1
|
Lin F, Yuan S, Ji P, Xu W. Regulation of Bacterial Biofilm Formation by Ultrasound: Role of Autoinducer-2 and Finite-Element Analysis of Acoustic Streaming. ULTRASOUND IN MEDICINE & BIOLOGY 2023:S0301-5629(23)00210-7. [PMID: 37438162 DOI: 10.1016/j.ultrasmedbio.2023.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/18/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVE The formation of bacterial biofilm regulated by quorum sensing (QS) is a critical factor that contributes to infections of indwelling medical devices. Autoinducer-2 (AI-2), as a signal molecule in QS, plays a crucial role in mediating bacterial signaling and regulating their biological behavior. This study investigated the impact of ultrasonic vibration at varying frequencies on biofilm formation in a mixture of Staphylococcus aureus and Escherichia coli. METHODS By exciting ultrasound at different frequencies (20, 100 and 200 kHz), a vibration with an amplitude of 100 nm was generated on the material surface located at the bottom of the petri dish containing mixed bacteria. We measured the content of AI-2 and bacteria in the mixed bacterial solution and bioburden on material surfaces at different time points during culture. In addition, the relationships among AI-2 content, bacterial concentration and distribution were assessed through finite-element analysis of acoustic streaming under ultrasonic vibration. RESULTS The AI-2 gradient is influenced by the diversity of acoustic streaming patterns on the material surface and in the mixed bacterial solution caused by ultrasonic vibration at different frequencies, thereby regulating biofilm formation. The experimental results showed that the optimal inhibition effect on AI-2 and minimal bacterial adhesion degree was achieved when applying an ultrasonic frequency of 100 kHz with a power intensity of 46.1 mW/cm2 under an amplitude of 100 nm. CONCLUSION Ultrasound can affect the QS system of bacteria, leading to alterations in their biological behavior. Different species of bacteria exhibit varying degrees of chemotaxis toward different frequencies.
Collapse
Affiliation(s)
- Fangfei Lin
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China; Ningbo Institute of Technology, Beihang University, Ningbo, China
| | - Songmei Yuan
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China; Ningbo Institute of Technology, Beihang University, Ningbo, China.
| | - Pengzhen Ji
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China; Ningbo Institute of Technology, Beihang University, Ningbo, China
| | - Weixian Xu
- Department of Cardiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
2
|
Physiological characteristics, geochemical properties and hydrological variables influencing pathogen migration in subsurface system: What we know or not? GEOSCIENCE FRONTIERS 2022; 13. [PMID: 37521131 PMCID: PMC8730742 DOI: 10.1016/j.gsf.2021.101346] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The global outbreak of coronavirus infectious disease-2019 (COVID-19) draws attentions in the transport and spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in aerosols, wastewater, surface water and solid wastes. As pathogens eventually enter the subsurface system, e.g., soils in the vadose zone and groundwater in the aquifers, they might survive for a prolonged period of time owing to the uniqueness of subsurface environment. In addition, pathogens can transport in groundwater and contaminate surrounding drinking water sources, possessing long-term and concealed risks to human society. This work critically reviews the influential factors of pathogen migration, unravelling the impacts of pathogenic characteristics, vadose zone physiochemical properties and hydrological variables on the migration of typical pathogens in subsurface system. An assessment algorithm and two rating/weighting schemes are proposed to evaluate the migration abilities and risks of pathogens in subsurface environment. As there is still no evidence about the presence and distribution of SARS-CoV-2 in the vadose zones and aquifers, this study also discusses the migration potential and behavior of SARS-CoV-2 viruses in subsurface environment, offering prospective clues and suggestions for its potential risks in drinking water and effective prevention and control from hydrogeological points of view.
