1
|
Lu H, Wang Y, Liu H, Wang N, Zhang Y, Li X. Review of the Presence and Phage-Mediated Transfer of ARGs in Biofilms. Microorganisms 2025; 13:997. [PMID: 40431170 PMCID: PMC12114417 DOI: 10.3390/microorganisms13050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/02/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
The widespread use of antibiotics has led to the emergence of a large number of drug-resistant bacteria, accelerating the dissemination and spread of antibiotic resistance genes (ARGs) in the environment. Bacterial biofilms, serving as reservoirs of ARGs, pose potential risks to environmental health that should not be ignored. Studies on the presence and transfer of ARGs in biofilms have been conducted both domestically and internationally. This article summarises the research progress on ARGs in various environments and analyses the mechanisms and factors influencing the dissemination and transfer of ARGs in microplastics, activated sludge, and pipe wall biofilms, with a particular focus on phage-mediated ARG transfer. We also discuss current research gaps in this field to provide references for future biofilm management and health risk control of ARGs.
Collapse
Affiliation(s)
- Han Lu
- National Key Laboratory of Efficient Utilization of Nutrient Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.)
- National Technological Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, China
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yanjun Wang
- National Key Laboratory of Efficient Utilization of Nutrient Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.)
- National Technological Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, China
| | - Hongyuan Liu
- National Key Laboratory of Efficient Utilization of Nutrient Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.)
- National Technological Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, China
| | - Nana Wang
- National Key Laboratory of Efficient Utilization of Nutrient Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.)
- National Technological Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, China
| | - Yan Zhang
- National Key Laboratory of Efficient Utilization of Nutrient Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.)
- National Technological Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, China
| | - Xinhua Li
- National Key Laboratory of Efficient Utilization of Nutrient Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.L.)
- National Technological Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, China
| |
Collapse
|
2
|
Haritha K, Akhina MK, Krishnakumar B. Effects of thermal treatment and anaerobic digestion on pathogen and ARG removal in bio-solids from a co-treatment plant for sewage and fecal sludge. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:521. [PMID: 40199788 DOI: 10.1007/s10661-025-13970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
This study assesses the bacterial pathogen load in secondary sludge from a sewage treatment plant that co-processes fecal sludge with municipal wastewater over 1 year. It also examines how anaerobic digestion and temperature treatment affect pathogens (including bacteria and nematodes) and antibiotic-resistance genes in secondary sludge. Furthermore, it assesses the impact of bacterial pathogen survival during co-digestion of secondary sludge with food waste, bakery waste, and flower waste. A fluctuating viable pathogenic bacterial count with no consistent trend was observed during the 1-year period. Staphylococcus spp. remained consistently abundant with log values of 6.2-7.4 CFU/g TS. Meanwhile, E. coli and Salmonella spp. ranged from 1.3 to 4.6 and 2.7 to 4.6 log CFU/g TS, respectively, significantly exceeding the Class A biosolid limits. Mesophilic anaerobic digestion for 21 days showed limited pathogen removal, requiring 55 days for complete elimination of Gram-negative bacteria, while Staphylococcus spp. exhibited only a 0.4-log reduction. Treatment at 70 °C for 60 min reduced 2-4 log units (p < 0.05) of all Gram-negative bacteria tested, whereas 100 °C for 30 min was required to eliminate Staphylococcus spp. Complete eradication was not achieved for ARGs or nematodes after anaerobic digestion or treatment at 100 °C for up to 90 min. Co-digestion of secondary sludge with food, bakery, and flower waste over 21 days effectively eliminated most bacterial pathogens, achieving complete removal (up to 100%) of Salmonella spp., E. coli, Vibrio spp., and Klebsiella spp. Meanwhile, Staphylococcus spp. persisted during co-digestion, where the extent of reduction varied with the co-substrate used.
Collapse
Affiliation(s)
- K Haritha
- Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - M K Akhina
- Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - B Krishnakumar
- Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, 695019, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Liu W, Chen Z, Li T, Wen X. Geographical distribution and risk of antibiotic resistance genes in sludge anaerobic digestion process across China. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137290. [PMID: 39837034 DOI: 10.1016/j.jhazmat.2025.137290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/09/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Anaerobic digestion (AD) is gaining increasing attention as the central reservoir of antibiotic resistance genes (ARGs), while the geographical distribution of ARGs in AD is neglected. Accordingly, a sampling scheme on full-scale AD plants across China was implemented, and the resistome therein was excavated. The abundance of ARGs in AD sludge ranged from 0.198 to 0.574 copies/cell. Some of the frequently reported and emergent ARGs were detected in our AD system. Both the abundance and composition of ARGs presented significant differences between the south and north regions of China, hinting the physical/economic factors may function in the formation of ARG profiles. The risk scores of AD samples were in middle of domestic and hospital wastewater. Risk scores were significantly higher in the north. Besides, the proportion of Rank I and Rank II ARGs was also higher in north, which explained the regional difference of ARG composition in a micro-perspective. This study provides a fundamental survey on the of ARG level and profile in AD process across China, reveals the biogeography of ARGs and inspires the control strategies of antibiotic resistance.
Collapse
Affiliation(s)
- Wei Liu
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhan Chen
- School of Environment, Tsinghua University, Beijing 100084, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Tianle Li
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xianghua Wen
- School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
4
|
McCorison CB, Kim T, Donato JJ, LaPara TM. Proximity-Ligation Metagenomic Sequence Analysis Reveals That the Antibiotic Resistome Makes Significant Transitions During Municipal Wastewater Treatment. Environ Microbiol 2025; 27:e70036. [PMID: 39797441 PMCID: PMC11724201 DOI: 10.1111/1462-2920.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/20/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025]
Abstract
Shotgun and proximity-ligation metagenomic sequencing were used to generate thousands of metagenome assembled genomes (MAGs) from the untreated wastewater, activated sludge bioreactors, and anaerobic digesters from two full-scale municipal wastewater treatment facilities. Analysis of the antibiotic resistance genes (ARGs) in the pool of contigs from the shotgun metagenomic sequences revealed significantly different relative abundances and types of ARGs in the untreated wastewaster compared to the activated sludge bioreactors or the anaerobic digesters (p < 0.05). In contrast, these results were statistically similar when comparing the ARGs in the pool of MAGs, suggesting that proximity-ligation metagenomic sequencing is particularly useful for pairing ARGs with their hosts but less adept at discerning quantitative differences in ARG types and relative abundances. For example, numerous MAGs of the genera Acinetobacter, Enterococcus, Klebsiella and Pseudomonas were identified in the untreated wastewater, many of which harboured plasmid-borne and/or chromosomal-borne ARGs; none of these MAGs, however, were detected in the activated sludge bioreactors or anaerobic digesters. In conclusion, this research demonstrates that the antibiotic resistome undergoes significant transitions in both the relative abundance and the host organisms during the municipal wastewater treatment process.
Collapse
Affiliation(s)
| | - Taegyu Kim
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Justin J. Donato
- Department of ChemistryUniversity of St. ThomasSt. PaulMinnesotaUSA
| | - Timothy M. LaPara
- Department of Civil, Environmental, and Geo‐EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
5
|
Harrison JC, Morgan GV, Kuppravalli A, Novak N, Farrell M, Bircher S, Garner E, Ashbolt NJ, Pruden A, Muenich RL, Boyer TH, Williams C, Ahmed W, Maal-Bared R, Hamilton KA. Determinants of antimicrobial resistance in biosolids: A systematic review, database, and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177455. [PMID: 39577596 DOI: 10.1016/j.scitotenv.2024.177455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Biosolids can provide a nutrient rich soil amendment, particularly for poor soils and semi-arid or drought-prone areas. However, there are concerns that sludge and biosolids could be a source of propagation and exposure to AMR determinants such as antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). To inform risk assessment efforts, a systematic literature review was performed to build a comprehensive spreadsheet database of ARB and ARG concentrations in biosolids (and some sludges specified as intended for land application), along with 69 other quantitative and qualitative meta-data fields from 68 published studies describing sampling information and processing methods that can be used for modeling purposes. Mean ARG concentrations per gram in positive samples of biosolids ranged from -5.7 log10(gene copies [gc]/g) to 12.92 log10(gc/g) (with these range values reported per dry weight), and aqueous concentrations ranged from 0.9 log10(gc/L) to 14.6 log10(gc/L). Mean ARB concentrations per gram of biosolids ranged from 2.02 log10 (colony forming units [CFU]/g) to 9.00 log10 (CFU/g) (dry weight), and aqueous concentrations ranged from 3.23 log10 (CFU/L) to 12.0 log10 (CFU/L). ARG log removal values (LRVs) during sewage sludge stabilization were calculated from a meta-analysis of mean concentrations before and after stabilization from 31 studies, ranging from -2.05 to 5.52 logs. The classes of resistance most relevant for a risk assessment corresponded to sulfonamide (sul1 and sul2), tetracycline (tetZ, tetX, tetA and tetG), beta-lactam (blaTEM), macrolide (ermB and ermF), aminoglycoside (strA and aac(6')-Ib-cr), and integron-associated (intI1). The resistance classes most relevant for ARB risk assessment included sulfonamides (sulfamethoxazole and sulfamethazine), cephalosporin (cephalothin and cefoxitin), penicillin (ampicillin), and ciprofloxin (ciprofloxacin). Considerations for exposure assessment are discussed to highlight risk assessment needs relating to antimicrobial resistance (AMR) associated with biosolids application. This study aids in prioritization of resources for reducing the spread of AMR within a One Health framework.
Collapse
Affiliation(s)
- Joanna Ciol Harrison
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Grace V Morgan
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA
| | - Aditya Kuppravalli
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | | | - Michael Farrell
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Sienna Bircher
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, Morgantown, WV 26505, USA
| | - Emily Garner
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, Morgantown, WV 26505, USA
| | - Nicholas J Ashbolt
- Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food and Environments (CRC SAAFE), Mawson Lakes, SA 5095, Australia
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rebecca L Muenich
- Biological and Agricultural Engineering, University of Arkansas, 790 W. Dickson St., Fayetteville, AR 72701, USA
| | - Treavor H Boyer
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Clinton Williams
- US Department of Agriculture Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Rasha Maal-Bared
- Bellevue Research and Testing Laboratory, CDM Smith, 14432 SE Eastgate Way Suite 100, Bellevue, WA 98007, USA
| | - Kerry A Hamilton
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|
6
|
Wang Y, Cheng B, Jia Y, Qi Y, Li H, Zhang Q, Wang H. Fate of antibiotic resistance genes during sludge anaerobic fermentation: Roles of different sludge pretreatment. ENVIRONMENTAL RESEARCH 2024; 263:120139. [PMID: 39393457 DOI: 10.1016/j.envres.2024.120139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Excess sludge, the primary by-product of wastewater treatment plants, is the source and sink of antibiotic resistance genes (ARGs). Sludge pretreatments are an indispensable pathway to improve the resource recovery and harmfulness for anaerobic digestion sludge. However, fewer studies have compared the effects of different pretreatment technologies on the distribution of ARGs during anaerobic sludge digestion. Here, this study established seven anaerobic digesters, and four typical ARGs and one integrase gene of class 1 integron (intI1) regarded as the representative mobile genetic elements (MGEs) were examined during the whole anaerobic digestion process. It was found anaerobic digestion could effectively remove ARGs with about 70.86% removal rate of total ARGs. Among these pretreatments, the reduce efficiency of ARGs was the highest in 50 °C pretreatment, followed by oxidant, and the last was acid-alkaline. The microbial community analysis demonstrated the microbial community structure, including ARGs hosts and antibiotic resistant bacteria, was significantly changed and influenced by high temperature pretreatment. In addition, high temperature and K2S2O8 observably decrease the level of ROS production. Macro transcriptome analysis indicated that sludge pretreatment, except for 50 °C pretreatment, up-regulated the genes relevant to lyases and transferase, but down-regulated the genes responsible for peroxidase, antioxidant enzymes and T4SS gene. This study emphasized and compared the different sludge pretreatments on the fate of ARGs in anaerobic sludge, and highlighted concerns regarding the environmental and health risks to our society.
