1
|
Shang Y, Luo SN. Insights into the role of the H-abstraction reaction kinetics of amines in understanding their degeneration fates under atmospheric and combustion conditions. Phys Chem Chem Phys 2024. [PMID: 39028293 DOI: 10.1039/d4cp02187h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Amines, a class of prototypical volatile organic compounds, have garnered considerable interest within the context of atmospheric and combustion chemistry due to their substantial contributions to the formation of hazardous pollutants in the atmosphere. In the current energy landscape, the implementation of carbon-neutral energy and strategic initiatives leads to generation of new amine sources that cannot be overlooked in terms of the emission scale. To reduce the emission level of amines from their sources and mitigate their impact on the formation of harmful substances, a comprehensive understanding of the fundamental reaction kinetics during the degeneration process of amines is imperative. This perspective article first presents an overview of both traditional amine sources and emerging amine sources within the context of carbon peaking and carbon neutrality and then highlights the importance of H-abstraction reactions in understanding the atmospheric and combustion chemistry of amines from the perspective of reaction kinetics. Subsequently, the current experimental and theoretical techniques for investigating the H-abstraction reactions of amines are introduced, and a concise summary of research endeavors made in this field over the past few decades is provided. In order to provide accurate kinetic parameters of the H-abstraction reactions of amines, advanced kinetic calculations are performed using the multi-path canonical variational theory combined with the small-curvature tunneling and specific-reaction parameter methods. By comparing with the literature data, current kinetic calculations are comprehensively evaluated, and these validated data are valuable for the development of the reaction mechanism of amines.
Collapse
Affiliation(s)
- Yanlei Shang
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250014, P. R. China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Extreme Material Dynamics Technology, Chengdu, Sichuan 610031, P. R. China
| | - S N Luo
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Extreme Material Dynamics Technology, Chengdu, Sichuan 610031, P. R. China
| |
Collapse
|
2
|
Nulakani NVR, Ali MA. Unveiling the chemical kinetics of aminomethanol (NH 2CH 2OH): insights into O . H and O 2 photo-oxidation reactions and formamide dominance. Front Chem 2024; 12:1407355. [PMID: 38873406 PMCID: PMC11169873 DOI: 10.3389/fchem.2024.1407355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Aminomethanol is released into the atmosphere through various sources, including biomass burning. In this study, we have expounded the chemical kinetics of aminomethanol in the reaction pathways initiated by the hydroxyl radical (O ˙ H) with the aid of ab initio//density functional theory (DFT) i.e., coupled-cluster theory (CCSD(T))//hybrid-DFT (M06-2X/6-311++G (3df, 3pd). We have explored various possible directions of theO ˙ H radical on aminomethanol, as well as the formation of distinct pre-reactive complexes. Our computational findings reveal that the H transfer necessitates activation energies ranging from 4.1 to 6.5 kcal/mol from the -CH2 group, 3.5-6.5 kcal/mol from the -NH2 group and 7-9.3 kcal/mol from the -OH group of three rotational conformers. The H transfer from -CH2, -NH2 and -OH exhibits an estimated total rate constant (k OH) of approximately 1.97 × 10-11 cm3 molecule-1 s-1 at 300 K. The branching fraction analysis indicates a pronounced dominance of C-centered NH2C ˙ HOH radicals with a favorability of 77%, surpassing the N-centeredN ˙ HCH2OH (20%) and O-centered NH2CH2O ˙ (3%) radicals. Moreover, our investigation delves into the oxidation of the prominently favored carbon-centered NH2C ˙ HOH radical through its interaction with atmospheric oxygen molecules. Intriguingly, our findings reveal that formamide (NH2CHO) emerges as the predominant product in the NH2C ˙ HOH + 3O2 reaction, eclipsing alternative outcomes such as amino formic acid (NH2COOH) and formimidic acid (HN = C(H)-OH). At atmospheric conditions pertinent to the troposphere, the branching fraction value for the formation of formamide is about 99%, coupled with a rate constant of 5.5 × 10-12 cm3 molecule-1 s-1. Finally, we have scrutinized the detrimental impact of formamide on the atmosphere. Interaction of formamide with atmospheric hydroxyl radicals could give rise to the production of potentially perilous compounds such as HNCO. Further, unreactedN ˙ HCH2OH radicals may initiate the formation of carcinogenic nitrosamines when reacting with trace N-oxides (namely, NO and NO2). This, in turn, escalates the environmental risk factors.
