1
|
Xu X, Jiang H, Wu K. Uranyl Affinity between Uranyl Cation and Different Kinds of Monovalent Anions: Density Functional Theory and Quantitative Structure-Property Relationship Model. J Phys Chem A 2024; 128:2960-2970. [PMID: 38576211 DOI: 10.1021/acs.jpca.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
In order to design effective extractants for uranium extraction from seawater, it is imperative to acquire a more comprehensive understanding of the bonding properties between the uranyl cation (UO22+) and various ligands. Therefore, we employed density functional theory to investigate the complexation reactions of UO22+ with 29 different monovalent anions (L-1), exploring both mono- and bidentate coordination. We proposed a novel concept called "uranyl affinity" (Eua) to facilitate the establishment of a standardized scale for assessing the ease or difficulty of coordination bond formation between UO22+ and diverse ligands. Furthermore, we conducted an in-depth investigation into the underlying mechanisms involved. During the process of uranyl complex [(UO2L)+] formation, lone pair electrons from the coordinating atom in L- are transferred to either the lowest unoccupied molecular degenerate orbitals 1ϕu or 1δu of the uranyl ion, which originate from the uranium atom's 5f unoccupied orbitals. In light of discussion concerning the mechanisms of coordination bond formation, quantitative structure-property relationship analyses were conducted to investigate the correlation between Eua and various structural descriptors associated with the 29 ligands under investigation. This analysis revealed distinct patterns in Eua values while identifying key influencing factors among the different ligands.
Collapse
Affiliation(s)
- Xiang Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Haiyan Jiang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Kechen Wu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
2
|
Meza I, Hua H, Gagnon K, Mulchandani A, Gonzalez-Estrella J, Burns PC, Ali AMS, Spilde M, Peterson E, Lichtner P, Cerrato JM. Removal of Aqueous Uranyl and Arsenate Mixtures after Reaction with Limestone, PO 43-, and Ca 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20881-20892. [PMID: 38019567 PMCID: PMC10739782 DOI: 10.1021/acs.est.3c03809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The co-occurrence of uranyl and arsenate in contaminated water caused by natural processes and mining is a concern for impacted communities, including in Native American lands in the U.S. Southwest. We investigated the simultaneous removal of aqueous uranyl and arsenate after the reaction with limestone and precipitated hydroxyapatite (HAp, Ca10(PO4)6(OH)2). In benchtop experiments with an initial pH of 3.0 and initial concentrations of 1 mM U and As, uranyl and arsenate coprecipitated in the presence of 1 g L-1 limestone. However, related experiments initiated under circumneutral pH conditions showed that uranyl and arsenate remained soluble. Upon addition of 1 mM PO43- and 3 mM Ca2+ in solution (initial concentration of 0.05 mM U and As) resulted in the rapid removal of over 97% of U via Ca-U-P precipitation. In experiments with 2 mM PO43- and 10 mM Ca2+ at pH rising from 7.0 to 11.0, aqueous concentrations of As decreased (between 30 and 98%) circa pH 9. HAp precipitation in solids was confirmed by powder X-ray diffraction and scanning electron microscopy/energy dispersive X-ray. Electron microprobe analysis indicated U was coprecipitated with Ca and P, while As was mainly immobilized through HAp adsorption. The results indicate that natural materials, such as HAp and limestone, can effectively remove uranyl and arsenate mixtures.
