Metabolic uncouplers inhibit biofilm and biofouling formation in membrane bioreactor (MBR) systems, which have been considered as a potential biofouling control alternative. To better understand the inhibitory mechanism of uncoupler on biofouling, this study investigated the impact of the uncoupler 3, 3', 4', 5-tetrachlorosalicylanilide (TCS) on biofilm formation of B. subtilis in different development stages. Significant reductions in both the initial bacterial attachment stage and the subsequent biofilm development stage were caused by TCS at 100 μg/L. The motility of B. subtilis in semisolid medium was inhibited by TCS, which explicitly explained the reduction in initial bacterial attachment. Meanwhile, a reduction of extracellular polymeric substance (EPS) secretion owing to TCS suggested why biofilm development was suppressed. In addition, the fluorescent materials in tight-bound EPS (TB-EPS) and loose-bound EPS (LB-EPS) of Bacillus subtilis cultured in different TCS concentrations were distinguished and quantified by three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC). The results of this study suggested that the biofilm inhibitory mechanism of the uncoupler was both a inhibition in bacterial motor ability and a reduction in EPS secretion.
Collapse
Affiliation(s)
- Xiaochi Feng
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China.
| | - Qinglian Wu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China.
| | - Lin Che
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Nanqi Ren
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
9
|
Feng X, Guo W, Zheng H, Yang S, Du J, Wu Q, Luo H, Zhou X, Jin W, Ren N. Inhibition of biofouling in membrane bioreactor by metabolic uncoupler based on controlling microorganisms accumulation and quorum sensing signals secretion. CHEMOSPHERE 2020; 245:125363. [PMID: 31877457 DOI: 10.1016/j.chemosphere.2019.125363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Biofouling is a limiting bottleneck in the development of membrane bioreactor (MBR) since the birth of this technology. Recently, the biofouling control strategy based on interfering with the bacterial quorum sensing (QS) system is highly desirable for biofouling control in MBR. In this study, three lab-scale parallel MBR systems were operated over 100 days to investigate the inhibitory effect of a metabolic uncoupler (3,3',4',5-tetrachlorosalicylanilide, TCS) on biofouling and the potential mechanism for biofouling control. Compared to the control MBR, the fouling cycle duration of MBR 2 with 100 μg/L TCS extended over two times. The attached biomass on membrane in MBR 2 decreased over 50% at the end of each operating period, which indicated that the addition of TCS significantly mitigated microorganisms accumulation on membrane. The content of interspecies QS signal (autoinducer-2) and intraspecific QS signals (N-octanoyl-dl-homoserine lactone, C8-HSL) was reduced by the TCS, suggesting the secretion of QS signals in MBR were affected by uncoupler. Although the addition of TCS induced brief fluctuations of extracellular proteins and polysaccharides, microorganisms seemed to rapidly acclimatize to the presence of TCS and then the secretion of extracellular polymeric substances (EPS) was inhibited by 100 μg/L TCS. The continuous operation of MBR was not be affected by the low-concentration uncoupler via the analysis of substrate removal and sludge growth. This study systematically evaluated the effect and inhibitory efficiency of TCS on biofouling, biomass accumulation, QS signals, EPS and treatment performances, demonstrating the feasibility of metabolic uncoupler for biofouling control in MBR.
Collapse
Affiliation(s)
- Xiaochi Feng
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wanqian Guo
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China.
| | - Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Shanshan Yang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Juanshan Du
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Qinglian Wu
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Haichao Luo
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wenbiao Jin
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Nanqi Ren
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
10
|
Current Advances in Biofouling Mitigation in Membranes for Water Treatment: An Overview. Processes (Basel) 2020. [DOI: 10.3390/pr8020182] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Membranes, as the primary tool in membrane separation techniques, tend to suffer external deposition of pollutants and microorganisms depending on the nature of the treating solutions. Such issues are well recognized as biofouling and is identified as the major drawback of pressure-driven membrane processes due to the influence of the separation performance of such membrane-based technologies. Herein, the aim of this review paper is to elucidate and discuss new insights on the ongoing development works at facing the biofouling phenomenon in membranes. This paper also provides an overview of the main strategies proposed by “membranologists” to improve the fouling resistance in membranes. Special attention has been paid to the fundamentals on membrane fouling as well as the relevant results in the framework of mitigating the issue. By analyzing the literature data and state-of-the-art, the concluding remarks and future trends in the field are given as well.
Collapse
|
11
|
Huang J, Yi K, Zeng G, Shi Y, Gu Y, Shi L, Yu H. The role of quorum sensing in granular sludge: Impact and future application: A review. CHEMOSPHERE 2019; 236:124310. [PMID: 31344626 DOI: 10.1016/j.chemosphere.2019.07.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/20/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Quorum sensing (QS) is a process widely exist in bacteria, which refers to the cell-cell communication through secretion and sensing the specific chemical signal molecules named autoinducers. This review demonstrated recent research progresses on the specific impacts of signal molecules in the granular sludge reactors, such corresponding exogenous strategies contained the addition of QS signal molecules, QS-related enzymes and bacteria associated with QS process. Accordingly, the correlation between QS signaling molecule content and sludge granulation (including the formation and stability) was assumed, the comprehensive conclusion elucidated that some QS signals (acyl-homoserine lactone and Autoinducer 2) can accelerate the growth of particle diameter, the production of extracellular polymeric substance (EPS), microbial adhesion and change the microbiome structure. But diffusable signal factor (DSF) acted as a significant disincentive to the formation and stability of GS. As a result, it deserved serious attention on the value and role of QS signals in the GS. This review attempts to illuminate the potential method for addressing the main bottleneck: to accelerate the formation of granules and keep the high stability of GS for a long-term reactor. Therefore, review discussed the possible trends of GS: QS and intercellular/intracellular signaling which can lay a theoretical foundation for mechanism of GS formation and stability, would be of practical significance for further application in the future.