Collapse
Affiliation(s)
| | - Mohamad Akbar Ali
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for the Catalyst and Separations, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Yang Y, Sun M, Wu G, Qi Y, Zhu W, Zhao Y, Zhu Y, Li W, Zhang Y, Wang N, Sheng L, Wang W, Yu X, Yu J, Yao X, Zhou Y. Characteristics of aerosol aminiums over a coastal city in North China: Insights from the divergent impacts of marine and terrestrial influences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170672. [PMID: 38316306 DOI: 10.1016/j.scitotenv.2024.170672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Aminium ions, as crucial alkaline components within fine atmospheric particles, have a notable influence on new particle formation and haze occurrence. Their concentrations within coastal atmosphere depict considerable variation due to the interplay of distinctive marine and terrestrial sources, further complicated by dynamic meteorological conditions. This study conducted a comprehensive examination of aminiums ions concentrations, with a particular focus on methylaminium (MMAH+), dimethylaminium (DMAH+), trimethylaminium (TMAH+), and triethylaminium (TEAH+) within PM2.5, over varying seasons (summer, autumn, and winter of 2019 and summer of 2021), at an urban site in the coastal megacity of Qingdao, Northern China. The investigations revealed that the total concentration of particulate aminium ions (∑Aminium) was 21.6 ± 23.6 ng/m3, exhibiting higher values in the autumn and winter compared to the two summer periods. Considering diurnal variations during autumn and winter, concentrations of particulate aminium ions (excluding TEAH+) exhibited a slight increase during the day compared to night, with a notable peak during the morning hours. However, it was not the case for TEAH+, which was argued to be readily oxidized by ambient oxidants in the afternoon. Additionally, the ∑Aminium within the summer demonstrated markedly elevated levels during the day compared to night, potentially attributed to daytime sea fog associated with sea-land breeze interactions. Positive matrix factorization results indicate terrestrial anthropogenic emissions, including vehicle emission mixed with road dust and primary pollution, as the primary sources of MMAH+ and DMAH+. Conversely, TMAH+ was predominantly emitted from agricultural and marine sources. With the dominance of sea breeze in summer, TMAH+ was identified as a primary marine emission correlated with sea salt, while MMAH+, DMAH+, and TEAH+ were postulated to undergo secondary formation. Furthermore, a notable inverse correlation was observed between TMAH+ and methanesulfonate in PM2.5, consistent with dynamic emissions of sulfur-content and nitrogen-content gases reported in the literature.
Collapse
Affiliation(s)
- Yiyan Yang
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Mingge Sun
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Guanru Wu
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Yuxuan Qi
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Wenqing Zhu
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Yunhui Zhao
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Yujiao Zhu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wenshuai Li
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Yanjing Zhang
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Nana Wang
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China; Jiaozhou Meteorological Bureau, Qingdao Meteorological Bureau, Qingdao 266300, China
| | - Lifang Sheng
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Wencai Wang
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Xu Yu
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, 999077, Hong Kong
| | - Jianzhen Yu
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, 999077, Hong Kong; Department of Chemistry, Hong Kong University of Science and Technology, 999077, Hong Kong
| | - Xiaohong Yao
- Key Laboratory of Marine Environment and Ecology (MoE), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yang Zhou
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
4
|
Perraud V, Roundtree K, Morris PM, Smith JN, Finlayson-Pitts BJ. Implications for new particle formation in air of the use of monoethanolamine in carbon capture and storage. Phys Chem Chem Phys 2024; 26:9005-9020. [PMID: 38440810 DOI: 10.1039/d4cp00316k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Alkanolamines are currently being deployed in carbon capture and storage (CCS) technology worldwide, and atmospheric emissions have been found to coincide with locations exhibiting elevated concentrations of methanesulfonic acid (MSA). It is thus critical to understand the fate and potential atmospheric reactions of these chemicals. This study reports the characterization of sub-10 nm nanoparticles produced through the acid-base reaction between gas phase monoethanolamine (MEA) and MSA, a product of organosulfur compound oxidation in air, using a flow reactor under dry and humid (up to ∼60% RH) conditions. Number size distribution measurements show that MEA is even more efficient than methylamine in forming nanoparticles on reaction with MSA. This is attributed to the fact that the MEA structure contains both an -NH2 and an -OH group that facilitate hydrogen bonding within the clusters, in addition to the electrostatic interactions. Due to this already strong H-bond network, water has a relatively small influence on new particle formation (NPF) and growth in this system, in contrast to MSA reactions with alkylamines. Acid/base molar ratios of unity for 4-12 nm particles were measured using thermal desorption chemical ionization mass spectrometry. The data indicate that reaction of MEA with MSA may dominate NPF under some atmospheric conditions. Thus, the unique characteristics of alkanolamines in NPF must be taken into account for accurate predictions of impacts of CCS on visibility, health and climate.