Collapse
Affiliation(s)
- Isabel Meza
- Department of Civil, Construction & Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center for Water and the Environment, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Han Hua
- Department of Civil, Construction & Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center for Water and the Environment, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Kaelin Gagnon
- Department of Civil, Construction & Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center for Water and the Environment, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Anjali Mulchandani
- Department of Civil, Construction & Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center for Water and the Environment, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jorge Gonzalez-Estrella
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Peter C Burns
- Department of Civil and Environmental Engineering and Earth Sciences and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Abdul-Mehdi S Ali
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Michael Spilde
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Eric Peterson
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Peter Lichtner
- Center for Water and the Environment, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - José M Cerrato
- Department of Civil, Construction & Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center for Water and the Environment, University of New Mexico, Albuquerque, New Mexico 87131, United States
- UNM Metals Exposure and Toxicity Assessment on Tribal Lands in the Southwest (UNM METALS) Superfund Research Program Center, Albuquerque,New Mexico 87131, United States
| |
Collapse
|
3
|
Meza I, Gonzalez-Estrella J, Burns PC, Rodriguez V, Velasco CA, Sigmon GE, Szymanowski JES, Forbes TZ, Applegate LM, Ali AMS, Lichtner P, Cerrato JM. Solubility and Thermodynamic Investigation of Meta-Autunite Group Uranyl Arsenate Solids with Monovalent Cations Na and K. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:255-265. [PMID: 36525634 PMCID: PMC10039619 DOI: 10.1021/acs.est.2c06648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We investigated the aqueous solubility and thermodynamic properties of two meta-autunite group uranyl arsenate solids (UAs). The measured solubility products (log Ksp) obtained in dissolution and precipitation experiments at equilibrium pH 2 and 3 for NaUAs and KUAs ranged from -23.50 to -22.96 and -23.87 to -23.38, respectively. The secondary phases (UO2)(H2AsO4)2(H2O)(s) and trögerite, (UO2)3(AsO4)2·12H2O(s), were identified by powder X-ray diffraction in the reacted solids of KUA precipitation experiments (pH 2) and NaUAs dissolution and precipitation experiments (pH 3), respectively. The identification of these secondary phases in reacted solids suggest that H3O+ co-occurring with Na or K in the interlayer region can influence the solubilities of uranyl arsenate solids. The standard-state enthalpy of formation from the elements (ΔHf-el) of NaUAs is -3025 ± 22 kJ mol-1 and for KUAs is -3000 ± 28 kJ mol-1 derived from measurements by drop solution calorimetry, consistent with values reported in other studies for uranyl phosphate solids. This work provides novel thermodynamic information for reactive transport models to interpret and predict the influence of uranyl arsenate solids on soluble concentrations of U and As in contaminated waters affected by mining legacy and other anthropogenic activities.
Collapse
Affiliation(s)
- Isabel Meza
- Department of Civil, Construction & Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico87131, United States
- Center for Water and the Environment, UNM, Albuquerque, New Mexico87131, United States
| | - Jorge Gonzalez-Estrella
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, Oklahoma74078, United States
| | - Peter C Burns
- Department of Civil and Environmental Engineering and Earth Sciences and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Virginia Rodriguez
- Department of Civil and Environmental Engineering and Earth Sciences and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Carmen A Velasco
- Department of Civil, Construction & Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico87131, United States
- Center for Water and the Environment, UNM, Albuquerque, New Mexico87131, United States
| | - Ginger E Sigmon
- Department of Civil and Environmental Engineering and Earth Sciences and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Jennifer E S Szymanowski
- Department of Civil and Environmental Engineering and Earth Sciences and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Tori Z Forbes
- Department of Chemistry, University of Iowa, Iowa City, Iowa52242, United States
| | - Lindsey M Applegate
- Department of Chemistry, University of Iowa, Iowa City, Iowa52242, United States
| | - Abdul-Mehdi S Ali
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico87131, United States
| | - Peter Lichtner
- Center for Water and the Environment, UNM, Albuquerque, New Mexico87131, United States
| | - José M Cerrato
- Department of Civil, Construction & Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico87131, United States
- Center for Water and the Environment, UNM, Albuquerque, New Mexico87131, United States
| |
Collapse
|
4
|
Zhang J, Hou J, Zhang K, Zhang R, Geng J, Wang S, Zhang Z. Integration of quantum dots with Zn 2GeO 4 nanoellipsoids to expand the dynamic detection range of uranyl ions in fluorescent test strips. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129182. [PMID: 35643004 DOI: 10.1016/j.jhazmat.2022.129182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Fluorescent colorimetric test strips normally have a narrow dynamic detection-range due to the limited responsive range from single responsive materials, which cannot meet the wide detection requirement in practical applications. Herein, we developed an approach to detect uranyl ions (UO22+) with a broad detection range using the synthesized ZnS:Mn quantum dots (QDs) modified Zn2GeO4 nanoellipsoids (Zn2GeO4 @ZnS:Mn NEs), containing two responsive materials with the opposite signal responses at different UO22+ concentrations. Specifically, a red to chocolate color change was observed at low analyte concentrations (0.01-100 μM) resulting from the photoinduced electron transfer effect from ZnS:Mn QDs to UO22+. A sequentially olive drab to green color change has been observed when further increasing the UO22+ concentration (100-1000 μM) as a result of the antenna effect between Zn2GeO4 nanoellipsoids and UO22+. In addition, a low-cost and portable fluorescent test strip has been further fabricated through embedding Zn2GeO4 @ZnS:Mn NEs on a microporous structure membrane, demonstrating a facile yet effective colorimetric response to UO22+ in lab water, lake water, and seawater with a wide dynamic range. Therefore, it is potentially attractive for real-time and on-site detection of UO22+ in sudden-onset situations.