Collapse
Affiliation(s)
- Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China.
| | - Kaixin Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China.
| | - Yahui Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yanling Gu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Lixiu Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Hanbo Yu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
12
|
Alternating electric fields induce a period-dependent motion of Escherichia coli in three-dimension near a conductive surface. Biointerphases 2019; 14:011005. [PMID: 30786720 DOI: 10.1116/1.5078543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It has been demonstrated that electric fields can minimize surface adhesion of bacteria, but how they affect the near-surface bacterial dynamics has remained largely overlooked. In the present study, the three-dimensional motions of Escherichia coli (E. coli) HCB1 and HCB1414 near a conductive surface under alternating-current (AC) electric fields were monitored with digital holographic microscopy. The period (T) of AC fields exhibited profound effects on near-surface bacterial behavioral patterns and thus affected the surface adhesiveness of E. coli. When T ≥ 1 s, HCB1 cells tumble frequently, and both two strain cells increasingly undergo subdiffusive motions compared to the case without electric fields. The bacterial density near the surface varies due to galvanotaxis depending on the initial polarization of the surface. For shorter periods (T ≤ 0.1 s), the electric fields reduce the near-surface bacterial density by 10%-20% with the surface as either an anode or a cathode. The AC fields directly disturb the intrinsic bacterial rotation. The bacterial body exhibits strong wobbling at T ≥ 1 s. Such wobbling was suppressed with decreasing T, which reduces the collisions between E. coli and the surface and thus leads to declining bacterial density. These results suggest that the use of low-density AC fields with tunable T may be a promising antifouling strategy and merits further investigations.
Collapse
|
13
|
Ding A, Lin D, Zhao Y, Ngo HH, Guo W, Bai L, Luo X, Li G, Ren N, Liang H. Effect of metabolic uncoupler, 2,4‑dinitrophenol (DNP) on sludge properties and fouling potential in ultrafiltration membrane process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1882-1888. [PMID: 30286354 DOI: 10.1016/j.scitotenv.2018.09.321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Energy uncoupling technology was applied to the membrane process to control the problem of bio-fouling. Different dosages of uncoupler (2,4‑dinitrophenol, DNP) were added to the activated sludge, and a short-term ultrafiltration test was systematically investigated for analyzing membrane fouling potential and underlying mechanisms. Ultrafiltration membrane was used and made of polyether-sulfone with a molecular weight cut off (MWCO) of 150 kDa. Results indicated that low DNP concentration (15-30 mg/g VSS) aggravated membrane fouling because more soluble microbial products were released and then rejected by the membrane, which significantly increased cake layer resistance compared with the control. Conversely, a high dosage of DNP (45 mg/g VSS) retarded membrane fouling owing to the high inhibition of extracellular polymeric substances (proteins and polysaccharides) of the sludge, which effectively prevented the formation of cake layer on the membrane surface. Furthermore, analyses of fouling model revealed that a high dosage of DNP delayed the fouling model from pore blocking transition to cake filtration, whereas this transition process was accelerated in the low dosage scenario.
Collapse
Affiliation(s)
- An Ding
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Dachao Lin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Yingxue Zhao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia.
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Xinsheng Luo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| |
Collapse
|
14
|
Feng X, Guo W, Zheng H, Du J, Luo H, Wu Q, Ren N. Inhibition of biofilm formation by chemical uncoupler, 3, 3′, 4′, 5-tetrachlorosalicylanilide (TCS): From the perspective of quorum sensing and biofilm related genes. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
15
|
Bagheri M, Mirbagheri SA. Critical review of fouling mitigation strategies in membrane bioreactors treating water and wastewater. BIORESOURCE TECHNOLOGY 2018; 258:318-334. [PMID: 29548641 DOI: 10.1016/j.biortech.2018.03.026] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 05/24/2023]
Abstract
The current research was an effort to critically review all approaches used for membrane fouling control in the membrane bioreactors treating water and wastewater. The first generation of antifouling methods tried to optimize operational conditions, or used chemical agents to control membrane fouling. Despite their positive impacts on the fouling mitigation, these methods did not provide a sustainable solution for the problem. Moreover, chemical agents may affect microorganisms in bioreactors and has some environmental drawbacks. The improved knowledge of membrane fouling mechanism and effective factors has directed the attention of researchers to novel methods that focus on disrupting fouling mechanism through affecting fouling causing bacteria. Employing nanomaterials, cell entrapment, biologically- and electrically-based methods are the latest efforts. The results of this review indicate that sustainable control of membrane fouling requires employing more than one single approach. Large scale application of fouling mitigation strategies should be the focus of future studies.