Collapse
Affiliation(s)
- Yali Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China
| | - Boya Cheng
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Yuanyuan Jia
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Yuxuan Qi
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Hang Li
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Qiushuo Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China.
| |
Collapse
|
7
|
Cui L, Chen J, Yan Y, Fei Q, Ma Y, Wang Q. Development of oriented microbial consortium-based compound enzyme strengthens food waste hydrolysis and antibiotic resistance genes removal: Deciphering of performance, metabolic pathways and microbial communities. ENVIRONMENTAL RESEARCH 2024; 262:119973. [PMID: 39260723 DOI: 10.1016/j.envres.2024.119973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Enzymatic hydrolysis has been considered as an eco-friendly pretreatment method for enhancing bioconversion process of food waste (FW). However, existing commercial enzymes and microbial monomer-based compound enzymes (MME) have the issues of uneven distribution of enzymatic activity and low matching degree with the components of FW, leading to low efficiency with enzymatic hydrolysis and removal of antibiotic resistance genes (ARGs). This study used FW as the substrate, under the co-culture system, produced a microbial consortium-based compound enzymes (MCE) with oriented and well-matching degree for FW hydrolysis and ARGs removal, of which the performance, metabolic pathways and microbial communities were also investigated in depth. Results showed that the best performance for ARGs was achieved by the MCE prepared by mixing 1:5 of Aspergillus oryzae and Aspergillus niger after 12 days fermentation. The highest soluble chemical oxygen demand (SCOD) concentration and ARGs removal could respectively reach 83.90 ± 1.67 g/L and 45.95% after MCE pretreatment. The analysis of metabolic pathways revealed that 1:5 MCE pretreatment strengthened the catalytic activity of carbohydrate-active enzymes, increased the abundances of genes involved in cellulose and starch degradation, polysaccharide synthesis, ATP binding cassette (ABC) transporters and global regulation, while decreased the abundances of genes involved in mating pair formation system, two-component regulatory systems and quorum sensing, thereby enhanced FW hydrolysis and restrained ARGs dissemination. Microbial community analysis further indicated that the 1:5 MCE pretreatment promoted growth, metabolism and richness of functional microbes, while inhibited the host microbes of ARGs. It is expected that this study can provide useful insights into understanding the fate of ARGs in food waste during MCE pretreatment process.
Collapse
Affiliation(s)
- Lihui Cui
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxin Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yiming Yan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, China; Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an Jiaotong University, X''an, 710049, China
| | - Yingqun Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, China; Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an Jiaotong University, X''an, 710049, China.
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
8
|
Mortezaei Y, Demirer GN, Williams MR. Fate of intracellular and extracellular antibiotic resistance genes in sewage sludge by full-scale anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175760. [PMID: 39182790 DOI: 10.1016/j.scitotenv.2024.175760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Storage tank (ST) is a promising strategy for solid-liquid separation following anaerobic digestion (AD). However, little is known regarding the effects of ST on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and microbial communities. Therefore, this study first investigated eight typical ARGs (sul1, sul2, tetW, tetA, tetO, tetX, ermF, and ermB) and three MGEs (int1, int2, and tnpA) during full-scale AD of sludge and the liquid and biosolids phases of ST. Following that, intracellular ARGs (iARGs), extracellular polymeric substances (EPS)-associated ARGs, and cell-free ARGs removal were quantified in AD process, which is largely unknown for full-scale AD of sludge. The qPCR results showed that both AD and ST significantly removed ARGs, with ST biosolids showing the highest removal efficiency for the total measured relative (82.27 ± 2.09 %) and absolute (92.38 ± 0.89 %) abundance of ARGs compared to the raw sludge. Proteobacteria, Bacteroidota, Firmicutes and Campilobacterota were the main potential ARGs hosts in the sludge. Moreover, the results of different ARGs fractions showed that the total relative and absolute abundance of iARGs decreased by 90.12 ± 0.83 % and 79.89 ± 1.41 %, respectively, following AD. The same trend was observed for the abundance of EPS-associated ARGs, while those of cell-free ARGs increased after AD. These results underscore the risk of extracellular ARGs and provided new insights on extracellular ARGs dissemination evaluation.
Collapse
Affiliation(s)
- Yasna Mortezaei
- Earth and Ecosystem Science, Central Michigan University, Mount Pleasant, MI, USA
| | - Goksel N Demirer
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, USA; Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA
| | - Maggie R Williams
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, USA; Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
9
|
Wardi M, Lemkhente Z, Alla AA, Slimani N, Abali M, Idaghdour Y, Belmouden A. Resistome analysis of wastewater treatment plants in Agadir city, Morocco, using a metagenomics approach. Sci Rep 2024; 14:26328. [PMID: 39487157 PMCID: PMC11530435 DOI: 10.1038/s41598-024-76773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
Water scarcity has evolved into a pressing global issue, significantly impacting numerous regions worldwide. The use of treated wastewater stands out as a promising solution to this problem. However, the proliferation of various contaminants, primarily Antimicrobial Resistance Genes (ARGs), poses a significant challenge to its safe and sustainable use. In this study, we assessed the composition and abundance of 373 ARGs, corresponding to 31 different classes of antibiotics, in six wastewater treatment plants (WWTP) in Agadir city of Morocco. Influent and effluent samples were collected during the months of February and July in 2020, in addition to samples from the Atlantic Ocean. In total, 223 ARGs were uncovered, highlighting in particular resistance to aminoglycoside, macrolide lincosamide, beta-lactamase, chloramphenicol, sulfonamide, tetracycline, and other antibiotics. The mechanisms of action of these ARGs were mainly antibiotic inactivation, antibiotic target alteration, efflux pump and cellular protection. Mobile genetic elements (MGEs) were detected at high levels their co-occurrence with ARGs highlights their involvement in the acquisition and transmission of ARGs in microbial communities through horizontal gene transfer. While many wastewater treatment methods effectively reduce a large proportion of gene material and pathogens, a substantial fraction of ARGs and other contaminants persist in treated wastewater. This persistence poses potential risks to both human health and the environment, warranting the need of more effective treatment strategies.
Collapse
Affiliation(s)
- Maryem Wardi
- Laboratory of Cellular Biology and Molecular Genetics, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - Zohra Lemkhente
- Laboratory of Medical-Surgical, Biomedicine and Infectiology Research, Faculty of Medicine and Pharmacy, Ibnou Zohr University, Agadir, Morocco
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Ecosystems, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - Noureddine Slimani
- Laboratory of Aquatic Systems: Marine and Continental Ecosystems, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - M'hamed Abali
- Laboratory of Aquatic Systems: Marine and Continental Ecosystems, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - Youssef Idaghdour
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ahmed Belmouden
- Laboratory of Cellular Biology and Molecular Genetics, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco.
| |
Collapse
|
10
|
Xiao Y, Qin Y, Jiang X, Gao P. Effects of polypropylene microplastics on digestion performance, microbial community, and antibiotic resistance during microbial anaerobic digestion. BIORESOURCE TECHNOLOGY 2024; 411:131358. [PMID: 39191296 DOI: 10.1016/j.biortech.2024.131358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/15/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
As an emerging pollutant, microplastics (MPs) have attracted increasing attention worldwide. The effects of polypropylene (PP) MPs on digestion performance, behaviors of dominant microbial communities, antibiotic resistance genes (ARGs) and mobile genetic elements in microbial anaerobic digesters were investigated. The results showed that the addition of PP-MPs to digesters led to an increase in methane production of 10.8% when 300 particles/g TSS of PP-MPs was introduced compared with that in digester not treated with PP-MPs. This increase was attributed to the enrichment of acetogens such as Syntrophobacter (42.0%), Syntrophorhabdus (27.0%), and Syntrophomonas (10.6%), and methanogens including Methanobacterium and Methanosaeta. tetX was highly enriched due to PP-MP exposure, whereas parC exhibited the greatest increase (35.5% - 222.7%). Horizontal gene transfer via ISCR1 and intI1 genes might play an important role in the spread of ARGs. Overall, these findings provide comprehensive insight into the ecological dynamics of PP-MPs during microbial anaerobic digestion.
Collapse
Affiliation(s)
- Yu Xiao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yan Qin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoying Jiang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
11
|
Błaszczyk W, Siatecka A, Tlustoš P, Oleszczuk P. Occurrence and dissipation mechanisms of organic contaminants during sewage sludge anaerobic digestion: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173517. [PMID: 38821290 DOI: 10.1016/j.scitotenv.2024.173517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Sewage sludge, a complex mixture of contaminants and pathogenic agents, necessitates treatment or stabilization like anaerobic digestion (AD) before safe disposal. AD-derived products (solid digestate and liquid fraction) can be used as fertilizers. During AD, biogas is also produced, and used for energy purposes. All these fractions can be contaminated with various compounds, whose amount depends on the feedstocks used in AD (and their mutual proportions). This paper reviews studies on the distribution of organic contaminants across AD fractions (solid digestate, liquid fraction, and biogas), delving into the mechanisms behind contaminant dissipation and proposing future research directions. AD proves to be a relatively effective method for removing polychlorinated biphenyls, polycyclic aromatic hydrocarbons, pharmaceuticals, antibiotic resistance genes and hydrocarbons. Contaminants are predominantly removed through biodegradation, but many compounds, especially hydrophobic (e.g. per- and polyfluoroalkyl substances), are also sorbed onto digestate particles. The process of sorption is suggested to reduce the bioavailability of contaminants. As a result of sorption, contaminants accumulate in the largest amount in the solid digestate, whereas in smaller amounts in the other AD products. Polar pharmaceuticals (e.g. metformin) are particularly leached, while volatile methylsiloxanes and polycyclic aromatic hydrocarbons, characterized by a high Henry's law constant, are volatilized into the biogas. The removal of compounds can be affected by AD operational parameters, the type of sludge, physicochemical properties of contaminants, and the sludge pretreatment used.
Collapse
Affiliation(s)
- Wiktoria Błaszczyk
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences, 15 Akademicka Street, 20-950 Lublin, Poland
| | - Anna Siatecka
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences, 15 Akademicka Street, 20-950 Lublin, Poland
| | - Pavel Tlustoš
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 129 Kamýcká Street, Praha 6 - Suchdol 165 00, Czech Republic
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 3 Maria Curie-Sklodowska Square, 20-031 Lublin, Poland.
| |
Collapse
|
12
|
Allegrini M, Zabaloy MC. Anaerobic digestates in agricultural soils: A systematic review of their effects on antibiotic resistance genes. Rev Argent Microbiol 2024; 56:394-401. [PMID: 39299828 DOI: 10.1016/j.ram.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/05/2024] [Accepted: 07/27/2024] [Indexed: 09/22/2024] Open
Abstract
Tackling the dissemination of antibiotic resistance is one of the main global challenges. Manures from animal production are a recognized source of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) requiring appropriate treatment methods. One of the main approaches for manure treatment is anaerobic digestion (AD). Meta-analyses have demonstrated that AD can significantly reduce the load of ARGs. However, antibiotics, ARGs and MGEs still remain in the final product (digestate). A sustainable agricultural use of digestates under the One Health framework requires wide assessments of their effects in the soil resistome. The objective of this review was to present the state of the art of digestate effects on ARGs of agricultural soils, focusing exclusively on digestates from animal manures. A systematic review was conducted. The examination of the resulting literature indicated that although temporal decays are observed for a variety of ARGs in single-application and repeated-applications experiments, for certain ARGs the pre-treatment or control levels are not restored. However, the low number of studies and the heterogeneous experimental conditions preclude a clear understanding of the fate of ARGs in soil and their risk for agroecosystems. The inclusion of multiple MGEs and the assessment of the long-term influence of digestates on soil properties and microbial communities could be keystones for a better understanding of the risks associated with digestate-induced changes in the soil resistome.
