1
|
Lau SS, Wei X, Bokenkamp K, Wagner ED, Plewa MJ, Mitch WA. Assessing Additivity of Cytotoxicity Associated with Disinfection Byproducts in Potable Reuse and Conventional Drinking Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5729-5736. [PMID: 32275830 DOI: 10.1021/acs.est.0c00958] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent studies used the sum of the measured concentrations of individual disinfection byproducts (DBPs) weighted by their Chinese hamster ovary (CHO) cell cytotoxicity LC50 values to estimate the DBP-associated cytotoxicity of disinfected waters. This approach assumed that cytotoxicity was additive rather than synergistic or antagonistic. In this study, we evaluated whether this assumption was valid for mixtures containing DBPs at the concentration ratios measured in authentic disinfected waters. We examined the CHO cell cytotoxicity of defined DBP mixtures based on the concentrations of 43 regulated and unregulated DBPs measured in eight drinking and potable reuse waters. The hypothesis for additivity was supported using three experimental approaches. First, we demonstrated that the calculated additive toxicity (CAT) and bioassay-based calculated additive toxicity (BCAT) of the DBP mixtures agree within 12% on a median basis. We also found an additive toxicity response (CAT ≈ BCAT) between the regulated and unregulated DBP classes. Finally, the empirical biological cytotoxicity of the DBP subset mixtures, independent of the calculated toxicity, was additive. These results support the validity of using the sum of cytotoxic potency-weighted DBP concentrations as an estimate of the CHO cell cytotoxicity associated with known DBPs in real disinfected waters.
Collapse
Affiliation(s)
- Stephanie S Lau
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Drive, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Katherine Bokenkamp
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Drive, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Elizabeth D Wagner
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Drive, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Michael J Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Drive, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
2
|
Wang HY, Qin M, Dong L, Lv JY, Wang X. Genotoxicity of a Low-Dose Nitrosamine Mixture as Drinking Water Disinfection Byproducts in NIH3T3 Cells. Int J Med Sci 2017; 14:961-969. [PMID: 28924367 PMCID: PMC5599919 DOI: 10.7150/ijms.20121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/17/2017] [Indexed: 01/05/2023] Open
Abstract
N-nitrosamines (NAms), which can arise as byproducts of disinfection agents, are reportedly found in drinking water, and their potential carcinogenicity is a concern; however, little research exists regarding the genotoxicity or carcinogenicity of NAms exposure as a low-dose mixture. The three most common NAms components in China's drinking water are N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA) and N-nitrosomethylethylamine (NMEA). Thus, we measured the genotoxic and carcinogenic potential of these compounds and measured the cell cycle and gene expression. The data show that exposure to the NAms-mixture doubled the revertants in the TA98 and TA100 S. typhimurium strains and increased the DNA double-strand breaks and the micronuclear frequency in the NIH3T3 cells compared to a single exposure. After long-term NAms mixture exposure, a malignant transformation of NIH3T3 and a significantly increased G2/M distribution were observed. Furthermore, P53, CDK1, P38, CDC25A and CyclinB expressions were down-regulated in the NAms-mixture exposure group; however, P21 and GADD45A genes were up-regulated. Interestingly, the CHK1/CHK2 and CDC25A genes had two responses, depending on the NAms concentrations. Thus, we observed mutagenic, genotoxic and carcinogenic effects after a low-dose NAms-mixture exposure in drinking water, and DNA repair and apoptosis pathways may contribute to these adverse effects.
Collapse
Affiliation(s)
- Hai-yan Wang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, 130 Dongan Road Shanghai, 200032, China
| | - Ming Qin
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Lei Dong
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, 130 Dongan Road Shanghai, 200032, China
| | - Jia-ying Lv
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Xia Wang
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, 130 Dongan Road Shanghai, 200032, China
| |
Collapse
|