Collapse
Affiliation(s)
- Majid Bagheri
- Civil, Architectural and Environmental Engineering Department, Missouri University of Science and Technology, Rolla, MO, United States.
| | | |
Collapse
|
16
|
Oh HS, Lee CH. Origin and evolution of quorum quenching technology for biofouling control in MBRs for wastewater treatment. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Zhang X, Wang Z, Tang CY, Ma J, Liu M, Ping M, Chen M, Wu Z. Modification of microfiltration membranes by alkoxysilane polycondensation induced quaternary ammonium compounds grafting for biofouling mitigation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Yu C, Wu J, Zin G, Di Luccio M, Wen D, Li Q. D-Tyrosine loaded nanocomposite membranes for environmental-friendly, long-term biofouling control. WATER RESEARCH 2018; 130:105-114. [PMID: 29202342 DOI: 10.1016/j.watres.2017.11.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/18/2017] [Accepted: 11/13/2017] [Indexed: 05/09/2023]
Abstract
Strategies to control biofouling without using antimicrobial chemicals are needed to prevent the spread of antibiotic resistance genes and disruption of microbial activities in biological treatment. This study developed an environmentally friendly biofouling resistant membrane by incorporating d-tyrosine onto a commercial nanofiltration membrane using FAU type zeolite nanoparticles that covalently bound to the membrane surface as carriers for slow release. The d-tyrosine loaded membrane had similar water permeability as the unmodified membrane, but greatly reduced initial cell attachment and strongly inhibited subsequent biofilm formation without inactivating the bacteria. The membrane slowly released d-tyrosine in the time course of over 5 days, and retained its anti-biofouling capability in repeated 24 h efficacy tests for as long as 6 days. In nanofiltration operation, the d-tyrosine incorporated zeolite coating completely inhibited cell adhesion on the membrane surface and significantly alleviated membrane flux decline.
Collapse
Affiliation(s)
- Cong Yu
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, United States
| | - Jinjian Wu
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, United States
| | - Gilherme Zin
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, SC, Brazil
| | - Marco Di Luccio
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, SC, Brazil
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, United States; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States; Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, United States; NSF Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Rice University, Houston, TX 77005, United States; The Smalley-Curl Institute, Rice University, Houston, TX 77005, United States.
| |
Collapse
|
19
|
Feng XC, Guo WQ, Zheng HS, Wu QL, Luo HC, Ren NQ. Effect of metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide (TCS) on Bacillus subtilis: biofilm formation, flocculability and surface characteristics. RSC Adv 2018; 8:16178-16186. [PMID: 35542191 PMCID: PMC9080271 DOI: 10.1039/c8ra02315h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/23/2018] [Indexed: 11/21/2022] Open
Abstract
In order to understand the inhibitory mechanism of metabolic uncoupler in biofilm, this study investigated the effect of TCS on B. subtilis biofilm formation, flocculability, surface characteristics and thermodynamic properties. An optimal concentration of TCS, a metabolic uncoupler, was observed to substantially inhibit biofilm formation and the secretion of extracellular polymeric substances (EPS). The effect of TCS on the zeta potential and flocculability of bacterial suspension implied the addition of 100 μg L−1 TCS increased the net negative charge of cell surface which induced the reduction of B. subtilis flocculability. Meanwhile, the effects of TCS on bacterial surfacial thermodynamic properties were analyzed by the Derjaguin–Landau–Verwey–Overbeek (DLVO) and extend DLVO (XDLVO) theories. As DLVO and XDLVO predicted, the primary energy barrier between bacterial cells incubated with 100 μg L−1 TCS were increased compared to that of control, indicating that B. subtilis incubated with 100 μg L−1 TCS must consume more energy to aggregate or form biofilm. This study aimed to investigate the inhibitory mechanism of metabolic uncoupler on biofilm formation through surface characteristics and thermodynamics analysis.![]()
Collapse
Affiliation(s)
- Xiao-Chi Feng
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - He-Shan Zheng
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Qing-Lian Wu
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Hai-Chao Luo
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
| |
Collapse
|
20
|
Baskaran S, Subramani VB, Detchanamurthy S, Rangasamy P. Potential Application of Redox Mediators and Metabolic Uncouplers in Environmental Research - A Review. CHEMBIOENG REVIEWS 2017. [DOI: 10.1002/cben.201600014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Suganya Baskaran
- Sri Venkateswara College of Engineering; Department of Chemical Engineering; 602117, Tamilnadu Pennalur, Sriperumbudur India
| | - Vishal Bellie Subramani
- Sri Venkateswara College of Engineering; Department of Chemical Engineering; 602117, Tamilnadu Pennalur, Sriperumbudur India
| | - Swaminathan Detchanamurthy
- Sri Venkateswara College of Engineering; Department of Chemical Engineering; 602117, Tamilnadu Pennalur, Sriperumbudur India
| | - Parthiban Rangasamy
- SSN College of Engineering; Department of Chemical Engineering; 603110, Tamilnadu Kalavakkam India
| |
Collapse
|
21
|
Lee HJ, Kim HE, Lee C. Combination of cupric ion with hydroxylamine and hydrogen peroxide for the control of bacterial biofilms on RO membranes. WATER RESEARCH 2017; 110:83-90. [PMID: 27998786 DOI: 10.1016/j.watres.2016.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/05/2016] [Accepted: 12/10/2016] [Indexed: 06/06/2023]
Abstract
Combinations of Cu(II) with hydroxylamine (HA) and hydrogen peroxide (H2O2) (i.e., Cu(II)/HA, Cu(II)/H2O2, and Cu(II)/HA/H2O2 systems) were investigated for the control of P. aeruginosa biofilms on reverse osmosis (RO) membranes. These Cu(II)-based disinfection systems effectively inactivated P. aeruginosa cells, exhibiting different behaviors depending on the state of bacterial cells (planktonic or biofilm) and the condition of biofilm growth and treatment (normal or pressurized condition). The Cu(II)/HA and Cu(II)/HA/H2O2 systems were the most effective reagents for the inactivation of planktonic cells. However, these systems were not effective in inactivating cells in biofilms on the RO membranes possibly due to the interactions of Cu(I) with extracellular polymeric substances (EPS), where biofilms were grown and treated in center for disease control (CDC) reactors. Different from the results using CDC reactors, in a pressurized cross-flow RO filtration unit, the Cu(II)/HA/H2O2 treatment significantly inactivated biofilm cells formed on the RO membranes, successfully recovering the permeate flux reduced by the biofouling. The pretreatment of feed solutions by Cu(II)/HA and Cu(II)/HA/H2O2 systems (applied before the biofilm formation) effectively mitigated the permeate flux decline by preventing the biofilm growth on the RO membranes.