Collapse
Affiliation(s)
- Marco Allegrini
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - María Celina Zabaloy
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina; Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
13
|
Franchitti E, Pedullà M, Madsen AM, Traversi D. Effect of anaerobic digestion on pathogens and antimicrobial resistance in the sewage sludge. ENVIRONMENT INTERNATIONAL 2024; 191:108998. [PMID: 39244956 DOI: 10.1016/j.envint.2024.108998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Antimicrobial resistance (AMR) is recognized as a global threat. AMR bacteria accumulate in sewage sludge however, knowledge on the persistence of human pathogens and AMR in the sludge line of the wastewater treatment is limited. Sludge can be used, with or without additional treatment, as fertilizer in agricultural fields. The aim of this study is to obtain knowledge about presence of human pathogens and AMR in the sewage sludge, before and after the anaerobic digestion (AD) applying innovative combinations of methods. Fifty sludge samples were collected. Cultivation methods combined with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and Antibiotic Susceptibility Test (AST) were used obtaining knowledge about the microbial community, pathogens, and antibiotic resistant bacteria while the droplet digital Polymerase Chain Reaction (ddPCR) was performed to detect most common AMR genes. In total, 231 different bacterial species were identified in the samples. The most abundant species were spore-forming facultative anaerobic bacteria belonging to Bacillus and Clostridium genera. The AD causes a shift in the microbial composition of the sludge (p = 0.04). Seven pathogenic bacterial species constituting 188 colonies were isolated and tested for susceptibility to Clindamycin, Meropenem, Norfloxacin, Penicillin G, and Tigecycline. Of the Clostridium perfringens and Bacillus cereus isolates 67 and 50 %, respectively, were resistant to Clindamycin. Two B. cereus and two C. perfringens isolates were also resistant to other antibiotics showing multidrug resistance. ARGs (blaOXA, blaTEM, ermB, qnrB, tet(A)-(W), sulI-II) were present at 7-8 Log gene copies/kg of sludge. AD is the main driver of a reduction of some ARGs (1 Log) but resistant bacteria were still present. The results showed the usefulness of the integration of the proposed analytical methods and suggest a decrease in the risk of presence of cultivable pathogens including resistant isolates after AD but a persistent risk of ARGs' horizontal transmission.
Collapse
Affiliation(s)
- Elena Franchitti
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia 92, 10126 Torino, Italy
| | - Matilde Pedullà
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia 92, 10126 Torino, Italy
| | - Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Deborah Traversi
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia 92, 10126 Torino, Italy.
| |
Collapse
|
14
|
Zhang X, Ma L, Zhang XX. Neglected risks of enhanced antimicrobial resistance and pathogenicity in anaerobic digestion during transition from thermophilic to mesophilic. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134886. [PMID: 38878435 DOI: 10.1016/j.jhazmat.2024.134886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Minimization of antibiotic resistance genes (ARGs) and potential pathogenic antibiotic-resistant bacteria (PARB) during anaerobic digestion (AD) is significantly impacted by temperature. However, knowledge on how ARGs and PARB respond to temperature transition from thermophilic to mesophilic is limited. Here, we combined metagenomic-based with culture-based approaches and revealed the risks of antimicrobial resistance and pathogenicity during transition from 55 °C to 35 °C for AD, with strategies of sharp (ST, one-step by 20 °C/d) and mild (MT, step-wise by 1 °C/d). Results indicated a lower decrease in methane production with MT (by 38.9%) than ST (by 88.8%). Phenotypic assays characterized a significant propagation of multi-resistant lactose-fermenting Enterobacteriaceae and indicator pathogens after both transitions, especially via ST. Further genomic evidence indicated a significant increase of ARGs (29.4-fold), virulence factor genes (1.8-fold) and PARB (65.3-fold) after ST, while slight enrichment via MT. Bacterial succession and enhanced horizontal transfer mediated by mobile genetic elements promoted ARG propagation in AD during transition, which was synchronously exacerbated through horizontal transfer mechanisms mediated by cellular physiological responses (oxidative stress, membrane permeability, bacterial conjugation and transformation) and co-selection mechanisms of biomethanation metabolic functions (acidogenesis and acetogenesis). This study reveals temperature-dependent resistome and pathogenicity development in AD, facilitating microbial risk control.
Collapse
Affiliation(s)
- Xingxing Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Liping Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, PR China.
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
15
|
Liu Z, Jiang B, Sun Z. Mechanism of self-supporting montmorillonite composite material for bio-enhanced degradation of chlorotetracycline: Electron transfer and microbial response. BIORESOURCE TECHNOLOGY 2024; 404:130928. [PMID: 38838830 DOI: 10.1016/j.biortech.2024.130928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/27/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
The efficient degradation of antibiotics holds significant implications for mitigating environmental pollution. This study synthesized a montmorillonite chitosan composite material (MMT-CS) using the gel template method. Subsequently, a bio-enhanced reactor was constructed to facilitate the degradation of chlorotetracycline (CTC). The addition of MMT-CS composite material enables the degradation of different concentrations of CTC. MMT-CS, a conductive carrier, effectively promotes microbial adhesion and boosts the metabolic activity of functional microorganisms. Additionally, it facilitates the maintenance of microbial activity under CTC pressure by promoting the secretion of extracellular polymeric substances, increasing critical enzyme activity, and enhancing the electron transfer capacity within the system. In this MMT-CS bio-enhanced process, Paracoccus (11.4%) and Bacillus (3.9%) are utilized as essential bacteria genes. The results of metabolic pathways prediction indicated significant enhancements in membrane-transport, nucleotide-metabolism, replication-repair, and lipid-metabolism. Thus, the developed self-supporting MMT-CS bio-enhanced process ensured the stability of the system during the removal of antibiotics.
Collapse
Affiliation(s)
- Zhibin Liu
- Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Bingyu Jiang
- Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Zhirong Sun
- Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
16
|
Allegrini M, Iocoli GA, Zabaloy MC. Combined use of digestate and inorganic fertilizer alleviates the burden of class 1 integrons in perennial ryegrass rhizosphere without compromising aerial biomass production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47132-47143. [PMID: 38985425 DOI: 10.1007/s11356-024-34279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Antimicrobial resistance (AMR) is one of the main global health challenges. Anaerobic digestion (AD) can significantly reduce the burden of antibiotic resistance genes (ARGs) in animal manures. However, the reduction is often incomplete. The agronomic use of digestates requires assessments of their effects on soil ARGs. The objective of this study was to assess the effect of digestate on the abundance of ARGs and mobile genetic elements (MGEs) in the rhizosphere of ryegrass (Lolium perenne L.) and to determine whether half-dose replacement of digestate with urea (combined fertilizer) can be implemented as a safer approach while maintaining a similar biomass production. A greenhouse assay was conducted during 190 days under a completely randomized design with two experimental factors: fertilizer type (unfertilized control and fertilized treatments with equal N dose: digestate, urea and combined fertilizer) and sampling date (16 and 148 days after the last application). The results indicated that the digestate significantly increased the abundance of clinical class 1 integrons (intI1 gene) relative to the unfertilized control at both sampling dates (P < 0.05), while the combined fertilizer only increased them at the first sampling. Sixteen days after completing the fertilization scheme only the combined fertilizer and urea significantly increased the biomass production relative to the control (P < 0.05). Additionally, by the end of the assay, the combined fertilizer showed significantly lower levels of the macrolide-resistance gene ermB than digestate and a cumulative biomass similar to urea or digestate. Overall, the combined fertilizer can alleviate the burden of integrons and ermB while simultaneously improving biomass production.
Collapse
Affiliation(s)
- Marco Allegrini
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario (UNR)-CONICET, Zavalla, Argentina
| | - Gastón Alejandro Iocoli
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María Celina Zabaloy
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina.
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
17
|
Pourrostami Niavol K, Bordoloi A, Suri R. An overview of the occurrence, impact of process parameters, and the fate of antibiotic resistance genes during anaerobic digestion processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41745-41774. [PMID: 38853230 PMCID: PMC11219439 DOI: 10.1007/s11356-024-33844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
Antibiotic resistance genes (ARGs) have emerged as a significant global health threat, contributing to fatalities worldwide. Wastewater treatment plants (WWTPs) and livestock farms serve as primary reservoirs for these genes due to the limited efficacy of existing treatment methods and microbial adaptation to environmental stressors. Anaerobic digestion (AD) stands as a prevalent biological treatment for managing sewage sludge and manure in these settings. Given the agricultural utility of AD digestate as biofertilizers, understanding ARGs' fate within AD processes is essential to devise effective mitigation strategies. However, understanding the impact of various factors on ARGs occurrence, dissemination, and fate remains limited. This review article explores various AD treatment parameters and correlates to various resistance mechanisms and hotspots of ARGs in the environment. It further evaluates the dissemination and occurrence of ARGs in AD feedstocks and provides a comprehensive understanding of the fate of ARGs in AD systems. This review explores the influence of key AD parameters such as feedstock properties, pretreatments, additives, and operational strategies on ARGs. Results show that properties such as high solid content and optimum co-digestion ratios can enhance ARG removal, while the presence of heavy metals, microplastics, and antibiotics could elevate ARG abundance. Also, operational enhancements, such as employing two-stage digestion, have shown promise in improving ARG removal. However, certain pretreatment methods, like thermal hydrolysis, may exhibit a rebounding effect on ARG levels. Overall, this review systematically addresses current challenges and offers future perspectives associated with the fate of ARGs in AD systems.
Collapse
Affiliation(s)
- Kasra Pourrostami Niavol
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Achinta Bordoloi
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Rominder Suri
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
18
|
Su H, Zhu T, Lv J, Wang H, Zhao J, Xu J. Leveraging machine learning for prediction of antibiotic resistance genes post thermal hydrolysis-anaerobic digestion in dairy waste. BIORESOURCE TECHNOLOGY 2024; 399:130536. [PMID: 38452951 DOI: 10.1016/j.biortech.2024.130536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/17/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Anaerobic digestion holds promise as a method for removing antibiotic resistance genes (ARGs) from dairy waste. However, accurately predicting the efficiency of ARG removal remains a challenge. This study introduces a novel appproach utilizing machine learning to forecast changes in ARG abundances following thermal hydrolysis-anaerobic digestion (TH-AD) treatment. Through network analysis and redundancy analyses, key determinants of affect ARG fluctuations were identified, facilitating the development of machine learning models capable of accurately predicting ARG changes during TH-AD processes. The decision tree model demonstrated impressive predictive power, achieving an impessive R2 value of 87% against validation data. Feature analysis revealed that the genes intI2 and intI1 had a critical impact on the absolute abundance of ARGs. The predictive model developed in this study offers valuable insights for improving operational and managerial practices in dairy waste treatment facilities, with the ultimate goal of mitigating the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Haiyan Su
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tianjiao Zhu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jiaqiang Lv
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Hongcheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Ji Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Environmental Pollution Prevention and Waste Resource Recycle, Inner Mongolia University, Hohhot 010021, China
| | - Jifei Xu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Environmental Pollution Prevention and Waste Resource Recycle, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
19
|
Wang C, Yin X, Xu X, Wang D, Liu L, Zhang X, Yang C, Zhang X, Zhang T. Metagenomic absolute quantification of antibiotic resistance genes and virulence factor genes-carrying bacterial genomes in anaerobic digesters. WATER RESEARCH 2024; 253:121258. [PMID: 38359594 DOI: 10.1016/j.watres.2024.121258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Sewage treatment works have been considered as hotspots for the dissemination of antibiotic resistance genes (ARGs). Anaerobic digestion (AD) has emerged as a promising approach for controlling the spread of ARGs while destroying biomass in sludge. Evaluating the impact of AD on ARG removal relies on the absolute quantification of ARGs. In this study, we quantified the ARG concentrations in both full-scale and lab-scale AD systems using a cellular spike-ins based absolute quantification approach. Results demonstrated that AD effectively removed 68 ± 18 %, 55 ± 12 %, and 57 ± 19 % of total ARGs in semi-continuous AD digesters, with solid retention times of 15, 20, and 25 days, respectively. The removal efficiency of total ARGs increased as the AD process progressed in the batch digesters over 40 days. A significant negative correlation was observed between digestion time and the concentrations of certain ARG types, such as beta-lactam, sulfonamide, and tetracycline. However, certain potential pathogenic antibiotic resistant bacteria (PARB) and multi-resistant high-risk ARGs-carrying populations robustly persisted throughout the AD process, regardless of the operating conditions. This study highlighted the influence of the AD process and its operating parameters on ARG removal, and revealed the broad spectrum and persistence of PARB in AD systems. These findings provided critical insights for the management of microbial hazards.