Collapse
Affiliation(s)
- Jian Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Jinjin Hou
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China.
| | - Ruilong Zhang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230000, China
| | - Junlong Geng
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230000, China.
| | - Suhua Wang
- College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Zhongping Zhang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230000, China
| |
Collapse
|
5
|
Hu SX, Liu HT, Liu JJ, Zhang P, Ao B. Electronic Structure and Chemical Bonding of [AmO 2(H 2O) n ] 2+/1. ACS OMEGA 2018; 3:13902-13912. [PMID: 31458086 PMCID: PMC6644428 DOI: 10.1021/acsomega.8b01324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/20/2018] [Indexed: 06/10/2023]
Abstract
Systematic americyl-hydration cations were investigated theoretically to understand the electronic structures and bonding in [(AmO2)(H2O) n ]2+/1+ (n = 1-6). We obtained the binding energy using density functional theory methods with scalar relativistic and spin-orbit coupling effects. The geometric structures of these species have been investigated in aqueous solution via an implicit solvation model. Computational results reveal that the complexes of five equatorial water molecules coordinated to americyl ions are the most stable due to the enhanced ionic interactions between the AmO2 2+/1+ cation and multiple oxygen atoms as electron donors. As expected, Am-Owater bonds in such series are electrostatic in nature and contain a generally decreasing covalent character when hydration number increases.
Collapse
Affiliation(s)
- Shu-Xian Hu
- Beijing
Computational Science Research Center, Beijing 100193, China
| | - Hai-Tao Liu
- Institute
of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Jing-Jing Liu
- Beijing
Computational Science Research Center, Beijing 100193, China
| | - Ping Zhang
- Institute
of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Bingyun Ao
- Science
and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China
| |
Collapse
|
6
|
He M, Liu X, Cheng J, Lu X, Zhang C, Wang R. Uranyl Arsenate Complexes in Aqueous Solution: Insights from First-Principles Molecular Dynamics Simulations. Inorg Chem 2018; 57:5801-5809. [PMID: 29741893 DOI: 10.1021/acs.inorgchem.8b00136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, the structures and acidity constants (p Ka's) of uranyl arsenate complexes in solutions have been revealed by using the first principle molecular dynamics technique. The results show that uranyl and arsenate form stable complexes with the U/As ratios of 1:1 and 1:2, and the bidentate complexation between U and As is highly favored. Speciation-pH distributions are derived based on free energy and p Ka calculations, which indicate that for the 1:1 species, UO2(H2AsO4)(H2O)3+ is the major species at pH < 7, while UO2(HAsO4)(H2O)30 and UO2(AsO4)(H2O)3- dominate in acid-to-alkaline and extreme alkaline pH ranges. For the 1:2 species, UO2(H2AsO4)2(H2O)0 is dominant under acid-to-neutral pH conditions, while UO2(HAsO4)(H2AsO4)(H2O)-, UO2(HAsO4)(HAsO4)(H2O)2-, and UO2(AsO4)(HAsO4)(H2O)3- become the major forms in the pH range of 7.2-10.7, 10.7-12.1, and >12.1, respectively.