Collapse
Affiliation(s)
- Hye-Jin Lee
- School of Urban and Environmental Engineering, and KIST-UNIST-Ulsan Center for Convergent Materials (KUUC), Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Hyung-Eun Kim
- School of Urban and Environmental Engineering, and KIST-UNIST-Ulsan Center for Convergent Materials (KUUC), Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Changha Lee
- School of Urban and Environmental Engineering, and KIST-UNIST-Ulsan Center for Convergent Materials (KUUC), Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
22
|
Quorum Sensing and the Use of Quorum Quenchers as Natural Biocides to Inhibit Sulfate-Reducing Bacteria. Antibiotics (Basel) 2016; 5:antibiotics5040039. [PMID: 27983678 PMCID: PMC5187520 DOI: 10.3390/antibiotics5040039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/23/2016] [Accepted: 12/06/2016] [Indexed: 11/17/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) are one of the main protagonist groups of biocorrosion in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of biocides and antibiotics, which can impose health, safety, and environmental concerns. This review examines an alternative approach to this problem. This is achieved by reviewing the role of quorum sensing (QS) in SRB populations and its impact on the biofilm formation process. Genome databases of SRBs are mined to look for putative QS systems and homologous protein sequences representative of autoinducer receptors or synthases. Subsequently, this review puts forward the potential use of quorum quenchers as natural biocides against SRBs and outlines the potential strategies for the implementation of this approach.
Collapse
|
23
|
Lee K, Lee S, Lee SH, Kim SR, Oh HS, Park PK, Choo KH, Kim YW, Lee JK, Lee CH. Fungal Quorum Quenching: A Paradigm Shift for Energy Savings in Membrane Bioreactor (MBR) for Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10914-10922. [PMID: 27634354 DOI: 10.1021/acs.est.6b00313] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In the last 30 years, the use of membrane bioreactors (MBRs) for advanced wastewater treatment and reuse have been expanded continuously, but they still suffer from excessive energy consumption resulting from the intrinsic problem of membrane biofouling. One of the major causes of biofouling in MBRs is bacterial quorum sensing (QS) via N-acylhomoserine lactones (AHLs) and/or autoinducer-2 (AI-2), enabling intra- and interspecies communications, respectively. In this study, we demonstrate that farnesol can substantially mitigate membrane biofouling in a MBR due to its quorum quenching (QQ) activity. When Candida albicans (a farnesol producing fungus) entrapping polymer beads (AEBs) were placed in the MBR, the rate of transmembrane pressure (TMP) rise-up was substantially decreased, even for lower aeration intensities. This finding corresponds to a specific aeration energy savings of approximately 40% (25% through the physical washing effect and a further 15% through the biological QQ effect of AEBs) compared to conventional MBRs without AEBs. A real-time RT-qPCR analysis revealed that farnesol secreted from C. albicans mitigated the biofilm formation in MBRs via the suppression of AI-2 QS. Successful control of biofouling and energy savings through fungal-to-bacterial QQ could be expanded to the plant scale for MBRs in wastewater treatment with economic feasibility.
Collapse
Affiliation(s)
- Kibaek Lee
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Seonki Lee
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Sang Hyun Lee
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Sang-Ryoung Kim
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Hyun-Suk Oh
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| | - Pyung-Kyu Park
- Department of Environmental Engineering, Yonsei University , Wonju, 26493, Republic of Korea
| | - Kwang-Ho Choo
- Department of Environmental Engineering, Kyungpook National University , Daegu, 41566, Republic of Korea
| | - Yea-Won Kim
- Department of Biomedicinal Science and Biotechnology, Paichai University , Daejeon 35345, Republic of Korea
| | - Jung-Kee Lee
- Department of Biomedicinal Science and Biotechnology, Paichai University , Daejeon 35345, Republic of Korea
| | - Chung-Hak Lee
- School of Chemical and Biological Engineering, Seoul National University , Seoul, 08826, Republic of Korea
| |
Collapse
|
24
|
Huang J, Shi Y, Zeng G, Gu Y, Chen G, Shi L, Hu Y, Tang B, Zhou J. Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview. CHEMOSPHERE 2016; 157:137-151. [PMID: 27213243 DOI: 10.1016/j.chemosphere.2016.05.032] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/21/2016] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
Quorum sensing (QS) is a communication process between cells, in which bacteria secrete and sense the specific chemicals, and regulate gene expression in response to population density. Quorum quenching (QQ) blocks QS system, and inhibits gene expression mediating bacterial behaviors. Given the extensive research of acyl-homoserine lactone (AHL) signals, existences and effects of AHL-based QS and QQ in biological wastewater treatments are being subject to high concern. This review summarizes AHL structure, synthesis mode, degradation mechanisms, analytical methods, environmental factors, AHL-based QS and QQ mechanisms. The existences and roles of AHL-based QS and QQ in biomembrane processes, activated sludge processes and membrane bioreactors are summarized and discussed, and corresponding exogenous regulation strategy by selective enhancement of AHL-based QS or QQ coexisting in biological wastewater treatments is suggested. Such strategies including the addition of AHL signals, AHL-producing bacteria as well as quorum quenching enzyme or bacteria can effectively improve wastewater treatment performance without killing or limiting bacterial survival and growth. This review will present the theoretical and practical cognition for bacterial AHL-based QS and QQ, suggest the feasibility of exogenous regulation strategies in biological wastewater treatments, and provide useful information to scientists and engineers who work in this field.