Collapse
Affiliation(s)
- Chunxiao Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Xiaole Yin
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Xuanwei Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Centre for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China; School of Public Health, The University of Hong Kong, Hong Kong, China; Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau SAR, China.
| |
Collapse
|
20
|
Azizi SMM, Dhar BR. Can low-temperature thermal hydrolysis mitigate the oxidative stress of polystyrene nanoplastics on anaerobic digestion? CHEMOSPHERE 2024; 353:141516. [PMID: 38387654 DOI: 10.1016/j.chemosphere.2024.141516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
The presence of micro/nanoplastics (MPs/NPs) in sewage sludge has sparked considerable apprehensions over their potential negative effects on anaerobic digestion (AD) performance. The occurrence of MPs/NPs can trigger oxidative stress on the anaerobic microbiome, leading to potential inhibition of the AD process. While the thermal hydrolysis process (THP) is an extensively utilized sludge pretreatment method for AD, its impact on stress induced by MPs/NPs during AD remains poorly understood. In this study, we assessed the impacts of low-temperature THP (90 °C, 90 min) on AD of sewage sludge in the presence of 150 μg/L of polystyrene nanoplastics (PsNPs) under different solid retention times (SRTs) of 20, 15, and 10 d. The presence of PsNPs resulted in a higher reactive oxygen species (ROS) production and a higher abundance of antibiotic resistance genes (ARGs). Additionally, their presence caused a significant inhibition of methane production by 28.2%, 29.3%, and 38.8% for SRTs of 20, 15, and 10 d, respectively. Introducing low-temperature THP prior to the AD could partially recover methane production by mitigating ROS-induced stress and curbing the propagation of ARGs during the AD process. These results shed light on the potential benefits of THP and further optimization opportunities in alleviating the adverse effects of MPs/NPs-induced stress during sewage sludge AD.
Collapse
Affiliation(s)
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
21
|
Itzhari D, Shuai W, Hartmann EM, Ronen Z. Heterogeneous Antibiotic Resistance Gene Removal Impedes Evaluation of Constructed Wetlands for Effective Greywater Treatment. Antibiotics (Basel) 2024; 13:315. [PMID: 38666991 PMCID: PMC11047525 DOI: 10.3390/antibiotics13040315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Microorganisms carrying antimicrobial resistance genes are often found in greywater. As the reuse of greywater becomes increasingly needed, it is imperative to determine how greywater treatment impacts antimicrobial resistance genes (ARGs). Using qPCR and SmartChip™ qPCR, we characterized ARG patterns in greywater microbial communities before, during, and after treatment by a recirculating vertical flow constructed wetland. In parallel, we examined the impact of greywater-treated irrigation on soil, including the occurrence of emerging micropollutants and the taxonomic and ARG compositions of microbial communities. Most ARGs in raw greywater are removed efficiently during the winter season, while some ARGs in the effluents increase in summer. SmartChip™ qPCR revealed the presence of ARGs, such as tetracycline and beta-lactam resistance genes, in both raw and treated greywater, but most abundantly in the filter bed. It also showed that aminoglycoside and vancomycin gene abundances significantly increased after treatment. In the irrigated soil, the type of water (potable or treated greywater) had no specific impact on the total bacterial abundance (16S rRNA gene). No overlapping ARGs were found between treated greywater and greywater-irrigated soil. This study indicates ARG abundance and richness increased after treatment, possibly due to the concentration effects of the filter beds.
Collapse
Affiliation(s)
- Daniella Itzhari
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Beersheba 8499000, Israel;
| | - Weitao Shuai
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA; (W.S.); (E.M.H.)
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA; (W.S.); (E.M.H.)
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Division of Pulmonary Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zeev Ronen
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Beersheba 8499000, Israel;
| |
Collapse
|
22
|
Zhou S, Yang F, Wang W, Yang Z, Song J, Jiang T, Huang Z, Gao Y, Wang Y. Impact of uranium on antibiotic resistance in activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170369. [PMID: 38278272 DOI: 10.1016/j.scitotenv.2024.170369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
The emergence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment is well established as a human health crisis. The impact of radioactive heavy metals on ecosystems and ultimately on human health has become a global issue, especially for the regions suffering various nuclear activities or accidents. However, whether the radionuclides can affect the fate of antibiotic resistance in bacteria remains poorly understood. Here, the dynamics of ARB, three forms of ARGs-intracellular ARGs (iARGs), adsorbed extracellular ARGs (aeARGs), and free extracellular ARGs (feARGs)-and microbial communities were investigated following exposure to uranium (U), a representative radioactive heavy metal. The results showed that 90-d of U exposure at environmentally relevant concentrations of 0.05 mg/L or 5 mg/L significantly increased the ARB concentration in activated sludge (p < 0.05). Furthermore, 90-d of U exposure slightly elevated the absolute abundance of aeARGs (except tetO) and sulfonamide iARGs, but decreased tetracycline iARGs. Regarding feARGs, the abundance of tetC, tetO, and sul1 decreased after 90-d of U stress, whereas sul2 showed the opposite trend. Partial least-squares path model analysis revealed that the abundance of aeARGs and iARGs under U stress was predominantly driven by increased cell membrane permeability/intI1 abundance and cell membrane permeability/reactive oxygen species concentration, respectively. Conversely, the changes in feARGs abundance depended on the composition of the microbial community and the expression of efflux pumps. Our findings shed light on the variations of ARGs and ARB in activated sludge under U exposure, providing a more comprehensive understanding of antibiotic resistance risks aggravated by radioactive heavy metal-containing wastewater.
Collapse
Affiliation(s)
- Shuai Zhou
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Fengjuan Yang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Zhengqing Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Jian Song
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Tianyun Jiang
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zefeng Huang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Yuanyuan Gao
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China.
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China.
| |
Collapse
|
23
|
Mirsoleimani Azizi SM, Zakaria BS, Dhar BR. Low-temperature thermal hydrolysis for enhancing sludge anaerobic digestion and antibiotic resistance management: Significance of digester solids retention time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170392. [PMID: 38281633 DOI: 10.1016/j.scitotenv.2024.170392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
Recently, there has been a growing inclination towards utilizing primary sludge (PS) fermentation prior to anaerobic digestion (AD) in water resource recovery facilities (WRRFs), where sludge liquor containing volatile fatty acids is used for biological nutrient removal. Nevertheless, using a low-temperature thermal hydrolysis process (THP) to improve AD in WRRFs adopting PS fermentation remains an area that has received limited research attention. Here, we studied the impact of THP (90 °C, 90 min) on anaerobic co-digestion of thickened waste activated sludge (TWAS) and fermented primary sludge (FPS) under varying solids retention times (SRTs) in semi-continuous mode. The study involved two THP schemes: scheme 1, where THP was done for both TWAS and FPS, and scheme 2, where THP was applied to TWAS only. The results demonstrated that reducing SRT from 20 to 15 and 10 d leads to decreased methane yield in both schemes. However, THP significantly enhances methane production, showing improvements of up to 37.9 % (scheme 1) and 31.2 % (scheme 2) under a 15-d SRT. Furthermore, while decreasing SRT increased the proliferation of antibiotic resistance genes (ARGs), thermal hydrolysis could effectively reduce most ARGs, indicating its potential to mitigate antibiotic resistance in the AD process. Overall, these results provide useful perceptions regarding the potential adoption of low-temperature THP in WRRFs with PS fermentation.
Collapse
Affiliation(s)
| | - Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada; Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
24
|
Liu W, Sun C, Li W, Li T, Chen Z, Wang J, Ren Z, Wen X. Sludge composition and characteristics shaped microbial community and further determined process performance: A study on full-scale thermal hydrolysis-anaerobic digestion processes. J Environ Sci (China) 2024; 137:96-107. [PMID: 37980058 DOI: 10.1016/j.jes.2022.12.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 11/20/2023]
Abstract
Anaerobic digestion (AD) with thermal hydrolysis (TH) pretreatment is a promising process for excess sludge treatment, while there lacks of the knowledge from full-scale process about the impact of sludge composition and characteristics on microbial community and performance. The sludge physiochemical indices, microbial community and performance data of four full-scale TH-AD plants were characterized, and their relationships was elucidated. The four plants were operated under almost similar total organic loading rate (OLR) but their methanogenesis performance differentiate into two groups, namely superior group (SupG) and the inferior group (InfG). In both groups, TH effectively solubilized particulate organic compounds, meanwhile raised the ammonia nitrogen (NH4+-N) and volatile fatty acid (VFA) concentration. Compared with the SupG, thermal hydrolyzed sludge of InfG had higher level of VFAs, NH4+-N and total chemical oxygen demand (tCOD), which showed higher inhibition effect on microbes, leading to a community with lower diversity, lower abundance of carbohydrate degrading functional guild, higher protein degrading one, and methanogens that adapted to limited substrates, and further declined the methane production rate. Thus, it was recommended that OLR alone was not sufficient for controlling the system in design and operation, the concentration of VFAs, NH4+-N and tCOD should be equally considered. Their higher concentration, together with the higher abundance of Defluviitoga and Proteiniphilum were recommended as indicators for inferior running condition. Our results proposed that microbial communities played a role of bridge between environmental factors and performance, provided implications for engineering ecology and operational regulation for full-scale sludge TH-AD process.
