1
|
Ajiboye TT, Ajiboye TO, Babalola OO. Impacts of Binary Oxide Nanoparticles on the Soybean Plant and Its Rhizosphere, Associated Phytohormones, and Enzymes. Molecules 2023; 28:1326. [PMID: 36770994 PMCID: PMC9919940 DOI: 10.3390/molecules28031326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The utilization of binary oxide nanoparticles is geometrically increasing due to their numerous applications. Their intentional or accidental release after usage has led to their omnipresence in the environment. The usage of sludge or fertilizer containing binary oxide nanoparticles is likely to increase the chance of the plants being exposed to these binary oxide nanoparticles. The aim of the present review is to assess the detailed positive and negative impacts of these oxide nanoparticles on the soybean plants and its rhizosphere. In this study, methods of synthesizing binary oxide nanoparticles, as well as the merits and demerits of these methods, are discussed. Furthermore, various methods of characterizing the binary oxide nanoparticles in the tissues of soybean are highlighted. These characterization techniques help to track the nanoparticles inside the soybean plant. In addition, the assessment of rhizosphere microbial communities of soybean that have been exposed to these binary oxide nanoparticles is discussed. The impacts of binary oxide nanoparticles on the leaf, stem, root, seeds, and rhizosphere of soybean plant are comprehensively discussed. The impacts of binary oxides on the bioactive compounds such as phytohormones are also highlighted. Overall, it was observed that the impacts of the oxide nanoparticles on the soybean, rhizosphere, and bioactive compounds were dose-dependent. Lastly, the way forward on research involving the interactions of binary oxide nanoparticles and soybean plants is suggested.
Collapse
Affiliation(s)
- Titilope Tinu Ajiboye
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Timothy Oladiran Ajiboye
- Chemistry Department, Nelson Mandela University, University Way, Summerstrand, Gqeberha 6019, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
2
|
Lu L, Rao W, Song Y, Lei M, Tie B, Du H. Natural dissolved organic matter (DOM) affects W(VI) adsorption onto Al (hydr)oxide: Mechanisms and influencing factors. ENVIRONMENTAL RESEARCH 2022; 205:112571. [PMID: 34919961 DOI: 10.1016/j.envres.2021.112571] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/23/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Tungsten (W) is a contaminant with health implications whose environmental behaviors are not understood well. Sorption to mineral surfaces is one of the primary processes controlling the mobility and fate of W in soils, sediments, and aquifers. However, few papers published hitherto have not yet figured out the influences of dissolved organic matter (DOM) on this process. Here, we examine W(VI) adsorption behaviors onto Al (hydr)oxide (AAH) in the presence or absence of DOM derived from plant rhizosphere, using batch experiments coupled with X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The morphology and functional group analyses results show that DOM can facilitate the aggregation of AAH and block surface Al-OH groups. Coexisting DOM inhibits W(VI) adsorption onto AAH at acidic to neutral pH (4-7), and the presence of either Na + or PO43- can exert a completely different impact on W(VI) adsorption. XPS and FTIR characterizations further demonstrate surface W complexes with the Al-OH groups of AAH and carboxyl groups of DOM. There is no reduction of W(VI) during the adsorption processes, and poly-tungstate species are formed on the surface of both AAH and AAH-DOM coprecipitates. This study provides the first evidence of the roles of natural DOM on W sequestration at the mineral-water surface, which has an important implication for the prediction of the migration and bioavailability of W in natural environments.
Collapse
Affiliation(s)
- Lei Lu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Wenkai Rao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Yuyan Song
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Ming Lei
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Boqing Tie
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Huihui Du
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| |
Collapse
|
3
|
Khanna K, Kohli SK, Handa N, Kaur H, Ohri P, Bhardwaj R, Yousaf B, Rinklebe J, Ahmad P. Enthralling the impact of engineered nanoparticles on soil microbiome: A concentric approach towards environmental risks and cogitation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112459. [PMID: 34217114 DOI: 10.1016/j.ecoenv.2021.112459] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/06/2021] [Accepted: 06/23/2021] [Indexed: 05/09/2023]
Abstract
Nanotechnology is an avant-garde field of scientific research that revolutionizes technological advancements in the present world. It is a cutting-edge scientific approach that has undoubtedly a plethora of functions in controlling environmental pollutants for the welfare of the ecosystem. However, their unprecedented utilization and hysterical release led to a huge threat to the soil microbiome. Nanoparticles(NPs) hamper physicochemical properties of soil along with microbial metabolic activities within rhizospheric soils.Here in this review shed light on concentric aspects of NP-biosynthesis, types, toxicity mechanisms, accumulation within the ecosystem. However, the accrual of tiny NPs into the soil system has dramatically influenced rhizospheric activities in terms of soil properties and biogeochemical cycles. We have focussed on mechanistic pathways engrossed by microbes to deal with NPs.Also, we have elaborated the fate and behavior of NPs within soils. Besides, a piece of very scarce information on NPs-toxicity towards environment and rhizosphere communities is available. Therefore, the present review highlights ecological perspectives of nanotechnology and solutions to such implications. We have comprehend certain strategies such as avant-garde engineering methods, sustainable procedures for NP synthesis along with vatious regulatory actions to manage NP within environment. Moreover, we have devised risk management sustainable and novel strategies to utilize it in a rationalized and integrated manner. With this background, we can develop a comprehensive plan about NPs with novel insights to understand the resistance and toxicity mechanisms of NPs towards microbes. Henceforth, the orientation towards these issues would enhance the understanding of researchers for proper recommendation and promotion of nanotechnology in an optimized and sustainable manner.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Neha Handa