Collapse
Affiliation(s)
- Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China.
| | - Yahui Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yanling Gu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Guiqiu Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Lixiu Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yi Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Bi Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Jianxin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
25
|
Cai W, Liu Y. Enhanced membrane biofouling potential by on-line chemical cleaning in membrane bioreactor. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.03.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Iorhemen OT, Hamza RA, Tay JH. Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling. MEMBRANES 2016; 6:E33. [PMID: 27314394 PMCID: PMC4931528 DOI: 10.3390/membranes6020033] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/08/2016] [Accepted: 06/12/2016] [Indexed: 11/16/2022]
Abstract
The membrane bioreactor (MBR) has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview of membrane fouling and studies conducted to identify mitigating strategies for fouling in MBRs. Classes of foulants, including biofoulants, organic foulants and inorganic foulants, as well as factors influencing membrane fouling are outlined. Recent research attempts on fouling control, including addition of coagulants and adsorbents, combination of aerobic granulation with MBRs, introduction of granular materials with air scouring in the MBR tank, and quorum quenching are presented. The addition of coagulants and adsorbents shows a significant membrane fouling reduction, but further research is needed to establish optimum dosages of the various coagulants/adsorbents. Similarly, the integration of aerobic granulation with MBRs, which targets biofoulants and organic foulants, shows outstanding filtration performance and a significant reduction in fouling rate, as well as excellent nutrients removal. However, further research is needed on the enhancement of long-term granule integrity. Quorum quenching also offers a strong potential for fouling control, but pilot-scale testing is required to explore the feasibility of full-scale application.
Collapse
Affiliation(s)
- Oliver Terna Iorhemen
- Department of Civil Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Rania Ahmed Hamza
- Department of Civil Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Joo Hwa Tay
- Department of Civil Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
27
|
She Q, Wang R, Fane AG, Tang CY. Membrane fouling in osmotically driven membrane processes: A review. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.10.040] [Citation(s) in RCA: 525] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Kim LH, Jung Y, Kim SJ, Kim CM, Yu HW, Park HD, Kim IS. Use of rhamnolipid biosurfactant for membrane biofouling prevention and cleaning. BIOFOULING 2015; 31:211-220. [PMID: 25789851 DOI: 10.1080/08927014.2015.1022724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Rhamnolipids were evaluated as biofouling reducing agents in this study. The permeability of the bacterial outer membrane was increased by rhamnolipids while the growth rate of Pseudomonas aeruginosa was not affected. The surface hydrophobicity was increased through the release of lipopolysaccharides and extracellular polymeric substances from the outer cell membrane. Rhamnolipids were evaluated as agents for the prevention and cleaning of biofilms. A high degree of biofilm detachment was observed when the rhamnolipids were used as a cleaning agent. In addition, effective biofilm reduction occurred when rhamnolipids were applied to various species of Gram-negative bacteria isolated from seawater samples. Biofilm reduction using rhamnolipids was comparable to commercially available surfactants. In addition, 20% of the water flux was increased after rhamnolipid treatment (300 μg ml(-1), 6 h exposure time) in a dead-end filtration system. Rhamnolipids appear to have promise as biological agents for reducing membrane biofouling.
Collapse
Affiliation(s)
- Lan Hee Kim
- a School of Environmental Science and Engineering , Gwangju Institute of Science and Technology (GIST) , Gwangju , Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Vanysacker L, Boerjan B, Declerck P, Vankelecom IFJ. Biofouling ecology as a means to better understand membrane biofouling. Appl Microbiol Biotechnol 2014; 98:8047-72. [DOI: 10.1007/s00253-014-5921-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 10/24/2022]
|
31
|
Lee DH, Oh HJ, Bai SJ, Song YS. Photosynthetic solar cell using nanostructured proton exchange membrane for microbial biofilm prevention. ACS NANO 2014; 8:6458-6465. [PMID: 24840499 DOI: 10.1021/nn502033f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Unwanted biofilm formation has a detrimental effect on bioelectrical energy harvesting in microbial cells. This issue still needs to be solved for higher power and longer durability and could be resolved with the help of nanoengineering in designing and manufacturing. Here, we demonstrate a photosynthetic solar cell (PSC) that contains a nanostructure to prevent the formation of biofilm by micro-organisms. Nanostructures were fabricated using nanoimprint lithography, where a film heater array system was introduced to precisely control the local wall temperature. To understand the heat and mass transfer phenomena behind the manufacturing and energy harvesting processes of PSC, we carried out a numerical simulation and experimental measurements. It revealed that the nanostructures developed on the proton exchange membrane enable PSC to produce enhanced output power due to the retarded microbial attachment on the Nafion membrane. We anticipate that this strategy can provide a pathway where PSC can ensure more renewable, sustainable, and efficient energy harvesting performance.