Collapse
Affiliation(s)
- Wei Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Chenxiang Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Jinneng Holding Group, Datong, Shanxi 037000, China
| | - Wei Li
- Research and Development Center, Beijing Drainage Group Co. Ltd., Beijing 100124, China; Beijing Dabeinong Science and Technology Group Co., Ltd., Beijing 100080, China
| | - Tianle Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhan Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiawei Wang
- Research and Development Center, Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Zhengran Ren
- Research and Development Center, Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Xianghua Wen
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
25
|
Xiao T, Chen R, Cai C, Yuan S, Dai X, Dong B, Xu Z. Abatement of antibiotics and resistance genes during catalytic ozonation enhanced sludge dewatering process: Synchronized in volume and hazardousness reduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132912. [PMID: 37944236 DOI: 10.1016/j.jhazmat.2023.132912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Based on the efficiency of the catalytic ozonation techniques (HDWS+O3 and MnFe2O4 @SBC+O3) in enhancing the sludge dewaterability, the effectiveness in synchronized abatement antibiotics and antibiotic resistance genes (ARGs) was conducted to determine. The results revealed that catalytic ozonation conditioning altered the distribution of target antibiotics (tetracycline (TC), oxytetracycline (OTC), norfloxacin (NOR), ofloxacin (OFL)) in the dewatered filtrate, the dewatered sludge cake and the extra-microcolony/cellular polymers (EMPS/ECPS) layers, achieving the redistribution from solid-phase adsorption to liquid-phase dissolution. The total degradation rate was over 90% for TC and OTC, 72-78% for NOR and OFL; the abatement efficiency of eleven ARGs reached 1.47-3.01 log and 1.64-3.59 log, respectively, and more than four eARGs were eliminated. The effective abatement of the absolute abundance of Mobile genetic elements (MGEs) (0.91-1.89 log) demonstrated that catalytic ozonation conditioning could also significantly inhibit horizontal gene transfer (HGT). The abundance of resistant bacteria was greatly reduced and the signal transduction of the typical ARGs host bacteria was inhibited. The highly reactive oxidation species (ROS) generated were responsible for the abatement of antibiotics and ARGs. These findings provided new insights into the sludge conditioning for ideal and synchronized reduction in volume and hazardousness by catalytic ozonation processes in sludge treatment.
Collapse
Affiliation(s)
- Tingting Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Renjie Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China.
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
26
|
Cuetero-Martínez Y, Villamizar-Ojeda KN, Hernández-Santiago MJ, De Los Cobos-Vasconcelos D, Aguirre-Garrido JF, López-Vidal Y, Noyola A. Removal of intI1, ARGs, and SARS-CoV-2 and changes in bacterial communities in four sewage treatment facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:165984. [PMID: 37574072 DOI: 10.1016/j.scitotenv.2023.165984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Currently, discharge regulations for wastewater treatment plants (WWTPs) are based on conventional parameters, but more is needed to ensure safe water reuse. In particular, emerging pollutants, as antimicrobials and antibiotic resistance genes (ARGs), are not considered. This research focuses on the fate of emerging biological contaminants during wastewater treatment in Mexico City. intI1 and the ARGs cphA-02, OXA-10 and sul1 were analyzed by qPCR; pathogenic bacteria species were characterized by high throughput sequencing of complete 16S rRNA gene, and fragments of SARS-CoV-2 were quantified by RT-qPCR. Conventional parameters (chemical oxygen demand and coliform bacteria) were also determined. Two sampling campaigns (rainy and dry seasons) were carried out in four municipal WWTPs in Mexico City, representing five biological treatment processes: conventional activated sludge, extended aeration activated sludge, membrane bioreactor, direct anaerobic digestion, and constructed wetland, followed by ultraviolet light or chlorine disinfection. In most cases, gene fragments of SARS-CoV-2 were eliminated below the detection limit of RT-qPCR. The abundance of intI1 positively correlated with the sul1, OXA-10, and cphA-02 abundances; intI1 and the ARGs here studied were partially removed in the WWTPs, and in most cases, the number of copies per second discarded in the sludge were higher those in the effluent. The treatment processes decreased the abundance of dominant bacterial groups in the raw wastewater, while enriching bacterial groups in the effluent and the biological sludge, with possible pollutant removal capabilities. Bacterial communities in the raw wastewater showed the predominance of the genus Arcobacter (from 62.4 to 86.0 %) containing potentially pathogenic species. Additionally, DNA of some species persisted after the treatment processes: A. johnsonii, A. junii, A. caviae, A. hydrophila, A. veronii, A. butzleri, A. cryaerophilus, Chryseobacterium indologenes, Hafnia paralvei, M. osloensis, Pseudomonas putida and Vibrio cholerae, which deserves special attention in future regulation for safe water reuse.
Collapse
Affiliation(s)
- Yovany Cuetero-Martínez
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04510 Cd de, Mexico; Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, 04510 Cd de, Mexico
| | - Karen Natalia Villamizar-Ojeda
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04510 Cd de, Mexico; Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, 04510 Cd de, Mexico
| | | | - Daniel De Los Cobos-Vasconcelos
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04510 Cd de, Mexico
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana - Unidad Lerma, 52005 Lerma de Villada, Edo, Mexico
| | - Yolanda López-Vidal
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Autónoma de México, 04510, Cd de, Mexico
| | - Adalberto Noyola
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04510 Cd de, Mexico.
| |
Collapse
|
27
|
Costa BF, Zarei-Baygi A, Md Iskander S, Smith AL. Antibiotic resistance genes fate during food waste management - Comparison between thermal treatment, hyperthermophilic composting, and anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2023; 388:129771. [PMID: 37739184 DOI: 10.1016/j.biortech.2023.129771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
The fate of eight different antibiotic resistance genes (ARGs) in food waste (sul1, sul2, tetO, tetW, ermF, ermB, ampC, oxa-1), intI1, and rpoB were monitored during thermal treatment (pyrolysis and incineration), hyperthermophilic composting, and anaerobic membrane bioreactor (AnMBR) treatment. ARGs in food waste ranged from 2.9 × 106 to 3.5 × 109 copies/kg with ampC being the least abundant and sul1 being the most abundant. Thermal treatment achieved removal below detection limits of all ARGs. Only two ARGs (sul1 and ampC) persisted in hyperthermophilic composting. While all genes except for ermB decreased in the AnMBR effluent relative to the food waste feed, sul1 remained at relatively high abundance. Biosolids on the contrary, accumulated tetO, ampC and sul2 in all tested operating conditions. Thermal treatment, despite limited resource recovery, provides the most effective mitigation of ARG risk in food waste.
Collapse
Affiliation(s)
- Bianca F Costa
- Astani Department of Civil and Environmental Engineering, University of Southern California, 920 Downey Way, Los Angeles, CA 90089, USA
| | - Ali Zarei-Baygi
- Astani Department of Civil and Environmental Engineering, University of Southern California, 920 Downey Way, Los Angeles, CA 90089, USA
| | - Syeed Md Iskander
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 14(th) Ave N, Fargo, ND 58102, USA
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, 920 Downey Way, Los Angeles, CA 90089, USA.
| |
Collapse
|
28
|
Wiesner-Friedman C, Beattie RE, Stewart JR, Hristova KR, Serre ML. Identifying sources of antibiotic resistance genes in the environment using the microbial Find, Inform, and Test framework. Front Microbiol 2023; 14:1223876. [PMID: 37731922 PMCID: PMC10508347 DOI: 10.3389/fmicb.2023.1223876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Antimicrobial resistance (AMR) is an increasing public health concern for humans, animals, and the environment. However, the contributions of spatially distributed sources of AMR in the environment are not well defined. Methods To identify the sources of environmental AMR, the novel microbial Find, Inform, and Test (FIT) model was applied to a panel of five antibiotic resistance-associated genes (ARGs), namely, erm(B), tet(W), qnrA, sul1, and intI1, quantified from riverbed sediment and surface water from a mixed-use region. Results A one standard deviation increase in the modeled contributions of elevated AMR from bovine sources or land-applied waste sources [land application of biosolids, sludge, and industrial wastewater (i.e., food processing) and domestic (i.e., municipal and septage)] was associated with 34-80% and 33-77% increases in the relative abundances of the ARGs in riverbed sediment and surface water, respectively. Sources influenced environmental AMR at overland distances of up to 13 km. Discussion Our study corroborates previous evidence of offsite migration of microbial pollution from bovine sources and newly suggests offsite migration from land-applied waste. With FIT, we estimated the distance-based influence range overland and downstream around sources to model the impact these sources may have on AMR at unsampled sites. This modeling supports targeted monitoring of AMR from sources for future exposure and risk mitigation efforts.
Collapse
Affiliation(s)
- Corinne Wiesner-Friedman
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Rachelle E. Beattie
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, United States
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Jill R. Stewart
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | - Marc L. Serre
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
29
|
Zalewska M, Błażejewska A, Czapko A, Popowska M. Pig manure treatment strategies for mitigating the spread of antibiotic resistance. Sci Rep 2023; 13:11999. [PMID: 37491438 PMCID: PMC10368742 DOI: 10.1038/s41598-023-39204-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023] Open
Abstract
Due to the risk of pathogenic antibiotic-resistant bacteria and their antibiotic-resistance genes transfer from livestock feces to the soil and cultivated crops, it is imperative to find effective on-farm manure treatments to minimize that hazardous potential. An introduced worldwide policy of sustainable development, focus on ecological agricultural production, and the circular economy aimed at reducing the use of artificial fertilizers; therefore, such treatment methods should also maximize the fertilization value of animal manure. The two strategies for processing pig manure are proposed in this study-storage and composting. The present study examines the changes in the physicochemical properties of treated manure, in the microbiome, and in the resistome, compared to raw manure. This is the first such comprehensive analysis performed on the same batch of manure. Our results suggest that while none of the processes eliminates the environmental risk, composting results in a faster and more pronounced reduction of mobile genetic elements harboring antibiotic resistance genes, including those responsible for multi-drug resistance. Overall, the composting process can be an efficient strategy for mitigating the spread of antibiotic resistance in the environment and reducing the risk of its transfer to crops and the food chain while providing essential fertilizer ingredients.
Collapse
Affiliation(s)
- Magdalena Zalewska
- Department of Bacterial Physiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Błażejewska
- Department of Bacterial Physiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Czapko
- Department of Bacterial Physiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
30
|
Li X, Chen G, Liu L, Wang G. Anaerobic sludge digestion elevates dissemination risks of bacterial antibiotic resistance in effluent supernatant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117854. [PMID: 37023605 DOI: 10.1016/j.jenvman.2023.117854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Anaerobic digestion following a variety of pretreatments is a promising technique for the reduction of excess sludge in municipal wastewater treatment plants (MWWTPs), and eliminations of possible pathogens, viruses, protozoa, and other disease-causing organisms. Notwithstanding a rapidly increasing health concern of antibiotic resistant bacteria (ARB) in MWWTPs, dissemination risks of ARB in anaerobic digestion processes are still poorly understood, especially in the digested supernatant. Taking the representative ARB with respect to the common tetracycline-, sulfamethoxazole-, clindamycin- and ciprofloxacin resistance, we investigated the compositions of ARB in the sludge and supernatant, and quantified their variations along the entire anaerobic sludge digestion process following ultrasonication-, alkali-hydrolysis- and alkali-ultrasonication pretreatments, respectively. Results showed that the abundance of ARB was diminished by up to 90% from the sludge along anaerobic digestion coupling with the pretreatments. Surprisingly, pretreatments clearly boosted the abundance of specific ARB (e.g., 2.3 × 102 CFU/mL of tetracycline-resistant bacteria) in the supernatant that otherwise remained relatively low value of 0.6 × 102 CFU/mL from the direct digestion. Measurements of the soluble-, loosely-bound- and tightly-bound extracellular polymeric substances components revealed a gradually intensified destruction of the sludge aggregates along the entire anaerobic digestion processes, which could be likely responsible to the increase of the ARB abundance in the supernatant. Furthermore, analysis of the bacterial community components showed that the ARB populations were strongly correlated with the occurrence of Bacteroidetes, Patescibacteria, and Tenericutes. Interestingly, intensified conjugal transfer (0.015) of antibiotic resistance genes (ARGs) was observed upon returning of the digested supernatant to the biological treatment system. It implies the likelihood of ARGs spreading and subsequent ecological risks upon anaerobic digestion towards reducing excess sludge, and therefore requires further attentions for the excess sludge treatments especially of supernatant.