Collapse
Affiliation(s)
- Véronique Perraud
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| | - Kanuri Roundtree
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| | - Patricia M Morris
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| | - James N Smith
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| | | |
Collapse
|
5
|
Fomete SKW, Johnson JS, Myllys N, Jen CN. Experimental and Theoretical Study on the Enhancement of Alkanolamines on Sulfuric Acid Nucleation. J Phys Chem A 2022; 126:4057-4067. [PMID: 35729723 DOI: 10.1021/acs.jpca.2c01672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alkanolamines such as monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA) are extensively used for CO2 capture and consumer products. Despite their prevalence in industrial applications, the fate of alkanolamines in the atmosphere remains relatively unknown. One likely reaction pathway for these chemicals in the atmosphere is new particle formation with sulfuric acid. Here, we present the first experimental results showing the formation of sulfuric acid dimers enhanced by MEA, DEA, and TEA from the measurement of molecular clusters. This study examines the nucleation reactions of MEA, DEA, and TEA with sulfuric acid in a clean, laminar flow reactor. The chemical compositions and concentrations of the freshly nucleated clusters were analyzed using a custom-built atmospheric pressure chemical ionization long time-of-flight mass spectrometer known as the Pittsburgh Cluster CIMS. Quantum chemical calculations and kinetic modeling of sulfuric acid-MEA/DEA/TEA clusters were also performed to determine relative cluster stabilities between these sulfuric acid-base systems. Experimental results indicate that MEA, DEA, and TEA at the part per trillion by volume (pptv) concentrations can enhance sulfuric acid dimer formation rates but to a lesser extent than dimethylamine (DMA). Thus, MEA, DEA, and TEA will potentially play an important role in new particle formation in industrial cities where these alkanolamines are emitted.
Collapse
Affiliation(s)
- Sandra K W Fomete
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jack S Johnson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Nanna Myllys
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Coty N Jen
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
6
|
Ma F, Xie HB, Li M, Wang S, Zhang R, Chen J. Autoxidation mechanism for atmospheric oxidation of tertiary amines: Implications for secondary organic aerosol formation. CHEMOSPHERE 2021; 273:129207. [PMID: 33349467 DOI: 10.1016/j.chemosphere.2020.129207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Tertiary amines are one kind of identified amines in the atmosphere. Here, the atmospheric oxidation mechanism and kinetics of tertiary amines were investigated by using computational methods. As proxies of these amines, trimethylamine (TMA) and triethylamine (TEA) have been selected. Results indicate that N-containing peroxy radicals (NRO2⋅), which are key intermediates in ⋅OH initiated oxidation of TMA and TEA, can follow a so-called autoxidation mechanism (a chain reaction of H-shift followed by O2 addition) even on the condition of high NO/HO2⋅ concentration. Such unique mechanism can be ascribed to the ability of N-atom in facilitating the unimolecular H-shift of NRO2⋅ and the absence of H-atoms on N-atom. However, different from TMA reaction system, the pathway dissociating into fragmental products can compete with the autoxidation pathway for TEA system. More importantly, TEA reaction system cannot lead to the formation of products with high O/C ratio due to the autoxidation pathway terminated by the release of fragmental molecules. Such difference can be corroborated by previously observing lower secondary organic aerosol yield of TEA oxidation than that of TMA oxidation. The unveiled mechanism enhances current understanding on atmospheric fate of amines and autoxidation mechanism.