Collapse
|
3
|
Ordek A, Gordesli-Duatepe FP. Impact of sodium nitroprusside concentration added to batch cultures of Escherichia coli biofilms on the c-di-GMP levels, morphologies and adhesion of biofilm-dispersed cells. BIOFOULING 2022; 38:796-813. [PMID: 36229918 DOI: 10.1080/08927014.2022.2131399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/19/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Biofilm dispersion can be triggered by the application of dispersing agents such as nitric oxide (NO)-donors, resulting in the release of biofilm-dispersed cells into the environment. In this work, biofilm-dispersed cells were obtained by adding different concentrations of NO-donor sodium nitroprusside (0.5, 5, 50 µM, and 2.5 mM of SNP) to batch cultures of pre-formed Escherichia coli biofilms. Except for those dispersed by 5 µM of SNP, biofilm-dispersed cells were found to be wider and longer than the planktonic cells and to have higher c-di-GMP levels and greater adhesion forces to silicon nitride surfaces in water as measured by atomic force microscope. Consequently, the optimum concentration of SNP to disperse E. coli biofilms was found to be 5 µM of SNP, whose addition to batch cultures resulted in a significant biofilm dispersion and the dispersed cells having c-di-GMP levels, morphologies and adhesion strengths similar to their planktonic counterparts.
Collapse
Affiliation(s)
- Ayse Ordek
- Bioengineering Graduate Program, Graduate School, Izmir University of Economics, Izmir, Turkey
| | - F Pinar Gordesli-Duatepe
- Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Izmir, Turkey
| |
Collapse
|
4
|
Shariq AF, Beyenal H, Akin ID. Biofilm addition improves sand strength over a wide range of saturations. Biofilm 2021; 3:100050. [PMID: 34258578 PMCID: PMC8260866 DOI: 10.1016/j.bioflm.2021.100050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/12/2021] [Accepted: 05/30/2021] [Indexed: 11/30/2022] Open
Abstract
Bio-mediated ground improvement is an attractive alternative to traditional admixtures for strength improvement of shallow surfaces because it is environmentally friendly. Since biofilms contain extracellular polymeric substances (EPS), they can be considered as an alternative to current technologies to improve soil strength. EPS containing biofilms are porous materials with charged surfaces, and therefore adsorption and capillary condensation can result in water retention. Currently, most of the literature work only tested soil improvement under the dry condition. Therefore, the influence of water retention by biofilms on the strength of improved soil remains unclear. Our goal is to evaluate the strength of a biofilm-enhanced sand over a wide range of saturations and explain the trends through the suction stress characteristic curve (SSCC), which quantifies interparticle adsorptive, capillary, and cementation forces as a function of saturation. We used homogenized anaerobic granule biofilms from an existing upflow anaerobic sludge blanket reactor and mixed it with sand to test the strength of a poorly-graded sand in a wide range of saturations, S (between 0.02 S and 0.74 S). We found that biofilm treatment of sand increases soil strength through cementation over a wide range of saturations and through adsorptive forces among sand, biofilm surfaces, and water molecules at low saturations (S < ~0.3). Our results suggested that homogenized biofilms mixed with sand can be used to improve the strength of sand over a wide range of saturations.