Collapse
Affiliation(s)
- Xia Li
- Department of Municipal Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guowei Chen
- Department of Municipal Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Li Liu
- Department of Municipal Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
31
|
Saha S, Xiong JQ, Patil SM, Ha GS, Hoh JK, Park HK, Chung W, Chang SW, Khan MA, Park HB, Jeon BH. Dissemination of sulfonamide resistance genes in digester microbiome during anaerobic digestion of food waste leachate. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131200. [PMID: 36958158 DOI: 10.1016/j.jhazmat.2023.131200] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
The preeminence of sulfonamide drug resistance genes in food waste (FW) and the increased utilization of high-strength organic FW in anaerobic digestion (AD) to enhance methane production have raised severe public health concerns in wastewater treatment plants worldwide. In this regard, the dissemination patterns of different sulfonamide resistance genes (sul1 and sul2) and their impact on the digester core microbiota during AD of FW leachate (FWL) were evaluated. The presence of various sulfonamide antibiotics (SAs) in FWL digesters improved the final methane yield by 37 % during AD compared with FWL digesters without SAs. Microbial population shifts towards hydrolytic, acidogenic, and acetogenic bacteria in the phyla Actinobacteriota, Bacteroidota, Chloroflexi, Firmicutes, Proteobacteria, and Synergistota occurred due to SA induced substrate digestion and absorption through active transport; butanoate, propanoate, and pyruvate metabolism; glycolysis; gluconeogenesis; the citrate cycle; and pentose phosphate pathway. The initial dominance of Methanosaeta (89-96 %) declined to 47-53 % as AD progressed and shifted towards Methanosarcina (40 %) in digesters with the highest SA concentrations at the end of AD. Dissemination of sul1 depended on class 1 integron gene (intl1)-based horizontal gene transfer to pathogenic members of Chloroflexi, Firmicutes, and Patescibacteria, whereas sul2 was transmitted to Synergistota independent of intl1. Low susceptibility and ability to utilize SAs during methanogenesis shielded methanogenic archaea against selection pressure, thus preventing them from interacting with sul or intl1 genes, thereby minimizing the risk of antibiotic resistance development. The observed emergence of cationic antimicrobial peptide, vancomycin, and β-lactam resistance in the core microbiota during AD of FWL in the presence of SAs suggests that multidrug resistance caused by bacterial transformation could lead to an increase in the environmental resistome through wastewater sludge treatment.
Collapse
Affiliation(s)
- Shouvik Saha
- Natural Resources Research Institute, University of Minnesota Duluth, Duluth, MN 55812, USA; Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong, China
| | - Swapnil M Patil
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Geon-Soo Ha
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Jeong-Kyu Hoh
- Department of Obstetrics and Gynecology, College of Medicine, Hanyang University, Seoul 04763, the Republic of Korea
| | - Hyun-Kyung Park
- Department of Pediatrics, College of Medicine, Hanyang University, Seoul 04763, the Republic of Korea
| | - Woojin Chung
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, the Republic of Korea
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, the Republic of Korea
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ho Bum Park
- Department of Energy Engineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, the Republic of Korea.
| |
Collapse
|
32
|
Wang J, Xu S, Zhao K, Song G, Zhao S, Liu R. Risk control of antibiotics, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) during sewage sludge treatment and disposal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162772. [PMID: 36933744 DOI: 10.1016/j.scitotenv.2023.162772] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 05/06/2023]
Abstract
Sewage sludge is an important reservoir of antibiotics, antibiotic resistance genes (ARGs), and antibiotic resistant bacteria (ARB) in wastewater treatment plants (WWTPs), and the reclamation of sewage sludge potentially threats human health and environmental safety. Sludge treatment and disposal are expected to control these risks, and this review summarizes the fate and controlling efficiency of antibiotics, ARGs, and ARB in sludge involved in different processes, i.e., disintegration, anaerobic digestion, aerobic composting, drying, pyrolysis, constructed wetland, and land application. Additionally, the analysis and characterization methods of antibiotics, ARGs, and ARB in complicate sludge are reviewed, and the quantitative risk assessment approaches involved in land application are comprehensively discussed. This review benefits process optimization of sludge treatment and disposal, with regard to environmental risks control of antibiotics, ARGs, and ARB in sludge. Furthermore, current research limitations and gaps, e.g., the antibiotic resistance risk assessment in sludge-amended soil, are proposed to advance the future studies.
Collapse
Affiliation(s)
- Jiaqi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siqi Xu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kai Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge Song
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunan Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
33
|
Ren Z, Guo H, Jin H, Wang Y, Zhang G, Zhou J, Qu G, Sun Q, Wang T. P, N, and C-related functional genes in SBR system promoted antibiotics resistance gene transmission under polystyrene microplastics stress. WATER RESEARCH 2023; 235:119884. [PMID: 36958218 DOI: 10.1016/j.watres.2023.119884] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/11/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Wastewater treatment plants (WWTPs) are important sinks of microplastics (MPs) and antibiotics resistance genes (ARGs). Information regarding connections between functional modules of WWTPs and spread of ARGs under MPs stress is still lacking. In this study, correlations between P-, N-, and C-related functional genes and ARGs in a sequencing batch reactor (SBR) system were evaluated under polystyrene (PS) MPs stress. Total P and chemical oxygen demand (COD) in effluent showed no significant changes under 0.5-50 mg L-1 PS MPs stress within 32 cycle treatment periods of SBR, while 0.5 mg L-1 PS MPs affected the N cycling process. PS MPs (0.5-50 mg L-1) promoted the richness and diversity of microbial community in SBR, and the denitrification process was exuberant. PS MPs with a low dosage (0.5-5 mg L-1) enhanced secretion of extracellular polymeric substances and promoted expression levels of functional genes related to C fixation, C degradation, P cycling, and N cycling. Simultaneously, aac(3)-II, blaTEM-1, and tetW increased by 27.13%, 38.36%, and 9.57% under low dosages of PS MPs stress; more importantly, the total absolute abundance of intI1 nearly doubled. 78.4% of these P-, N-, and C-related functional genes were positively correlated with intI1, thus favoring transmission of ARGs. This study firstly disclosed the underlying correlations between functional modules of WWTPs and spread of ARGs under MPs stress.
Collapse
Affiliation(s)
- Zhiyin Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Hekai Jin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Yanjie Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Qiuhong Sun
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
34
|
Zubair M, Li Z, Zhu R, Wang J, Liu X, Liu X. The Antibiotics Degradation and Its Mechanisms during the Livestock Manure Anaerobic Digestion. Molecules 2023; 28:molecules28104090. [PMID: 37241831 DOI: 10.3390/molecules28104090] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Antibiotics are administered to livestock at subtherapeutic levels to promote growth, and their degradation in manure is slow. High antibiotic concentrations can inhibit bacterial activity. Livestock excretes antibiotics via feces and urine, leading to their accumulation in manure. This can result in the propagation of antibiotic-resistant bacteria and antibiotic resistance genes (ARGs). Anaerobic digestion (AD) manure treatment technologies are gaining popularity due to their ability to mitigate organic matter pollution and pathogens, and produce methane-rich biogas as renewable energy. AD is influenced by multiple factors, including temperature, pH, total solids (TS), substrate type, organic loading rate (OLR), hydraulic retention time (HRT), intermediate substrates, and pre-treatments. Temperature plays a critical role, and thermophilic AD has been found to be more effective in reducing ARGs in manure compared to mesophilic AD, as evidenced by numerous studies. This review paper investigates the fundamental principles of process parameters affecting the degradation of ARGs in anaerobic digestion. The management of waste to mitigate antibiotic resistance in microorganisms presents a significant challenge, highlighting the need for effective waste management technologies. As the prevalence of antibiotic resistance continues to rise, urgent implementation of effective treatment strategies is necessary.
Collapse
Affiliation(s)
- Muhammad Zubair
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 202 Industry North Road, Jinan 250100, China
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Zhaojun Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 202 Industry North Road, Jinan 250100, China
| | - Rongsheng Zhu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 202 Industry North Road, Jinan 250100, China
| | - Jiancai Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 202 Industry North Road, Jinan 250100, China
| | - Xinghua Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 202 Industry North Road, Jinan 250100, China
| | - Xiayan Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 202 Industry North Road, Jinan 250100, China
| |
Collapse
|
35
|
Guan X, Guo Z, Wang X, Xiang S, Sun T, Zhao R, He J, Liu F. Transfer route and driving forces of antibiotic resistance genes from reclaimed water to groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121800. [PMID: 37169235 DOI: 10.1016/j.envpol.2023.121800] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The infiltration of reclaimed water has created a significant environmental risk due to the spread of antibiotic resistance genes (ARGs) in riparian groundwater. Reclaimed water from wastewater treatment plants (WWTPs) had been identified as a source of both antibiotics and ARGs in groundwater, based on their spatial and temporal distribution. The assembly process of microbial communities in the groundwater of the infiltration zone was more influenced by deterministic processes. Co-occurrence network analysis revealed that Thermotoga, Desulfotomaculum, Methanobacterium, and other such genera were dominant shared genera. These were considered core genera and hosts of ARGs for transport from reclaimed water to groundwater. The most abundant ARG in these shared genera was MacB, enriched in groundwater point G3 and potentially transferred from reclaimed water to groundwater by Acidovorax, Hydrogenophaga, Methylotenera, Dechloromonas, and Nitrospira. During the infiltration process, environmental factors and the tradeoff between energy metabolism and antibiotic defense strategy may have affected ARG transfer. Understanding the transfer route and driving forces of ARGs from reclaimed water to groundwater provided a new perspective for evaluating the spread risk of ARGs in reclaimed water infiltration.
Collapse
Affiliation(s)
- Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Zining Guo
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Xusheng Wang
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Shizheng Xiang
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Tongxin Sun
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Ruoyu Zhao
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jiangtao He
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Fei Liu
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
36
|
Zhou M, Han Y, Zhuo Y, Dai Y, Yu F, Feng H, Peng D. Effect of thermal hydrolyzed sludge filtrate as an external carbon source on biological nutrient removal performance of A 2/O system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117425. [PMID: 36739777 DOI: 10.1016/j.jenvman.2023.117425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Thermal hydrolyzed sludge filtrate (THSF) rich in biodegradable organics could be a promising external carbon source for biological nutrient removal (BNR). The use of THSF can effectively reduce wastewater treatment plants operating costs and recover bioresources and bioenergy from the waste activated sludge. In this study, the effect of THSF on the BNR process was investigated using a lab-scale anaerobic/anoxic/oxic (A2/O) system. Total nitrogen (TN) and total phosphorus (TP) removal efficiencies of 74.26 ± 3.36% and 92.20 ± 3.13% at a 0.3% dosing ratio were achieved, respectively. Moreover, 20.42% of the chemical oxygen demand (COD) contained in THSF contributed to denitrification, enhancing nitrogen removal efficiency from 55.30 to 74.26%. However, the effluent COD increased by approximately 36.80%, due to 18.39% of the COD contained in THSF discharged with effluent. In addition, the maximum denitrification rate was approximately 16.01 mg N g VSS-1 h-1, while the nitrification rate was not significantly affected by THSF. Nitrosomonas, a common chemoautotrophic nitrifier, was not detected after the introduction of THSF. The aerobic denitrifier Rubellimicrobium was stimulated, and its relative abundance increased from 0.16 to 3.03%. Moreover, the relative abundance of Dechloromonas was 3.93%, indicating that the denitrifying phosphorus removal process was enhanced. This study proposes an engineering application route of THSF, and the chemical phosphate removal pretreatment might be a means to suppress the phosphate recirculation.