Collapse
Affiliation(s)
- Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China; Department of Atmospheric Sciences, Texas A&M University, College Station, TX, 77843, United States
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Mingxue Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Sainan Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Renyi Zhang
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX, 77843, United States
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
7
|
Xing L, Wei K, Li Q, Wang R, Zhang S, Wang L. One-Step Synthesized SO 42-/ZrO 2-HZSM-5 Solid Acid Catalyst for Carbamate Decomposition in CO 2 Capture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13944-13952. [PMID: 33054187 DOI: 10.1021/acs.est.0c04946] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amine-based CO2 capture technology requires high-energy consumption because the desorption temperature required for carbamate breakdown during absorbent regeneration is higher than 110 °C. In this study, we report a stable solid acid catalyst, namely, SO42-/ZrO2-HZSM-5 (SZ@H), which has improved Lewis acid sites (LASs) and Bronsted acid sites (BASs). The improved LASs and BASs enabled the CO2 desorption temperature to be decreased to less than 98 °C. The BASs and LASs of SZ@H preferred to donate or accept protons; thus, the amount and rate of CO2 desorption from spent monoethanolamine were more than 40 and 37% higher, respectively, when using SZ@H than when not using any catalyst. Consequently, the energy consumption was reduced by approximately 31%. A catalyzed proton-transfer mechanism is proposed for SZ@H-catalyzed CO2 regeneration through experimental characterization and theoretical calculations. The results reveal the role of proton transfer during CO2 desorption, which enables the feasibility of catalysts for CO2 capture in industrial applications.
Collapse
Affiliation(s)
- Lei Xing
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Kexin Wei
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Qiangwei Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Rujie Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| |
Collapse
|
8
|
Wang Z, Yuan B, Ye C, Roberts J, Wisthaler A, Lin Y, Li T, Wu C, Peng Y, Wang C, Wang S, Yang S, Wang B, Qi J, Wang C, Song W, Hu W, Wang X, Xu W, Ma N, Kuang Y, Tao J, Zhang Z, Su H, Cheng Y, Wang X, Shao M. High Concentrations of Atmospheric Isocyanic Acid (HNCO) Produced from Secondary Sources in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11818-11826. [PMID: 32876440 DOI: 10.1021/acs.est.0c02843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Isocyanic acid (HNCO) is a potentially toxic atmospheric pollutant, whose atmospheric concentrations are hypothesized to be linked to adverse health effects. An earlier model study estimated that concentrations of isocyanic acid in China are highest around the world. However, measurements of isocyanic acid in ambient air have not been available in China. Two field campaigns were conducted to measure isocyanic acid in ambient air using a high-resolution time-of-flight chemical ionization mass spectrometer (ToF-CIMS) in two different environments in China. The ranges of mixing ratios of isocyanic acid are from below the detection limit (18 pptv) to 2.8 ppbv (5 min average) with the average value of 0.46 ppbv at an urban site of Guangzhou in the Pearl River Delta (PRD) region in fall and from 0.02 to 2.2 ppbv with the average value of 0.37 ppbv at a rural site in the North China Plain (NCP) during wintertime, respectively. These concentrations are significantly higher than previous measurements in North America. The diurnal variations of isocyanic acid are very similar to secondary pollutants (e.g., ozone, formic acid, and nitric acid) in PRD, indicating that isocyanic acid is mainly produced by secondary formation. Both primary emissions and secondary formation account for isocyanic acid in the NCP. The lifetime of isocyanic acid in a lower atmosphere was estimated to be less than 1 day due to the high apparent loss rate caused by deposition at night in PRD. Based on the steady state analysis of isocyanic acid during the daytime, we show that amides are unlikely enough to explain the formation of isocyanic acid in Guangzhou, calling for additional precursors for isocyanic acid. Our measurements of isocyanic acid in two environments of China provide important constraints on the concentrations, sources, and sinks of this pollutant in the atmosphere.