Collapse
Affiliation(s)
- Dong Hyun Lee
- Department of Fiber System Engineering, Dankook University , 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do 448-701, Korea
| | | | | | | |
Collapse
|
32
|
Lade H, Paul D, Kweon JH. Quorum quenching mediated approaches for control of membrane biofouling. Int J Biol Sci 2014; 10:550-65. [PMID: 24910534 PMCID: PMC4046882 DOI: 10.7150/ijbs.9028] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/29/2014] [Indexed: 12/24/2022] Open
Abstract
Membrane biofouling is widely acknowledged as the most frequent adverse event in wastewater treatment systems resulting in significant loss of treatment efficiency and economy. Different strategies including physical cleaning and use of antimicrobial chemicals or antibiotics have been tried for reducing membrane biofouling. Such traditional practices are aimed to eradicate biofilms or kill the bacteria involved, but the greater efficacy in membrane performance would be achieved by inhibiting biofouling without interfering with bacterial growth. As a result, the search for environmental friendly non-antibiotic antifouling strategies has received much greater attention among scientific community. The use of quorum quenching natural compounds and enzymes will be a potential approach for control of membrane biofouling. This approach has previously proven useful in diseases and membrane biofouling control by triggering the expression of desired phenotypes. In view of this, the present review is provided to give the updated information on quorum quenching compounds and elucidate the significance of quorum sensing inhibition in control of membrane biofouling.
Collapse
Affiliation(s)
| | - Diby Paul
- Department of Environmental Engineering, Konkuk University, Seoul-143-701, Korea
| | - Ji Hyang Kweon
- Department of Environmental Engineering, Konkuk University, Seoul-143-701, Korea
| |
Collapse
|
33
|
Malaeb L, Le-Clech P, Vrouwenvelder JS, Ayoub GM, Saikaly PE. Do biological-based strategies hold promise to biofouling control in MBRs? WATER RESEARCH 2013; 47:5447-63. [PMID: 23863390 DOI: 10.1016/j.watres.2013.06.033] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/21/2013] [Accepted: 06/15/2013] [Indexed: 05/26/2023]
Abstract
Biofouling in membrane bioreactors (MBRs) remains a primary challenge for their wider application, despite the growing acceptance of MBRs worldwide. Research studies on membrane fouling are extensive in the literature, with more than 200 publications on MBR fouling in the last 3 years; yet, improvements in practice on biofouling control and management have been remarkably slow. Commonly applied cleaning methods are only partially effective and membrane replacement often becomes frequent. The reason for the slow advancement in successful control of biofouling is largely attributed to the complex interactions of involved biological compounds and the lack of representative-for-practice experimental approaches to evaluate potential effective control strategies. Biofouling is driven by microorganisms and their associated extra-cellular polymeric substances (EPS) and microbial products. Microorganisms and their products convene together to form matrices that are commonly treated as a black box in conventional control approaches. Biological-based antifouling strategies seem to be a promising constituent of an effective integrated control approach since they target the essence of biofouling problems. However, biological-based strategies are in their developmental phase and several questions should be addressed to set a roadmap for translating existing and new information into sustainable and effective control techniques. This paper investigates membrane biofouling in MBRs from the microbiological perspective to evaluate the potential of biological-based strategies in offering viable control alternatives. Limitations of available control methods highlight the importance of an integrated anti-fouling approach including biological strategies. Successful development of these strategies requires detailed characterization of microorganisms and EPS through the proper selection of analytical tools and assembly of results. Existing microbiological/EPS studies reveal a number of implications as well as knowledge gaps, warranting future targeted research. Systematic and representative microbiological studies, complementary utilization of molecular and biofilm characterization tools, standardized experimental methods and validation of successful biological-based antifouling strategies for MBR applications are needed. Specifically, in addition, linking these studies to relevant operational conditions in MBRs is an essential step to ultimately develop a better understanding and more effective and directed control strategy for biofouling.
Collapse
Affiliation(s)
- Lilian Malaeb
- Water Desalination and Reuse Research Center and Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | | | | | | | | |
Collapse
|
34
|
Transparent exopolymer particles (TEP) and their potential effect on membrane biofouling. Appl Microbiol Biotechnol 2013; 97:5705-10. [DOI: 10.1007/s00253-013-4979-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 04/01/2013] [Accepted: 05/04/2013] [Indexed: 10/26/2022]
|
35
|
Wu B, Kitade T, Chong TH, Lee JY, Uemura T, Fane AG. Flux-Dependent Fouling Phenomena in Membrane Bioreactors under Different Food to Microorganisms (F/M) Ratios. SEP SCI TECHNOL 2013. [DOI: 10.1080/01496395.2012.724501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Khan MT, Manes CLDO, Aubry C, Croué JP. Source water quality shaping different fouling scenarios in a full-scale desalination plant at the Red Sea. WATER RESEARCH 2013; 47:558-68. [PMID: 23164217 DOI: 10.1016/j.watres.2012.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 09/28/2012] [Accepted: 10/06/2012] [Indexed: 05/14/2023]
Abstract
The complexity of Reverse Osmosis (RO) membrane fouling phenomenon has been widely studied and several factors influencing it have been reported by many researchers. This original study involves the investigation of two different fouling profiles produced at a seawater RO desalination plant installed on a floating mobile barge. The plant was moved along the coastline of the Red Sea in Saudi Arabia. The two locations where the barge was anchored showed different water quality. At the second location, two modules were harvested. One of the modules was pre-fouled by inorganics during plant operation at the previous site while the other was installed at the second site. Fouled membranes were subjected to a wide range of chemical and microbiological characterization procedures. Drastically different fouling patterns were observed in the two membranes which indicates the influence of source water quality on membrane surface modification and on fouling of RO membranes.