Collapse
Affiliation(s)
- Mengyu Zhou
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yun Han
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Yang Zhuo
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yang Dai
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Fen Yu
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Hao Feng
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Dangcong Peng
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| |
Collapse
|
37
|
Guo Y, Qiu T, Gao M, Ru S, Gao H, Wang X. Does increasing the organic fertilizer application rate always boost the antibiotic resistance level in agricultural soils? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121251. [PMID: 36764373 DOI: 10.1016/j.envpol.2023.121251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The amendment of organic fertilizer derived from livestock manure or biosolids is a significant driver of increasing antibiotic resistance in agricultural soils; however, it remains unclear whether increasing organic fertilizer application rates consistently enhances soil antibiotic resistance levels. Herein, we collected soils with long-term amendment with three types of organic fertilizers at four application rates (15, 30, 45, and 60 t/ha/y) and found that the higher the fertilization rate, the higher the antibiotic resistance gene (ARG) abundance. However, when the fertilization rate exceeded 45 t/ha/y, the ARG abundance ceased to significantly increase. Moreover, the soil ARG abundance was positively correlated with total nitrogen (TN) content and bacterial abundance, especially Firmicutes, and negatively affected by pH and bacterial diversity. Soil TN/bacterial abundance and pH/bacterial diversity reached maximum and minimum values at the 45 t/ha/y fertilization rate, respectively. Meanwhile, at this fertilization rate, Firmicutes enrichment peaked. Therefore, an organic fertilization rate of 45 t/ha/y appeared to represent the threshold for soil antibiotic resistance in this study. The underlying mechanism for this threshold was closely related to soil TN, pH, bacterial abundance, and diversity. Taken together, the findings of this study advance the current understanding regarding the soil resistome under different fertilization rates, while also providing novel insights into organic fertilizer management in agricultural practices.
Collapse
Affiliation(s)
- Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuhua Ru
- Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Science, Hebei Fertilizer Technology Innovation Center, Shijiazhuang, 050051, China
| | - Haoze Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xuming Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
38
|
Yu P, Dong P, Zou Y, Wang H. Effect of pH on the mitigation of extracellular/intracellular antibiotic resistance genes and antibiotic resistance pathogenic bacteria during anaerobic fermentation of swine manure. BIORESOURCE TECHNOLOGY 2023; 373:128706. [PMID: 36746211 DOI: 10.1016/j.biortech.2023.128706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Effects of various initial pH values (i.e., 3, 5, 7, 11) during anaerobic fermentation of swine manure on intracellular and extracellular antibiotic resistance genes (iARGs and eARGs) and ARG-carrying potential microbial hosts were investigated. The abundance of almost all iARGs and eARGs decreased by 0.1-1.7 logs at pH 3 and pH 5. The abundance of only three iARGs and eARGs decreased by 0.1-0.9 logs at pH 7 and pH 11. Under acidic initial fermentation conditions (pH 3 and pH 5), the ARG removal effect was more pronounced. Acidic conditions (pH 3 and pH 5) significantly reduced the diversity and abundance of the microbial community, thereby eliminating many potential ARG hosts and antibiotic-resistant pathogenic bacteria (ARPB). Therefore, the study results contribute to the investigation of the effects of swine manure anaerobic fermentation on the removal and risk of contamination of ARGs and ARPB.
Collapse
Affiliation(s)
- Peng Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Peiyan Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yina Zou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
39
|
Nnorom MA, Saroj D, Avery L, Hough R, Guo B. A review of the impact of conductive materials on antibiotic resistance genes during the anaerobic digestion of sewage sludge and animal manure. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130628. [PMID: 36586329 DOI: 10.1016/j.jhazmat.2022.130628] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The urgent need to reduce the environmental burden of antibiotic resistance genes (ARGs) has become even more apparent as concerted efforts are made globally to tackle the dissemination of antimicrobial resistance. Concerning levels of ARGs abound in sewage sludge and animal manure, and their inadequate attenuation during conventional anaerobic digestion (AD) compromises the safety of the digestate, a nutrient-rich by-product of AD commonly recycled to agricultural land for improvement of soil quality. Exogenous ARGs introduced into the natural environment via the land application of digestate can be transferred from innocuous environmental bacteria to clinically relevant bacteria by horizontal gene transfer (HGT) and may eventually reach humans through food, water, and air. This review, therefore, discusses the prospects of using carbon- and iron-based conductive materials (CMs) as additives to mitigate the proliferation of ARGs during the AD of sewage sludge and animal manure. The review spotlights the core mechanisms underpinning the influence of CMs on the resistome profile, the steps to maximize ARG attenuation using CMs, and the current knowledge gaps. Data and information gathered indicate that CMs can profoundly reduce the abundance of ARGs in the digestate by easing selective pressure on ARGs, altering microbial community structure, and diminishing HGT.
Collapse
Affiliation(s)
- Mac-Anthony Nnorom
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Devendra Saroj
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Lisa Avery
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
| | - Bing Guo
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
40
|
Wang X, Jiang C, Wang H, Xu S, Zhuang X. Strategies for energy conversion from sludge to methane through pretreatment coupled anaerobic digestion: Potential energy loss or gain. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117033. [PMID: 36603247 DOI: 10.1016/j.jenvman.2022.117033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic digestion (AD) of wasted activated sludge from wastewater plants is recognized as an effective method to reclaim energy in the form of methane. AD performance has been enhanced by coupling various pretreatments that impact energy conversion from sludge. This paper mainly reviewed the development of pretreatments based on different technologies reported in recent years and evaluated their energy benefit. Significant increases in methane yield are generally obtained in AD with pretreatments demanding energy input, including thermal- and ultrasound-based methods. However, these energy-intense pretreatments usually gained negative energy benefit that the increase in methane yield consumed extra energy input. The unbalanced relationship counts against the goal of energy reclamation from sludge. Combined pretreatment consisting of multiple technologies normally outcompetes the single pretreatment, and the combination of energy-intense methods and chemicals potentially reduces energy input and simultaneously ensure high methane yield. For determining whether the energy reclamation from sludge via AD contribute to mitigating global warming, integrating greenhouse gas emission into the evaluation system of pretreated AD is further warranted.
Collapse
Affiliation(s)
- Xu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huacai Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; The Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
41
|
Cao H, Jiao Q, Cheng L, Song L, Xun M, Yang H. Occurrence and prevalence of antibiotic resistance genes in apple orchard after continual application of anaerobic fermentation residues of pig manure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29229-29242. [PMID: 36409412 DOI: 10.1007/s11356-022-24320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Fermented organic fertilizers made from pig manure contaminated with antibiotics are widely used in fruit tree production. However, their effects on the residual antibiotics and the spread of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in apple orchards are still largely unknown. In the present study, we detected 100 ARGs and 10 MGEs that were transferred from pig manure to an apple orchard. Compared with the original pig manure, significantly greater concentrations of tetracycline, chlortetracycline, oxytetracycline, sulfadiazine, and salfamethyldiazine were observed in anaerobic fermentation residues of the pig manure. The total relative abundance levels of ARGs on the apple pericarp surface, in the orchard soil treated with biogas slurry, and in the orchard soil treated with biogas residue were 122.5, 5.2, 1.4 times higher than those in pristine soil, respectively, which were primarily attributed to the increase in the relative abundance of some ARG subtypes, including blaCTX-M, blaTEM, ermC, sul2, tetO, vgaB, and vgb. Long-term biogas slurry and biogas residue applications to orchard soil enriched bioaccumulation of 10 ARGs and 1 MGEs on the apple pericarp surface with 67.98 the highest factor. This research indicates that the application of anaerobic fermentation residues of pig manure promoted the spread of ARGs in the soil and fruits and increased the level of ARG pollution in the orchard. Results of this study highlight the importance of assessing the ecological safety of organic fertilizers from the perspective of ARGs and indicate that efforts should be devoted to further reducing ARG levels in pig manure before its application to farmland.
Collapse
Affiliation(s)
- Hui Cao
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, Shandong Province, China
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
| | - Qian Jiao
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, Shandong Province, China
| | - Liangmei Cheng
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, Shandong Province, China
| | - Linhui Song
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, Shandong Province, China
| | - Mi Xun
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
| | - Hongqiang Yang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China.
| |
Collapse
|
42
|
Haffiez N, Zakaria BS, Azizi SMM, Dhar BR. Fate of intracellular, extracellular polymeric substances-associated, and cell-free antibiotic resistance genes in anaerobic digestion of thermally hydrolyzed sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158847. [PMID: 36126703 DOI: 10.1016/j.scitotenv.2022.158847] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Thermal hydrolysis of sludge is a promising approach to mitigate antibiotic resistance genes (ARGs) propagation in anaerobic digestion (AD). Although ARGs in sludge may be fractioned into intracellular, extracellular polymeric substance (EPS)-associated, and cell-free ARGs, the fate of these different fractions in AD has never been investigated. This study presents a detailed characterization of intracellular and extracellular ARGs in AD of sludge thermally hydrolyzed at 90 °C and 140 °C. EPS-associated ARGs represented the major fraction of the total extracellular ARGs in all samples, while its lowest abundance was observed for thermal hydrolysis at 140 °C along with the lowest EPS levels. The results suggested a positive correlation between EPS-associated ARGs with intracellular and cell-free ARGs. Furthermore, various EPS components, such as proteins and e-DNA, were positively correlated with β-lactam resistance genes. sul1 dominated all samples as an EPS-associated resistance gene. These results provide new insights into the significance of different ARGs fractions in their overall dissemination in AD integrated with thermal hydrolysis.
Collapse
Affiliation(s)
- Nervana Haffiez
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada
| | | | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
43
|
Feng R, Duan L, Shen S, Cheng Y, Wang Y, Wang W, Yang S. Temporal dynamic of antibiotic resistance genes in the Zaohe-Weihe hyporheic zone: driven by oxygen and bacterial community. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:57-72. [PMID: 36567403 DOI: 10.1007/s10646-022-02616-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The widespread spread of antibiotic resistance genes (ARGs) in hyporheic zone (HZ) has become an emerging environmental problem due to their potentially harmful nature. In this research, three different oxygen treatment systems were set up to study the effects of oxygen changes on the abundance of ARGs in the HZ. In addition, the effects of temperature and salinity on ARGs were investigated under aerobic and anaerobic systems, respectively. The bacterial community composition of sediment samples and the relationship with ARGs were analyzed. The explanation ratio and causality of the driving factors affecting ARGs were analyzed using variation partitioning analysis (VPA) and structural equation model (SEM). The relative abundance of ARGs and mobile genetic elements (MGEs) in the anaerobic system increased significantly, which was higher than that in the aerobic system and the aerobic-anaerobic interaction system. The experiment of salinity and temperature also further proved this result. There were many bacterial communities that affected tetracycline and sulfonamide ARGs in sediments, and these host bacteria are mainly concentrated in Proteobacteria, Firmicutes and Bacteroidetes. VPA and SEM further revealed that the abundance of ARGs was mainly influenced by changes in bacterial communities and oxygen conditions, and horizontal gene transfer (HGT) of MGEs also had a positive effect on the spread of ARGs. Those findings suggest that complex oxygen conditions in the HZ alter bacterial communities and promote MGEs-mediated horizontal transfer, which together lead to the spread of ARGs. This study has value as a reference for formulating effective strategies to minimize the propagation of ARGs in underground environment.
Collapse
Affiliation(s)
- Ruyi Feng
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Lei Duan
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China.