Collapse
Affiliation(s)
- Ahmad Faysal Shariq
- Washington State University, Department of Civil and Environmental Engineering, Pullman, WA, 99164, USA
| | - Haluk Beyenal
- Washington State University, Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Pullman, WA, 99164, USA
| | - Idil Deniz Akin
- Colf Distinguished Professor in Geotechnical Engineering, Washington State University, Department of Civil and Environmental Engineering, Pullman, WA, 99164, USA
| |
Collapse
|
5
|
Eskhan AO, Abu-Lail NI. Force-Averaging DLVO Model Predictions of the Adhesion Strengths Quantified for Pathogenic Listeria monocytogenes EGDe Grown under Variable pH Stresses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8947-8964. [PMID: 32633976 DOI: 10.1021/acs.langmuir.0c01500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The roles of the bacterial surface biopolymers of pathogenic Listeria monocytogenes EGDe grown under variable pH conditions in governing their adhesion to a model surface of silicon nitride were investigated using atomic force microscopy under water. Our results indicated that the adhesion forces were the highest for cells cultured in media adjusted to pH 7 followed by 1.39, 1.49, 1.57, and 2.18-fold reductions at pH 6, 8, 9, and 5, respectively. Adhesion energies followed the same trends with 1.35, 1.67, 2.20, and 2.79-fold reductions in energies at pH 6, 8, 9, and 5, respectively, compared to the energy measured at pH 7. Furthermore, the structural properties of the bacterial surface biopolymer brush represented by the biopolymer brush thickness (Lo) and the molecular density (Γ) were determined by fitting a steric model of repulsion to the approach force-distance data. The Lo values followed the same trends as adhesion forces and energies, with thickness being highest at pH 7 followed by 1.82, 2.99, 3.11, and 4.66-fold reductions at pH 6, 8, 9, and 5, respectively. Γ was the highest at pH 5 and was followed by 1.26, 1.27, 1.70, and 2.82-fold reductions at pH 8, 9, 6, and 7, respectively. Our results indicated that bacterial adhesion forces and energies increased linearly with the product of Lo and Γ representing the number of biopolymers per unit length of the bacterial surface. To predict the adhesion forces and energies measured, a force-averaging model of the soft-particle analysis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was used. In addition to the standard parameters accounted for in the soft-particle analysis of the DLVO theory such as surface potential, hydrophobicity, and size, this averaging model incorporates in it structural bacterial parameters such as Lo and Γ as well as a surface coverage factor (ϕ) that represents the fraction of the bacterial surface covered by biopolymers. When the soft-particle analysis of DLVO was considered, repulsive hydrogen bond strengths were predicted at close distances of approach (<0.3 nm). In comparison, the force-averaging model predicted that attractive hydrogen bonds dominate the bacterial adhesion strengths quantified. The highest adhesion quantified for cells grown at pH 7 was related to longer and more spaced biopolymers, higher contents of cellular carbohydrates, and more hydrophilic biopolymers, each of which contributes to higher possibilities for hydrogen bonding formation. These results are significant in designing new strategies that aim at controlling bacterial adhesion to surfaces.
Collapse
Affiliation(s)
- Asma O Eskhan
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Nehal I Abu-Lail
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249, United States
| |
Collapse
|
6
|
Gordesli-Duatepe FP, Park BJ, Kawas LH, Abu-Lail NI. Atomic Force Microscopy Investigation of the Contributions of Listeria monocytogenes Cell-Wall Biomacromolecules to Their Adherence and Mechanics. J Phys Chem B 2020; 124:5872-5883. [PMID: 32544332 DOI: 10.1021/acs.jpcb.0c04025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, the contributions of the pathogenic Listeria monocytogenes cell-wall biomacromolecules to the bacterial mechanics and adhesion to a model inert surface of silicon nitride in water were investigated by atomic force microscopy. Chemical ethylenediaminetetraacetic acid (EDTA) and biological enzymatic trypsin treatments of cells were performed to partially or totally remove the bacterial cell-wall proteins and carbohydrates. Removal of 48.2% proteins and 29.2% of carbohydrates from the cell-wall of the bacterium by the EDTA treatment resulted in a significant decrease in the length of the bacterial cell-wall biomacromolecules and an increase in the rigidity of the bacterial cells as predicted from fitting a model of steric repulsion to the force-distance approach data and classic Hertz model to the indentation-force data, respectively. In comparison, removal of almost all the cell-wall proteins (99.5% removal) and 8.6% of cell-wall carbohydrates by the trypsin treatment resulted in an increase in the elasticity of the bacterial cells, an increase in the extension of the cell-wall biomacromolecules, and a significant decrease in their apparent grafting densities. In addition, adhesion strength of native-untreated L. monocytogenes to silicon nitride in water decreased by 30% on average after the EDTA treatment and further decreased by 60% on average after the trypsin treatment, showing a positive correlation with the% removal of cell-wall proteins by the EDTA and trypsin treatments, respectively.