Collapse
Affiliation(s)
- Muhammad Tariq Khan
- Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | | | | | | |
Collapse
|
37
|
Jiang W, Xia S, Liang J, Zhang Z, Hermanowicz SW. Effect of quorum quenching on the reactor performance, biofouling and biomass characteristics in membrane bioreactors. WATER RESEARCH 2013; 47:187-196. [PMID: 23116778 DOI: 10.1016/j.watres.2012.09.050] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/19/2012] [Accepted: 09/26/2012] [Indexed: 06/01/2023]
Abstract
Enzymatic quorum quenching has recently been shown to be a promising approach to mitigate biofouling in membrane filtration processes. However, its universal effectiveness and mechanisms need further research. In this study, acylase was immobilized into sodium alginate capsules for enzymatic quorum quenching in MBRs operated at typical sludge concentrations (MLSS ≈ 10 g/L) for extended period of time. The results showed that quorum quenching influenced sludge characteristics and biofouling, while not impacting pollutant degradation. Better sludge settleability, smaller sludge particle size, less SMP and EPS production, lower apparent viscosity and higher zeta potential of mixed liquor were observed with quorum quenching. Quorum quenching also influenced the characteristics, behavior and function of SMP and EPS, which weakened biofilm formation ability but enhanced membrane filterability.
Collapse
Affiliation(s)
- Wei Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, PR China
| | | | | | | | | |
Collapse
|
38
|
Shen X, Zhao Y, Feng X, Bi S, Ding W, Chen L. Improved antifouling properties of PVDF membranes modified with oppositely charged copolymer. BIOFOULING 2013; 29:331-343. [PMID: 23528129 DOI: 10.1080/08927014.2013.772142] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Biofouling resulting from the attachment of microorganisms communities to the membrane surface is the major obstacle for the widespread application of membrane technology. This work develops a feasible approach to prepare an anti-biofouling poly(vinylidene fluoride) (PVDF) membrane. A copolymer that possessed oppositely charged groups was first synthesized via radical copolymerization with methyl methacrylate, 2-methacryloxy ethyltrimethyl ammonium chloride and 2-acrylamide-2-methyl propane sulphonic acid as monomers. The copolymer was blended with the PVDF powder to prepare the antifouling membrane via the immersed phase inversion method. The antifouling properties of the modified PVDF membrane were studied by X-ray photoelectron spectroscopy, field emission scanning electron microscopy, water contact angle measurement, zeta-potential measurement, protein adsorption, microbial adhesion and filtration experiments. The modified PVDF membrane showed limited adsorption and adhesion of protein bovine serum albumin and microbes (Escherichia coli and Saccharomyces cerevisiae) with increasing copolymer concentration in the casting solution. The modified PVDF membrane exhibited excellent antibiofouling properties.
Collapse
Affiliation(s)
- Xiang Shen
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, China
| | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Nguyen T, Roddick FA, Fan L. Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. MEMBRANES 2012; 2:804-40. [PMID: 24958430 PMCID: PMC4021920 DOI: 10.3390/membranes2040804] [Citation(s) in RCA: 333] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/02/2012] [Accepted: 11/05/2012] [Indexed: 01/15/2023]
Abstract
Biofouling is a critical issue in membrane water and wastewater treatment as it greatly compromises the efficiency of the treatment processes. It is difficult to control, and significant economic resources have been dedicated to the development of effective biofouling monitoring and control strategies. This paper highlights the underlying causes of membrane biofouling and provides a review on recent developments of potential monitoring and control methods in water and wastewater treatment with the aim of identifying the remaining issues and challenges in this area.
Collapse
Affiliation(s)
- Thang Nguyen
- School of Civil, Environmental and Chemical Engineering, Water: Effective Technologies and Tools (WETT) Centre, RMIT University, Melbourne, VIC. 3001, Australia.
| | - Felicity A Roddick
- School of Civil, Environmental and Chemical Engineering, Water: Effective Technologies and Tools (WETT) Centre, RMIT University, Melbourne, VIC. 3001, Australia.
| | - Linhua Fan
- School of Civil, Environmental and Chemical Engineering, Water: Effective Technologies and Tools (WETT) Centre, RMIT University, Melbourne, VIC. 3001, Australia.
| |
Collapse
|
41
|
Biodegradation of nitrophenol compounds and the membrane fouling trends in different submerged membrane bioreactors. J Memb Sci 2012. [DOI: 10.1016/j.memsci.2012.04.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Microbial relevant fouling in membrane bioreactors: influencing factors, characterization, and fouling control. MEMBRANES 2012; 2:565-84. [PMID: 24958297 PMCID: PMC4021913 DOI: 10.3390/membranes2030565] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/20/2012] [Accepted: 08/09/2012] [Indexed: 11/17/2022]
Abstract
Microorganisms in membrane bioreactors (MBRs) play important roles on degradation of organic/inorganic substances in wastewaters, while microbial deposition/growth and microbial product accumulation on membranes potentially induce membrane fouling. Generally, there is a need to characterize membrane foulants and to determine their relations to the evolution of membrane fouling in order to identify a suitable fouling control approach in MBRs. This review summarized the factors in MBRs that influence microbial behaviors (community compositions, physical properties, and microbial products). The state-of-the-art techniques to characterize biofoulants in MBRs were reported. The strategies for controlling microbial relevant fouling were discussed and the future studies on membrane fouling mechanisms in MBRs were proposed.
Collapse
|
43
|
Shrout JD, Nerenberg R. Monitoring bacterial twitter: does quorum sensing determine the behavior of water and wastewater treatment biofilms? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:1995-2005. [PMID: 22296043 DOI: 10.1021/es203933h] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bacteria have their own form of "twitter" communication, described as quorum sensing (QS), where bacteria emit and sense chemical signal molecules as a means to gauge population density and control gene expression. Many QS-controlled genes relate to biofilm formation and function and may be important for some water and wastewater treatment biofilms. There is a need to better understand bacterial QS, the bacteria biofilm aspects influenced by QS in engineered reactors, and to assess how designs and operations might be improved by taking this signaling into account. This paper provides a critical review of QS and how it relates to biofilms in engineered water and wastewater treatment systems and identifies needs for future research.