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harsimran Kaur
- Plant Protection Division, PG Department of Agriculture, Khalsa College, Amritsar 143005, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Balal Yousaf
- Department of Environmental Engineering, Middle East Technical University, 06800 Ankara, Turkey; CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Parvaiz Ahmad
- Botany and Microbiology Department, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Zhou L, Wang X, Ren W, Xu Y, Zhao L, Zhang Y, Teng Y. Contribution of autochthonous diazotrophs to polycyclic aromatic hydrocarbon dissipation in contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137410. [PMID: 32120099 DOI: 10.1016/j.scitotenv.2020.137410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Understanding the role played by autochthonous functional microbes involved in the biotransformation of pollutants would help optimize bioremediation performance at contaminated sites. However, our knowledge of the remediation potential of indigenous diazotrophs in contaminated soils remains inadequate. Using a microcosm experiment, soil nitrogen fixation activity was manipulated by molybdenum (Mo) and tungsten (W), and their effect on the removal of polycyclic aromatic hydrocarbons (PAHs) was determined in agricultural and industrial soils. Results showed that after 42 days of incubation, PAH dissipation efficiency was significantly enhanced by 1.06-fold in 600 μg kg-1 Mo-treated agricultural soil, compared with that in the control. For the industrial soil, 1200 μg kg-1 Mo treatment significantly promoted PAH removal by 90.76% in 21 days, whereas no significant change was observed between treatments and control at the end of the incubation period. W also exerted a similar effect on PAH dissipation. The activity and gene abundance of nitrogenase were also increased under Mo/W treatments in the two soils. Spearman's correlation analysis further indicated that removal of PAHs was positively correlated with nitrogenase activity in soil, which could be due to the elevated abundances of PAH-degrading genes (PAH-RHDα) in these treatments. Our results suggest the importance of autochthonous diazotrophs in PAH-contaminated soils, which indicates a feasible and environmentally friendly biostimulation strategy of manipulating nitrogen fixation capacity.
Collapse
Affiliation(s)
- Lu Zhou
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211800, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yufeng Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211800, China.
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
5
|
Ge Y, Priester JH, Van De Werfhorst LC, Walker SL, Nisbet RM, An YJ, Schimel JP, Gardea-Torresdey JL, Holden PA. Soybean plants modify metal oxide nanoparticle effects on soil bacterial communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13489-96. [PMID: 25354168 DOI: 10.1021/es5031646] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Engineered nanoparticles (ENPs) are entering agricultural soils through land application of nanocontaining biosolids and agrochemicals. The potential adverse effects of ENPs have been studied on food crops and soil bacterial communities separately; however, how ENPs will affect the interacting plant-soil system remains unknown. To address this, we assessed ENP effects on soil microbial communities in soybean-planted, versus unplanted, mesocosms exposed to different doses of nano-CeO2 (0-1.0 g kg(-1)) or nano-ZnO (0-0.5 g kg(-1)). Nano-CeO2 did not affect soil bacterial communities in unplanted soils, but 0.1 g kg(-1) nano-CeO2 altered soil bacterial communities in planted soils, indicating that plants interactively promote nano-CeO2 effects in soil, possibly due to belowground C shifts since plant growth was impacted. Nano-ZnO at 0.5 g kg(-1) significantly altered soil bacterial communities, increasing some (e.g., Rhizobium and Sphingomonas) but decreasing other (e.g., Ensifer, Rhodospirillaceae, Clostridium, and Azotobacter) operational taxonomic units (OTUs). Fewer OTUs decreased from nano-ZnO exposure in planted (41) versus unplanted (85) soils, suggesting that plants ameliorate nano-ZnO effects. Taken together, plants--potentially through their effects on belowground biogeochemistry--could either promote (i.e., for the 0.1 g kg(-1) nano-CeO2 treatment) or limit (i.e., for the 0.5 g kg(-1) nano-ZnO treatment) ENP effects on soil bacterial communities.
Collapse
Affiliation(s)
- Yuan Ge
- Bren School of Environmental Science and Management, ‡Earth Research Institute, §University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California , Santa Barbara, California 93106, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dimkpa CO. Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? J Basic Microbiol 2014; 54:889-904. [DOI: 10.1002/jobm.201400298] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 05/12/2014] [Indexed: 11/08/2022]
|
7
|
Five reasons to use bacteria when assessing manufactured nanomaterial environmental hazards and fates. Curr Opin Biotechnol 2014; 27:73-8. [DOI: 10.1016/j.copbio.2013.11.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/19/2013] [Accepted: 11/22/2013] [Indexed: 12/22/2022]
|