Collapse
Affiliation(s)
- F Pinar Gordesli-Duatepe
- Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, 35330 Izmir, Turkey
| | - Bong J Park
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Leen H Kawas
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University Pullman, Washington 99164-6520, United States
| | - Nehal I Abu-Lail
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
7
|
Furuichi Y, Yoshimoto S, Inaba T, Nomura N, Hori K. Process Description of an Unconventional Biofilm Formation by Bacterial Cells Autoagglutinating through Sticky, Long, and Peritrichate Nanofibers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2520-2529. [PMID: 31972092 DOI: 10.1021/acs.est.9b06577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, we elucidated the formation process of an unconventional biofilm formed by a bacterium autoagglutinating through sticky, long, and peritrichate nanofibers. Understanding the mechanisms of biofilm formation is essential to control microbial behavior and improve environmental biotechnologies. Acinetobacter sp. Tol 5 autoagglutinate through the interaction of the long, peritrichate nanofiber protein AtaA, a trimeric autotransporter adhesin. Using AtaA, without cell growth or extracellular polymeric substances production, Tol 5 cells quickly form an unconventional biofilm. The process forming this unconventional biofilm started with cell-cell interactions, proceeded to cell clumping, and led to the formation of large cell aggregates. The cell-cell interaction was described by Derjaguin-Landau-Verwey-Overbeek (DLVO) theory based on a new concept, which considers two independent interactions between two cell bodies and between two AtaA fiber tips forming a discontinuous surface. If cell bodies cannot collide owing to an energy barrier at low ionic strengths but approach within the interactive distance of AtaA fibers, cells can agglutinate through their contact. Cell clumping proceeds following the cluster-cluster aggregation model, and an unconventional biofilm containing void spaces and a fractal nature develops. Understanding its formation process would extend the utilization of various types of biofilms, enhancing environmental biotechnologies.
Collapse
Affiliation(s)
- Yoshihide Furuichi
- Department of Biotechnology, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya , Aichi 464-8603 , Japan
| | - Shogo Yoshimoto
- Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya , Aichi 464-8603 , Japan
| | - Tomohiro Inaba
- Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Ibaraki 305-0006 , Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Ibaraki 305-0006 , Japan
- Microbiology Research Center for Sustainability , University of Tsukuba , Tsukuba , Ibaraki 305-8572 , Japan
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya , Aichi 464-8603 , Japan
| |
Collapse
|
8
|
Role of ionic strength in the retention and initial attachment ofPseudomonas putidato quartz sand. Biointerphases 2018; 13:041005. [DOI: 10.1116/1.5027735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Ostvar S, Wood BD. Multiscale Model Describing Bacterial Adhesion and Detachment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5213-5222. [PMID: 27129780 DOI: 10.1021/acs.langmuir.6b00882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bacterial surfaces are complex structures with nontrivial adhesive properties. The physics of bacterial adhesion deviates from that of ideal colloids as a result of cell-surface roughness and because of the mechanical properties of the polymers covering the cell surface. In the present study, we develop a simple multiscale model for the interplay between the potential energy functions that characterize the cell surface biopolymers and their interaction with the extracellular environment. We then use the model to study a discrete network of bonds in the presence of significant length heterogeneities in cell-surface polymers. The model we present is able to generate force curves (both approach and retraction) that closely resemble those measured experimentally. Our results show that even small-length-scale heterogeneities can lead to macroscopically nonlinear behavior that is qualitatively and quantitatively different from the homogeneous case. We also report on the energetic consequences of such structural heterogeneity.