Collapse
Affiliation(s)
- Mengjia He
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering , Nanjing University , Nanjing 210046 , P. R. China
| | - Xiandong Liu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering , Nanjing University , Nanjing 210046 , P. R. China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China.,Department of Chemistry , University of Aberdeen , Aberdeen AB24 3UE , United Kingdom
| | - Xiancai Lu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering , Nanjing University , Nanjing 210046 , P. R. China
| | - Chi Zhang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering , Nanjing University , Nanjing 210046 , P. R. China
| | - Rucheng Wang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering , Nanjing University , Nanjing 210046 , P. R. China
| |
Collapse
|
7
|
Chai L, Yang J, Zhang N, Wu PJ, Li Q, Wang Q, Liu H, Yi H. Structure and spectroscopic study of aqueous Fe(III)-As(V) complexes using UV-Vis, XAS and DFT-TDDFT. CHEMOSPHERE 2017; 182:595-604. [PMID: 28525873 DOI: 10.1016/j.chemosphere.2017.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Aqueous complexes between ferric (Fe(III)) and arsenate (As(V)) are indispensable for understanding the mobility of arsenic (As) in Fe(III)-As(V)-rich systems. In this study, aqueous Fe(III)-As(V) complexes, FeH2AsO42+ and FeHAsO4+, were postulated based on the qualitative analysis of UV-Vis spectra in both Fe(III)-As(V)-HClO4 and Fe(III)-As(V)-H2SO4 systems. Subsequently, monodentate structures were evidenced by Fe K-edge EXAFS and modeled as [FeH2AsO4(H2O)5]2+ and [FeHAsO4(H2O)5]+ by DFT. The feature band at ∼280 nm was verified as electron excitation chiefly from Fe-As-bridged O atoms to d-orbital of Fe in [FeH2AsO4(H2O)5]2+ and [FeHAsO4(H2O)5]+. The structural and spectral information of Fe(III)-As(V) complexes will enable future speciation analysis in Fe(III)-As(V)-rich system.
Collapse
Affiliation(s)
- Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Jinqin Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Ning Zhang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Pin-Jiun Wu
- Industrial Application Group, Synchrotron Radiation Research Center, Hsinchu 30076, China
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China.
| | - Qingwei Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Haibo Yi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
8
|
Višňak J, Sobek L. Quantum chemical calculations and spectroscopic measurements of spectroscopic and thermodynamic properties of given uranyl complexes in aqueous solutions with possible environmental and industrial applications. EPJ WEB OF CONFERENCES 2016. [DOI: 10.1051/epjconf/201612802002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Troyer LD, Tang Y, Borch T. Simultaneous reduction of arsenic(V) and uranium(VI) by mackinawite: role of uranyl arsenate precipitate formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:14326-14334. [PMID: 25383895 DOI: 10.1021/es5037496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Uranium (U) and arsenic (As) often occur together naturally and, as a result, can be co-contaminants at sites of uranium mining and processing, yet few studies have examined the simultaneous redox dynamics of U and As. This study examines the influence of arsenate (As(V)) on the reduction of uranyl (U(VI)) by the redox-active mineral mackinawite (FeS). As(V) was added to systems containing 47 or 470 μM U(VI) at concentrations ranging from 0 to 640 μM. In the absence of As(V), U was completely removed from solution and fully reduced to nano-uraninite (nano-UO2). While the addition of As(V) did not reduce U uptake, at As(V) concentrations above 320 μM, the reduction of U(VI) was limited due to the formation of a trögerite-like uranyl arsenate precipitate. The presence of U also significantly inhibited As(V) reduction. While less U(VI) reduction to nano-UO2 may take place in systems with high As(V) concentrations, formation of trögerite-like mineral phases may be an acceptable reclamation end point due to their high stability under oxic conditions.