Collapse
Affiliation(s)
- Zelong Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Bin Yuan
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Chenshuo Ye
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - James Roberts
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, USA
| | - Armin Wisthaler
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Yi Lin
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Tiange Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Caihong Wu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Yuwen Peng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Chaomin Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Sihang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Suxia Yang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Baolin Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jipeng Qi
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Chen Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Weiwei Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Wanyun Xu
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry of China Meteorology Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Nan Ma
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Ye Kuang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Jiangchuan Tao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Zhanyi Zhang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Hang Su
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Yafang Cheng
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Xuemei Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Min Shao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| |
Collapse
|
9
|
Tong D, Chen J, Qin D, Ji Y, Li G, An T. Mechanism of atmospheric organic amines reacted with ozone and implications for the formation of secondary organic aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139830. [PMID: 32526582 DOI: 10.1016/j.scitotenv.2020.139830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Organic amines are one of the most important nitrogen-containing compounds in the atmosphere, and their reactions with tropospheric ozone contribute significantly to the formation of secondary organic aerosols (SOA). However, the chemical pathways of their reaction with atmospheric ozone are poorly understood. This study investigates the atmospheric ozonolysis mechanism of two typical organic amines-diethylamine and triethylamine using experimental and theoretical methods. Intermediate results from GC-MS and PTR-TOF-MS analysis confirm the formation of eight and eleven nitrogen- and oxygen-containing products during the ozonolysis of diethylamine and triethylamine, respectively. N-ethylethanimine (56.5% in average) or acetaldehyde (64.9% in average) is formed as the dominant product from the ozonolysis of each organic amine. Ozonolysis pathway results indicate that the conversion to N-ethylethanimine is the dominant pathway for diethylamine ozonolysis. At the same time, triethylamine prefers the initial transformation to diethylamine with the discharge of acetaldehyde and then converts to N-ethylethanimine. Higher SOA mass concentration is obtained from the ozonolysis of triethylamine than diethylamine, probably because the former releases a larger amount of intermediate products, especially acetaldehyde. Our results provide a deep insight into the atmospheric processing of organic amines via ozonolysis and the implications of this mechanism for SOA formation.
Collapse
Affiliation(s)
- Dan Tong
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Dandan Qin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuemeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
10
|
Li K, White S, Zhao B, Geng C, Halliburton B, Wang Z, Zhao Y, Yu H, Yang W, Bai Z, Azzi M. Evaluation of a New Chemical Mechanism for 2-Amino-2-methyl-1-propanol in a Reactive Environment from CSIRO Smog Chamber Experiments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9844-9853. [PMID: 32692547 DOI: 10.1021/acs.est.9b07669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amines are considered as an emerging class of atmospheric pollutants that are of great importance to atmospheric chemistry and new particle formation. As a typical amine, 2-amino-2-methyl-1-propanol (AMP) is one of the proposed solvents for capturing CO2 from flue gas streams in amine-based post-combustion CO2 capture plants, and it is expected to result in AMP emission and secondary product formation in the atmosphere. However, the current knowledge of its atmospheric chemistry and kinetics is poorly understood, particularly in a reactive environment. In this work, we used the CSIRO smog chamber to study the photo-oxidation of AMP in the presence of volatile organic compound (VOC)-NOx surrogate mixtures over a range of initial amine concentrations. O3 formation was significantly inhibited when AMP was added to the surrogate VOC-NOx mixtures, implying that AMP could alter known atmospheric chemical reaction pathways and the prevailing reactivity. Simultaneously, a large amount of AMP-derived secondary aerosol was formed, with a considerably high aerosol mass yield (i.e., ratio of aerosol formed to reacted AMP) of 1.06 ± 0.20. Based on updated knowledge of its kinetics, oxidation pathways, and product yields, we have developed a new mechanism (designated as CSIAMP-19), integrated it into the Carbon Bond 6 (CB6) chemical mechanism, and evaluated it against available smog chamber data. Compared with the existing AMP mechanism (designated as CarterAMP-08), the modified CB6 with CSIAMP-19 mechanism improves prediction against AMP-VOC-NOx experiments across a range of initial AMP concentrations, within ±10% model error for gross ozone production. Our results contribute to scientific understanding of AMP photochemistry and to the development of the chemical mechanism of other amines. Once some potential limitations are considered, the updated AMP reaction scheme can be further embedded into the chemical transport model for regional modeling scenarios where AMP-related emissions are of concern.