Collapse
Affiliation(s)
- Sassan Ostvar
- School of Chemical, Biological, and Environmental Engineering, Oregon State University , Corvallis, Oregon 97331, United States
| | - Brian D Wood
- School of Chemical, Biological, and Environmental Engineering, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
10
|
Arslan B, Colpan M, Ju X, Zhang X, Kostyukova A, Abu-Lail NI. The Effects of Noncellulosic Compounds on the Nanoscale Interaction Forces Measured between Carbohydrate-Binding Module and Lignocellulosic Biomass. Biomacromolecules 2016; 17:1705-15. [PMID: 27065303 DOI: 10.1021/acs.biomac.6b00129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The lack of fundamental understanding of the types of forces that govern how cellulose-degrading enzymes interact with cellulosic and noncellulosic components of lignocellulosic surfaces limits the design of new strategies for efficient conversion of biomass to bioethanol. In a step to improve our fundamental understanding of such interactions, nanoscale forces acting between a model cellulase-a carbohydrate-binding module (CBM) of cellobiohydrolase I (CBH I)-and a set of lignocellulosic substrates with controlled composition were measured using atomic force microscopy (AFM). The three model substrates investigated were kraft (KP), sulfite (SP), and organosolv (OPP) pulped substrates. These substrates varied in their surface lignin coverage, lignin type, and xylan and acetone extractives' content. Our results indicated that the overall adhesion forces of biomass to CBM increased linearly with surface lignin coverage with kraft lignin showing the highest forces among lignin types investigated. When the overall adhesion forces were decoupled into specific and nonspecific component forces via the Poisson statistical model, hydrophobic and Lifshitz-van der Waals (LW) forces dominated the binding forces of CBM to kraft lignin, whereas permanent dipole-dipole interactions and electrostatic forces facilitated the interactions of lignosulfonates to CBM. Xylan and acetone extractives' content increased the attractive forces between CBM and lignin-free substrates, most likely through hydrogen bonding forces. When the substrates treated differently were compared, it was found that both the differences in specific and nonspecific forces between lignin-containing and lignin-free substrates were the least for OPP. Therefore, cellulase enzymes represented by CBM would weakly bind to organosolv lignin. This will facilitate an easy enzyme recovery compared to other substrates treated with kraft or sulfite pulping. Our results also suggest that altering the surface hydrophobicity and the surface energy of lignin that facilitates the LW forces should be a priori to avoid nonproductive binding of cellulase to kraft lignin.
Collapse
Affiliation(s)
- Baran Arslan
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington 99164-6515, United States
| | - Mert Colpan
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington 99164-6515, United States
| | - Xiaohui Ju
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Bioproducts' Science and Engineering Laboratory, Washington State University , Richland, Washington 99354-1670, United States
| | - Xiao Zhang
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Bioproducts' Science and Engineering Laboratory, Washington State University , Richland, Washington 99354-1670, United States
| | - Alla Kostyukova
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington 99164-6515, United States
| | - Nehal I Abu-Lail
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington 99164-6515, United States
| |
Collapse
|
11
|
Aguayo S, Donos N, Spratt D, Bozec L. Probing the nanoadhesion of Streptococcus sanguinis to titanium implant surfaces by atomic force microscopy. Int J Nanomedicine 2016; 11:1443-50. [PMID: 27103802 PMCID: PMC4827898 DOI: 10.2147/ijn.s100768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
As titanium (Ti) continues to be utilized in great extent for the fabrication of artificial implants, it is important to understand the crucial bacterium–Ti interaction occurring during the initial phases of biofilm formation. By employing a single-cell force spectroscopy technique, the nanoadhesive interactions between the early-colonizing Streptococcus sanguinis and a clinically analogous smooth Ti substrate were explored. Mean adhesion forces between S. sanguinis and Ti were found to be 0.32±0.00, 1.07±0.06, and 4.85±0.56 nN for 0, 1, and 60 seconds contact times, respectively; while adhesion work values were reported at 19.28±2.38, 104.60±7.02, and 1,317.26±197.69 aJ for 0, 1, and 60 seconds, respectively. At 60 seconds surface delays, minor-rupture events were modeled with the worm-like chain model yielding an average contour length of 668±12 nm. The mean force for S. sanguinis minor-detachment events was 1.84±0.64 nN, and Poisson analysis decoupled this value into a short-range force component of −1.60±0.34 nN and a long-range force component of −0.55±0.47 nN. Furthermore, a solution of 2 mg/mL chlorhexidine was found to increase adhesion between the bacterial probe and substrate. Overall, single-cell force spectroscopy of living S. sanguinis cells proved to be a reliable way to characterize early-bacterial adhesion onto machined Ti implant surfaces at the nanoscale.