Collapse
Affiliation(s)
- Lyndsay D Troyer
- Department of Chemistry, Colorado State University , 1872 Campus Delivery, Fort Collins, Colorado 80523, United States
| | | | | |
Collapse
|
10
|
Shi WQ, Yuan LY, Wang CZ, Wang L, Mei L, Xiao CL, Zhang L, Li ZJ, Zhao YL, Chai ZF. Exploring actinide materials through synchrotron radiation techniques. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7807-7848. [PMID: 25169914 DOI: 10.1002/adma.201304323] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 04/24/2014] [Indexed: 06/03/2023]
Abstract
Synchrotron radiation (SR) based techniques have been utilized with increasing frequency in the past decade to explore the brilliant and challenging sciences of actinide-based materials. This trend is partially driven by the basic needs for multi-scale actinide speciation and bonding information and also the realistic needs for nuclear energy research. In this review, recent research progresses on actinide related materials by means of various SR techniques were selectively highlighted and summarized, with the emphasis on X-ray absorption spectroscopy, X-ray diffraction and scattering spectroscopy, which are powerful tools to characterize actinide materials. In addition, advanced SR techniques for exploring future advanced nuclear fuel cycles dealing with actinides are illustrated as well.
Collapse
Affiliation(s)
- Wei-Qun Shi
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Enegy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sánchez-González S, Curto N, Caravantes P, García-Sánchez A. Natural Gamma Radiation and Uranium Distribution in Soils and Waters in the Agueda River Basin (Spain-Portugal). ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.proeps.2014.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Gale EM, Zhu J, Caravan P. Direct measurement of the Mn(II) hydration state in metal complexes and metalloproteins through 17O NMR line widths. J Am Chem Soc 2013; 135:18600-8. [PMID: 24088013 DOI: 10.1021/ja4094132] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here we describe a simple method to estimate the inner-sphere hydration state of the Mn(II) ion in coordination complexes and metalloproteins. The line width of bulk H2(17)O is measured in the presence and absence of Mn(II) as a function of temperature, and transverse (17)O relaxivities are calculated. It is demonstrated that the maximum (17)O relaxivity is directly proportional to the number of inner-sphere water ligands (q). Using a combination of literature data and experimental data for 12 Mn(II) complexes, we show that this method provides accurate estimates of q with an uncertainty of ±0.2 water molecules. The method can be implemented on commercial NMR spectrometers working at fields of 7 T and higher. The hydration number can be obtained for micromolar Mn(II) concentrations. We show that the technique can be extended to metalloproteins or complex:protein interactions. For example, Mn(II) binds to the multimetal binding site A on human serum albumin with two inner-sphere water ligands that undergo rapid exchange (1.06 × 10(8) s(-1) at 37 °C). The possibility of extending this technique to other metal ions such as Gd(III) is discussed.
Collapse
Affiliation(s)
- Eric M Gale
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Harvard Medical School , 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129, United States
| | | | | |
Collapse
|
13
|
Mendes M, Leguay S, Le Naour C, Hamadi S, Roques J, Moisy P, Guillaumont D, Topin S, Aupiais J, Den Auwer C, Hennig C. Thermodynamic Study of the Complexation of Protactinium(V) with Diethylenetriaminepentaacetic Acid. Inorg Chem 2013; 52:7497-507. [DOI: 10.1021/ic400378t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mickaël Mendes
- CNRS-Université Paris-Sud, IPN 15 rue Georges Clémenceau, F-91406
Orsay, France
| | - Sébastien Leguay
- CNRS-Université Paris-Sud, IPN 15 rue Georges Clémenceau, F-91406
Orsay, France
| | - Claire Le Naour
- CNRS-Université Paris-Sud, IPN 15 rue Georges Clémenceau, F-91406
Orsay, France
| | - Séna Hamadi
- CNRS-Université Paris-Sud, IPN 15 rue Georges Clémenceau, F-91406
Orsay, France
| | - Jérôme Roques
- CNRS-Université Paris-Sud, IPN 15 rue Georges Clémenceau, F-91406
Orsay, France
| | | | | | | | | | - Christophe Den Auwer
- Université de Nice Sofia Antipolis, Institut de Chimie de Nice 28 avenue Valrose, 06108 Nice Cedex
2, France
| | - Christoph Hennig
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of
Resource Ecology, Bautzner Landstrasse 400, D-01314 Dresden, Germany
| |
Collapse
|