- School of Water and Environment, Chang'an University, Xi'an, 710054, China.
| | - Siqi Shen
- China United Northwest Institute for Engineering Design & Research Co.,Ltd, Xi'an, China
| | - Yan Cheng
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Yanhua Wang
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710054, China
| | - Wenke Wang
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Shengke Yang
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| |
Collapse
|
44
|
Rumky J, Kruglova A, Repo E. Fate of antibiotic resistance genes (ARGs) in wastewater treatment plant: Preliminary study on identification before and after ultrasonication. ENVIRONMENTAL RESEARCH 2022; 215:114281. [PMID: 36096165 DOI: 10.1016/j.envres.2022.114281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
This study collected sludge samples from four different sections of a local wastewater treatment plant in Mikkeli, Finland, for antibiotic resistance genes (ARGs) analysis. Here, we examine the seven representative ARGs in sludge, encoding erythromycin (ermB), tetracycline (tetA, tetC, tetQ, tetW) and sulphonamide (sul1) to check abundance before and after ultrasonication. The class 1 integron (intl1) was also observed as an indicator of antibiotic resistance and horizontal gene transmission. The pre-treatment condition included 10 min of ultrasonication (US) for the sludge sample before freeze-drying. The droplet digital PCR system was used to assess the ARGs from the samples, and it was found that ARGs were not effectively eliminated by pre-treatment. After ultrasonication, tetA, tetC and tetQ did not show any variation but tetW showed 20 copies/ng of lower abundance in digested sludge than raw sludge, and a similar abundance was found in dewatered sludge. For MBR sludge, only ermB showed 1000 copies/ng higher abundance compared to the raw sample and surprisingly it did not show the presence of any other types of ARG. This study provides an overview of the appearance of ARGs in regional municipal sludge for further research reflection.
Collapse
Affiliation(s)
- Jannatul Rumky
- Department of Separation Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland.
| | - Antonina Kruglova
- Department of Built Environment, Aalto University, Tietotie 1E, 15200, Espoo, Finland
| | - Eveliina Repo
- Department of Separation Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| |
Collapse
|
45
|
Zhang Y, Su YA, Qiu X, Mao Q, Liu H, Liu H, Wen D, Su Z. Temperature affects variations of class 1 integron during sludge anaerobic digestion. BIORESOURCE TECHNOLOGY 2022; 364:128005. [PMID: 36155808 DOI: 10.1016/j.biortech.2022.128005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Revealing class 1 integron characteristics under different operating conditions is of great importance to control antibiotic resistance genes (ARGs) during sludge anaerobic digestion (AD). This study investigated the variations of class 1 integrons and the ARGs carried by class 1 integrons in anaerobic sludge digesters under 25 °C, 35 °C, and 55 °C. The results showed lower intI1 abundance and fewer class I integrons with long gene cassette arrays at 55 °C than at 25 °C and 35 °C. Multi-resistance gene cassette arrays were observed in the digesters at 25 °C and 35 °C. Abundant ARGs were detected on class 1 integrons in all digesters with aminoglycosides as the dominant class. The abundance of ARGs on class 1 integrons in digesters at 55 °C was lower than that at 25 °C and 35 °C. Thermophilic AD is better than mesophilic ones in the control of ARGs carried by class 1 integrons.
Collapse
Affiliation(s)
- Yan Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - Yu-Ao Su
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xuyang Qiu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qiuyan Mao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongbo Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - He Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China.
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhiguo Su
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
46
|
Sun Y, Luo H, Iboleon R, Wang Z. Fate of antibiotic resistance genes and class 1 integrons during sludge treatment using pilot-scale anaerobic digestion with thermal hydrolysis pretreatment. BIORESOURCE TECHNOLOGY 2022; 364:128043. [PMID: 36182015 DOI: 10.1016/j.biortech.2022.128043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
This work evaluated the fate of antibiotic resistance genes (ARGs) and class 1 integron gene in sewage sludge before and after pilot-scale thermal hydrolysis pretreatment (THP) and subsequent mesophilic anaerobic digestion (AD) treatment. Variables investigated include THP temperatures, feedstock types, and AD solids retention times. Real-time polymerase chain reaction was performed to quantify the ARGs in feedstocks, THP and AD effluent. Results show that THP significantly (t test, p < 0.05) reduced the absolute abundances of most ARGs, with the reduction ranging from 0.03 to 3.09 log units. Rebound effects of ARGs in the subsequent AD were observed and were relevant with tested variables; shorter solids retention time (10 days) and higher THP temperature (165 ℃) can significantly reduce ARGs in AD effluent. These findings provide references about the effects of the THP and AD on the control of ARG spread from sewage sludge to environments.
Collapse
Affiliation(s)
- Yuepeng Sun
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States.
| | - Hao Luo
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Rafael Iboleon
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Zhiwu Wang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
47
|
Jang HM, Kan E. Enhanced removal of antibiotic resistance genes and human bacterial pathogens during anaerobic digestion of dairy manure via addition of manure biochar. CHEMOSPHERE 2022; 304:135178. [PMID: 35660057 DOI: 10.1016/j.chemosphere.2022.135178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
In this study, the response of antibiotic resistance genes (ARGs), mobile gene elements (intI1), and human bacterial pathogens (HBPs) to addition of manure biochar (1-10 g/L) was studied in anaerobic digestion (AD) at 20-55 °C for treating dairy manure. Twelve ARGs comprising five tetracycline resistance genes, two sulfonamide resistance genes, two macrolide resistance genes, three β-lactam antibiotic resistance genes, and intI1 were analyzed by quantitative PCR. High-throughput sequencing data were matched against a database of putative 538 HBPs. Significant removal of ARGs (except for tetO and ermB) and intI1 was observed in all the samples. Manure biochar resulted in significant removal of ARGs and HBPs; however, negative effects were also observed in some conditions. This is the first study to provide to explore the fates of ARGs and HBPs by adding manure biochar to AD.
Collapse
Affiliation(s)
- Hyun Min Jang
- Department of Environmental and Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Environmental Engineering, Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Eunsung Kan
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, Stephenville, TX, 76401, USA; Department of Wildlife, Sustainability, and Ecosystem Sciences, Tarleton State University, Stephenville, TX, 76401, USA.
| |
Collapse
|
48
|
Haffiez N, Chung TH, Zakaria BS, Shahidi M, Mezbahuddin S, Maal-Bared R, Dhar BR. Exploration of machine learning algorithms for predicting the changes in abundance of antibiotic resistance genes in anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156211. [PMID: 35623518 DOI: 10.1016/j.scitotenv.2022.156211] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/29/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The land application of digestate from anaerobic digestion (AD) is considered a significant route for transmitting antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) to ecosystems. To date, efforts towards understanding complex non-linear interactions between AD operating parameters with ARG/MGE abundances rely on experimental investigations due to a lack of mechanistic models. Herein, three different machine learning (ML) algorithms, Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and Artificial Neural Network (ANN), were compared for their predictive capacities in simulating ARG/MGE abundance changes during AD. The models were trained and cross-validated using experimental data collected from 33 published literature. The comparison of model performance using coefficients of determination (R2) and root mean squared errors (RMSE) indicated that ANN was more reliable than RF and XGBoost. The mode of operation (batch/semi-continuous), co-digestion of food waste and sewage sludge, and residence time were identified as the three most critical features in predicting ARG/MGE abundance changes. Moreover, the trained ANN model could simulate non-linear interactions between operational parameters and ARG/MGE abundance changes that could be interpreted intuitively based on existing knowledge. Overall, this study demonstrates that machine learning can enable a reliable predictive model that can provide a holistic optimization tool for mitigating the ARG/MGE transmission potential of AD.
Collapse
Affiliation(s)
- Nervana Haffiez
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Tae Hyun Chung
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | | | | | | | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
49
|
Hazra M, Joshi H, Williams JB, Watts JEM. Antibiotics and antibiotic resistant bacteria/genes in urban wastewater: A comparison of their fate in conventional treatment systems and constructed wetlands. CHEMOSPHERE 2022; 303:135148. [PMID: 35640694 DOI: 10.1016/j.chemosphere.2022.135148] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
There is a growing concern that the use and misuse of antibiotics can increase the detection of antibiotic resistant genes (ARGs) in wastewater. Conventional wastewater treatment plants provide a pathway for ARGs and antibiotic resistant bacteria (ARB) to be released into natural water bodies. Research has indicated that conventional primary and secondary treatment systems can reduce ARGs/ARB to varying degrees. However, in developing/low-income countries, only 8-28% of wastewater is treated via conventional treatment processes, resulting in the environment being exposed to high levels of ARGs, ARB and pharmaceuticals in raw sewage. The use of constructed wetlands (CWs) has the potential to provide a low-cost solution for wastewater treatment, with respect to removal of nutrients, pathogens, ARB/ARGs either as a standalone treatment process or when integrated with conventional treatment systems. Recently, CWs have also been employed for the reduction of antibiotic residues, pharmaceuticals, and emerging contaminants. Given the benefits of ARG removal, low cost of construction, maintenance, energy requirement, and performance efficiencies, CWs offer a promising solution for developing/low-income countries. This review promotes a better understanding of the performance efficiency of treatment technologies (both conventional systems and CWs) for the reduction of antibiotics and ARGs/ARB from wastewater and explores workable alternatives.
Collapse
Affiliation(s)
- Moushumi Hazra
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India.
| | - Himanshu Joshi
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - John B Williams
- School of Civil Engineering and Surveying, University of Portsmouth, United Kingdom
| | - Joy E M Watts
- School of Biological Sciences, University of Portsmouth, United Kingdom
| |
Collapse
|
50
|
Akshay SD, Anupama KP, Deekshit VK, Rohit A, Maiti B. Effect of sub-minimum inhibitory concentration of ceftriaxone on the expression of outer membrane proteins in Salmonella enterica serovar Typhi. World J Microbiol Biotechnol 2022; 38:190. [PMID: 35972699 DOI: 10.1007/s11274-022-03383-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/09/2022] [Indexed: 01/22/2023]
Abstract
Multi-drug resistance (MDR) in Salmonella is one of the major reasons for foodborne outbreaks worldwide. Decreased susceptibility of Salmonella Typhi to first-line drugs such as ceftriaxone, ciprofloxacin, and azithromycin has raised concern. Reduced outer membrane proteins (OMPs) permeability and increased efflux pump transportation are considered to be the main reasons for the emergence of antibiotic resistance in Salmonella. The present study aimed to assess the expression of OMPs at sub-lethal concentrations of ceftriaxone in S. Typhi (Sl5037/BC, and Sl05). The S. Typhi strains were exposed to sub-MIC and half of the sub-MIC concentrations of ceftriaxone at three different time intervals (0 min, 40 min, and 180 min) and analyzed for differential expression of OMPs. Further, the expression variation of OMP encoding genes (yaeT, ompX, lamb, ompA, and ybfM) in response to ceftriaxone was evaluated using real-time PCR. The genes like lamB, ompX, and yaeT showed significant downregulation (p < 0.05) compared to the control without antibiotic exposure, whereas ybfM and ompA showed a moderate downregulation. The expression of omp genes such as lamB, ompA, ompX, ybfM, and yaeT were found to be low in the presence of ceftriaxone, followed by time and dose-dependent. The study provides insights into the possible involvement of OMPs in drug resistance of S. Typhi, which could help develop a therapeutic strategy to combat MDR isolates of S. Typhi.
Collapse
Affiliation(s)
- Sadanand Dangari Akshay
- Nitte (Deemed to Be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Karanth Padyana Anupama
- Nitte (Deemed to Be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Vijaya Kumar Deekshit
- Nitte (Deemed to Be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Anusha Rohit
- Nitte (Deemed to Be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India.,Department of Microbiology, The Madras Medical Mission, 4-A, Dr, Mogappair, Chennai, Tamil Nadu, 600037, India
| | - Biswajit Maiti
- Nitte (Deemed to Be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research (NUCSER), Paneer Campus, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|