Collapse
Affiliation(s)
- Sebastian Aguayo
- Department of Biomaterials and Tissue Engineering, University College London, London, UK
| | - Nikolaos Donos
- Periodontology Unit, University College London, London, UK
| | - Dave Spratt
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK
| | - Laurent Bozec
- Department of Biomaterials and Tissue Engineering, University College London, London, UK
| |
Collapse
|
12
|
Mechanics of Bacterial Cells and Initial Surface Colonisation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:245-60. [DOI: 10.1007/978-3-319-32189-9_15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
13
|
Aguayo S, Donos N, Spratt D, Bozec L. Nanoadhesion of Staphylococcus aureus onto Titanium Implant Surfaces. J Dent Res 2015; 94:1078-84. [PMID: 26130256 DOI: 10.1177/0022034515591485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adhesion of bacteria to dental implant surfaces is the critical initial step in the process of biofilm colonization; however, the specific nanoadhesive interactions occurring during the first contact between bacterial cells and biomaterial substrates remain poorly understood. In this report, we utilize single-cell force spectroscopy to characterize the dynamics of the initial interaction between living Staphylococcus aureus cells and machined titanium surfaces at the nanoscale. Values for maximum adhesion force were found to increase from 0-s (-0.27 ± 0.30 nN) to 60-s (-9.15 ± 0.78 nN) surface delays, with similar results observed for total adhesion work (7.39 ± 2.38 and 988.06 ± 117.08 aJ, respectively). Single unbinding events observed at higher surface delays were modeled according to the wormlike chain model, obtaining molecular contour-length predictions of 314.06 ± 9.27 nm. Average single-bond rupture forces of -0.95 ± 0.04 nN were observed at increased contact times. Short- and long-range force components of bacterial adhesion were obtained by Poisson analysis of single unbinding event peaks, yielding values of -0.75 ± 0.04 and -0.58 ± 0.15 nN, respectively. Addition of 2-mg/mL chlorhexidine to the buffer solution resulted in the inhibition of specific adhesive events but an increased overall adhesion force and work. These results suggest that initial attachment of S. aureus to smooth titanium is mostly mediated by short-range attractive forces observed at higher surface delays.
Collapse
Affiliation(s)
- S Aguayo
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - N Donos
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, UK
| | - D Spratt
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK
| | - L Bozec
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| |
Collapse
|
14
|
Xing SF, Sun XF, Taylor AA, Walker SL, Wang YF, Wang SG. D-amino acids inhibit initial bacterial adhesion: thermodynamic evidence. Biotechnol Bioeng 2014; 112:696-704. [PMID: 25333717 DOI: 10.1002/bit.25479] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 02/02/2023]
Abstract
Bacterial biofilms are structured communities of cells enclosed in a self-produced hydrated polymeric matrix that can adhere to inert or living surfaces. D-Amino acids were previously identified as self-produced compounds that mediate biofilm disassembly by causing the release of the protein component of the polymeric matrix. However, whether exogenous D-amino acids could inhibit initial bacterial adhesion is still unknown. Here, the effect of the exogenous amino acid D-tyrosine on initial bacterial adhesion was determined by combined use of chemical analysis, force spectroscopic measurement, and theoretical predictions. The surface thermodynamic theory demonstrated that the total interaction energy increased with more D-tyrosine, and the contribution of Lewis acid-base interactions relative to the change in the total interaction energy was much greater than the overall nonspecific interactions. Finally, atomic force microscopy analysis implied that the hydrogen bond numbers and adhesion forces decreased with the increase in D-tyrosine concentrations. D-Tyrosine contributed to the repulsive nature of the cell and ultimately led to the inhibition of bacterial adhesion. This study provides a new way to regulate biofilm formation by manipulating the contents of D-amino acids in natural or engineered systems.