Collapse
Affiliation(s)
- Joshua D Shrout
- Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indiana, United States.
| | | |
Collapse
|
44
|
Xia S, Zhou L, Zhang Z, Li J. Influence and mechanism of N-(3-oxooxtanoyl)-L-homoserine lactone (C8-oxo-HSL) on biofilm behaviors at early stage. J Environ Sci (China) 2012; 24:2035-40. [PMID: 23534198 DOI: 10.1016/s1001-0742(11)61060-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
N-acyl-homoserines quenching, enzymatic quenching of bacterial quorum sensing, has recently applied to mitigate biofilm in membrane bioreactor. However, the effect of AHLs on the behavior of biofilm formation is still sparse. In this study, Pseudomonas aeruginosa biofilm was formed on ultra-filtration membrane under a series of N-(3-oxooxtanoyl)-L-homoserine lactone (Cs-oxo-HSL) concentrations. Diffusing C8-oxo-HSL increased the growth rate of cells on biofilm where the concentration of C8-oxo-HSL was over 10(-7) g/L. The C8-oxo-HSL gradient had no observable influence on cell density and extracellular polymeric substances of biofilm with over 10(-7) g/L C8-oxo-HSL. Surprisingly, 10(-11)-10(-8) g/L of C8-oxo-HSL had no effect on cell growth in liquid culture. The cell analysis demonstrated that the quorum sensing system might enhance the growth of neighboring cells in contact with surfaces into biofilm and may influence the structure and organization of biofilm.
Collapse
Affiliation(s)
- Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | | | | | | |
Collapse
|
45
|
Zhou Y, Oehmen A, Lim M, Vadivelu V, Ng WJ. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants. WATER RESEARCH 2011; 45:4672-82. [PMID: 21762944 DOI: 10.1016/j.watres.2011.06.025] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/17/2011] [Accepted: 06/21/2011] [Indexed: 05/06/2023]
Abstract
Nitrite is known to accumulate in wastewater treatment plants (WWTPs) under certain environmental conditions. The protonated form of nitrite, free nitrous acid (FNA), has been found to cause severe inhibition to numerous bioprocesses at WWTPs. However, this inhibitory effect of FNA may possibly be gainfully exploited, such as repressing nitrite oxidizing bacteria (NOB) growth to achieve N removal via the nitrite shortcut. However, the inhibition threshold of FNA to repress NOB (∼0.02 mg HNO2-N/L) may also inhibit other bioprocesses. This paper reviews the inhibitory effects of FNA on nitrifiers, denitrifiers, anammox bacteria, phosphorus accumulating organisms (PAO), methanogens, and other microorganisms in populations used in WWTPs. The possible inhibition mechanisms of FNA on microorganisms are discussed and compared. It is concluded that a single inhibition mechanism is not sufficient to explain the negative impacts of FNA on microbial metabolisms and that multiple inhibitory effects can be generated from FNA. The review would suggest further research is necessary before the FNA inhibition mechanisms can be more effectively used to optimize WWTP bioprocesses. Perspectives on research directions, how the outcomes may be used to manipulate bioprocesses and the overall implications of FNA on WWTPs are also discussed.
Collapse
Affiliation(s)
- Yan Zhou
- Advanced Environmental Biotechnology Centre (AEBC), Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, School of Biological Science, Level N-B2-01, 60 Nanyang Avenue, Singapore 639798, Singapore.
| | | | | | | | | |
Collapse
|
46
|
Essential roles of eDNA and AI-2 in aerobic granulation in sequencing batch reactors operated at different settling times. Appl Microbiol Biotechnol 2011; 93:2645-51. [DOI: 10.1007/s00253-011-3565-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/10/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
|
47
|
Kang H, Shim S, Lee SJ, Yoon J, Ahn KH. Bacterial translational motion on the electrode surface under anodic electric field. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:5769-5774. [PMID: 21650178 DOI: 10.1021/es200752h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Application of an electric field (alternating or cathodic polarization) has been suggested as a possible mean of controlling biofilm development. Bacteria on an anodically polarized surface were shown to be active and highly motile when compared with a nonpolarized condition, but no quantitative information on bacterial motion has been reported. This study investigated the effects of environmental conditions (current density and ionic strength) on the translational motion of P. aeruginosa PAO1 cells under an anodic electric field using a quantitative tracking method. Bacterial displacement for 10 s was found to be approximately 1.2 μm, irrespective of wide-ranging current densities (7.5-30 μA/cm(2)). However, the local dynamics of bacterial communities differed under varied current densities. The distribution of bacterial displacement appeared to exhibit a more oscillating (subdiffusive) at high current density. At the same time, the number of bacteria with a circular trajectory (superdiffusive) decreased. Bacterial movement decreased with increased ionic strength of the media, because of strong electrostatic interactions. The motion of bacterial communities on an anodically polarized surface under various conditions is discussed, along with possible mechanisms. In addition, the control of biofilm growth was partly demonstrated by changing the motility of bacterial cells under anodic polarization.
Collapse
Affiliation(s)
- Heekyoung Kang
- School of Chemical and Biological Engineering, College of Engineering, Seoul National University, Seoul 151-744, Korea
| | | | | | | | | |
Collapse
|