Collapse
Affiliation(s)
- Su-Fang Xing
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | | | | | | | | | | |
Collapse
|
15
|
Zhao W, Walker SL, Huang Q, Cai P. Adhesion of bacterial pathogens to soil colloidal particles: influences of cell type, natural organic matter, and solution chemistry. WATER RESEARCH 2014; 53:35-46. [PMID: 24495985 DOI: 10.1016/j.watres.2014.01.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/20/2013] [Accepted: 01/05/2014] [Indexed: 06/03/2023]
Abstract
Bacterial adhesion to granular soil particles is well studied; however, pathogen interactions with naturally occurring colloidal particles (<2 μm) in soil has not been investigated. This study was developed to identify the interaction mechanisms between model bacterial pathogens and soil colloids as a function of cell type, natural organic matter (NOM), and solution chemistry. Specifically, batch adhesion experiments were conducted using NOM-present, NOM-stripped soil colloids, Streptococcus suis SC05 and Escherichia coli WH09 over a wide range of solution pH (4.0-9.0) and ionic strength (IS, 1-100 mM KCl). Cell characterization techniques, Freundlich isotherm, and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (sphere-sphere model) were utilized to quantitatively determine the interactions between cells and colloids. The adhesion coefficients (Kf) of S. suis SC05 to NOM-present and NOM-stripped soil colloids were significantly higher than E. coli WH09, respectively. Similarly, Kf values of S. suis SC05 and E. coli WH09 adhesion to NOM-stripped soil colloids were greater than those colloids with NOM-present, respectively, suggesting NOM inhibits bacterial adhesion. Cell adhesion to soil colloids declined with increasing pH and enhanced with rising IS (1-50 mM). Interaction energy calculations indicate these adhesion trends can be explained by DLVO-type forces, with S. suis SC05 and E. coli WH09 being weakly adhered in shallow secondary energy minima via polymer bridging and charge heterogeneity. S. suis SC05 adhesion decreased at higher IS 100 mM, which is attributed to the change of hydrophobic effect and steric repulsion resulted from the greater presence of extracellular polymeric substances (EPS) on S. suis SC05 surface as compared to E. coli WH09. Hence, pathogen adhesion to the colloidal material is determined by a combination of DLVO, charge heterogeneity, hydrophobic and polymer interactions as a function of solution chemistry.
Collapse
Affiliation(s)
- Wenqiang Zhao
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Sharon L Walker
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
16
|
Perni S, Preedy EC, Prokopovich P. Success and failure of colloidal approaches in adhesion of microorganisms to surfaces. Adv Colloid Interface Sci 2014; 206:265-74. [PMID: 24342736 DOI: 10.1016/j.cis.2013.11.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 12/31/2022]
Abstract
Biofilms are communities of cells attached to surfaces, their contributions to biological process may be either a benefit or a threat depending on the microorganism involved and on the type of substrate and environment. Biofilm formation is a complex series of steps; due to the size of microorganisms, the initial phase of biofilm formation, the bacterial adhesion to the surface, has been studied and modeled using theories developed in colloidal science. In this review the application of approaches such as Derjaguin, Landau, Verwey, Overbeek (DLVO) theory and its extended version (xDLVO), to bacterial adhesion is described along with the suitability and applicability of such approaches to the investigation of the interface phenomena regulating cells adhesion. A further refinement of the xDLVO theory encompassing the brush model is also discussed. Finally, the evidences of phenomena neglected in colloidal approaches, such as surface heterogeneity and fluid flow, likely to be the source of failure are defined.
Collapse
|
17
|
Eskhan AO, Abu-Lail NI. A new approach to decoupling of bacterial adhesion energies measured by AFM into specific and nonspecific components. Colloid Polym Sci 2014; 292:343-353. [PMID: 24563576 PMCID: PMC3927919 DOI: 10.1007/s00396-013-3017-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A new method to decoupling of bacterial interactions measured by atomic force microscopy (AFM) into specific and nonspecific components is proposed. The new method is based on computing the areas under the approach and retraction curves. To test the efficacy of the new method, AFM was used to probe the repulsion and adhesion energies present between L. monocytogenes cells cultured at five pH values (5, 6, 7, 8 and 9) and silicon nitride (Si3N4). Overall adhesion energy was then decoupled into its specific and nonspecific components using the new method as well as using Poisson statistical approach. Poisson statistical method represents the most commonly used approach to decouple bacterial interactions into their components. For all pH conditions investigated, specific energies dominated the adhesion and a transition in adhesion and repulsion energies for cells cultured at pH 7 was observed. When compared, the differences in the specific and nonspecific energies obtained using Poisson analysis and the new method were on average 2.2% and 6.7%, respectively. The relatively close energies obtained using the two approaches demonstrate the efficacy of the new method as an alternative way to decouple adhesion energies into their specific and nonspecific components.
Collapse
Affiliation(s)
- Asma O. Eskhan
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-2710
| | - Nehal I. Abu-Lail
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-2710
| |
Collapse
|
18
|
Wang S, Tao Z, Persily SM, Clarens AF. CO2 adhesion on hydrated mineral surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:11858-11865. [PMID: 24040744 DOI: 10.1021/es402199e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Hydrated mineral surfaces in the environment are generally hydrophilic but in certain cases can strongly adhere CO2, which is largely nonpolar. This adhesion can significantly alter the wettability characteristics of the mineral surface and consequently influence capillary/residual trapping and other multiphase flow processes in porous media. Here, the conditions influencing adhesion between CO2 and homogeneous mineral surfaces were studied using static pendant contact angle measurements and captive advancing/receding tests. The prevalence of adhesion was sensitive to both surface roughness and aqueous chemistry. Adhesion was most widely observed on phlogopite mica, silica, and calcite surfaces with roughness on the order of ~10 nm. The incidence of adhesion increased with ionic strength and CO2 partial pressure. Adhesion was very rarely observed on surfaces equilibrated with brines containing strong acid or base. In advancing/receding contact angle measurements, adhesion could increase the contact angle by a factor of 3. These results support an emerging understanding of adhesion of, nonpolar nonaqueous phase fluids on mineral surfaces influenced by the properties of the electrical double layer in the aqueous phase film and surface functional groups between the mineral and CO2.
Collapse
Affiliation(s)
- Shibo Wang
- Civil and Environmental Engineering, Thornton Hall, University of Virginia , 351 McCormick Road, Charlottesville, Virginia 22904, United States
| | | | | | | |
Collapse
|
19
|
Eskhan AO, Abu-Lail NI. Cellular and molecular investigations of the adhesion and mechanics of Listeria monocytogenes lineages' I and II environmental and epidemic strains. J Colloid Interface Sci 2013; 394:554-63. [PMID: 23261349 PMCID: PMC3570727 DOI: 10.1016/j.jcis.2012.11.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/15/2012] [Accepted: 11/17/2012] [Indexed: 11/29/2022]
Abstract
Atomic force microscopy (AFM) was used to probe the mechanical and adherence properties of eight Listeria monocytogenes' strains representative of the species' two phylogenetic lineages I and II. From a functional perspective, lineage' I strains were characterized by lower overall adhesion forces and higher specific and nonspecific forces compared to lineage' II strains. From a structural perspective, lineage' II strains were characterized by higher Young's moduli and longer and stiffer biopolymers compared to lineage' I strains. Both lineages' I and II strains were similar in their grafting densities. Finally, our results indicated that epidemic and environmental strains of L. monocytogenes and irrespective of their lineage group were characterized by similar Young's moduli of elasticities and adhesion forces at the cellular level. However, at the molecular level, epidemic strains were characterized by higher specific and nonspecific forces, shorter, denser, and more flexible biopolymers compared to environmental strains.
Collapse
Affiliation(s)
- Asma O. Eskhan
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-2710
| | - Nehal I. Abu-Lail
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-2710
| |
Collapse
|