Collapse
Affiliation(s)
- Kangwei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- CSIRO Energy, P.O. Box 52, North Ryde, New South Wales 1670, Australia
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Stephen White
- CSIRO Energy, P.O. Box 52, North Ryde, New South Wales 1670, Australia
- New South Wales Department of Planning, Industry and Environment, P.O. Box 29, Lidcombe, New South Wales 1825, Australia
| | - Bin Zhao
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Chunmei Geng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | | | - Zhibin Wang
- Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanyun Zhao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Hai Yu
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, New South Wales 2304, Australia
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Merched Azzi
- CSIRO Energy, P.O. Box 52, North Ryde, New South Wales 1670, Australia
| |
Collapse
|
11
|
Perraud V, Li X, Smith JN, Finlayson-Pitts BJ. Novel ionization reagent for the measurement of gas-phase ammonia and amines using a stand-alone atmospheric pressure gas chromatography (APGC) source. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8561. [PMID: 31429122 DOI: 10.1002/rcm.8561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Contaminants present in ambient air or in sampling lines can interfere with the target analysis through overlapping peaks or causing a high background. This study presents a positive outcome from the unexpected presence of N-methyl-2-pyrrolidone, released from a PALL HEPA filter, in the analysis of atmospherically relevant gas-phase amines using chemical ionization mass spectrometry. METHODS Gas-phase measurements were performed using a triple quadrupole mass spectrometer equipped with a modified atmospheric pressure gas chromatography (APGC) source which allows sampling of the headspace above pure amine standards. Gas-phase N-methyl-2-pyrrolidone (NMP) emitted from a PALL HEPA filter located in the inlet stream served as the ionizing agent. RESULTS This study demonstrates that some alkylamines efficiently form a [NMP + amine+H]+ cluster with NMP upon chemical ionization at atmospheric pressure. The extent of cluster formation depends largely on the proton affinity of the amine compared with that of NMP. Aromatic amines (aniline, pyridine) and diamines (putrescine) were shown not to form cluster ions with NMP. CONCLUSIONS The use of NMP as an ionizing agent with stand-alone APGC provided high sensitivity for ammonia and the smaller amines. The main advantages, in addition to sensitivity, are direct sampling into the APGC source and avoiding uptake on sampling lines which can be a significant problem with ammonia and amines.
Collapse
Affiliation(s)
- Véronique Perraud
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Xiaoxiao Li
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - James N Smith
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | | |
Collapse
|
12
|
Ugelow MS, Berry JL, Browne EC, Tolbert MA. The Impact of Molecular Oxygen on Anion Composition in a Hazy Archean Earth Atmosphere. ASTROBIOLOGY 2020; 20:658-669. [PMID: 32159384 DOI: 10.1089/ast.2019.2145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atmospheric organic hazes are common in planetary bodies in our solar system and likely exoplanet atmospheres as well. In addition, geochemical data support the existence of an organic haze in the early Earth's atmosphere. Much of what is known about organic haze formation derives from studies of Saturn's moon Titan. It is believed that on Titan ions play an important role in haze formation. It is possible, by using Titan as an analog for the Archean Earth, to consider that an Archean haze could have formed by similar processes. Here, we examine the anion chemistry that occurs during laboratory simulations of early Earth haze formation and measure the composition of gaseous anions as a function of O2 mixing ratio. Gaseous anion composition and relative abundances are measured by an atmospheric pressure interface time-of-flight mass spectrometer and are compared to previous photochemical haze mass loading measurements. Numerous anions are observed spanning from mass-to-charge ratio 26 to 246, with a majority of the identified anions containing carbon, hydrogen, nitrogen, and/or oxygen. A shift in the anion composition occurs with increasing the precursor O2 mixing ratio. With 0-20 ppmv O2 in CH4/CO2/N2 mixtures, ions contain mostly organic nitrogen, with CNO- being the most intense ion peak. As the precursor O2 is increased to 200 and 2000 ppmv, inorganic nitrogen ions become the dominant chemical group, with NO3- having the most intense ion signal. The clear shift in the ionic composition could be indicative of a modification to the gas-phase chemistry that occurs in the transition from an anoxic atmosphere to an oxygen-containing atmosphere, with potential astrobiological significance.
Collapse
Affiliation(s)
- Melissa S Ugelow
- Department of Chemistry, University of Colorado, Boulder, Colorado
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
- Now at Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
- University Space Research Association, Columbia, Maryland
| | - Jennifer L Berry
- Department of Chemistry, University of Colorado, Boulder, Colorado
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
| | - Eleanor C Browne
- Department of Chemistry, University of Colorado, Boulder, Colorado
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
| | - Margaret A Tolbert
- Department of Chemistry, University of Colorado, Boulder, Colorado
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
| |
Collapse
|
13
|
Dingilian KK, Halonen R, Tikkanen V, Reischl B, Vehkamäki H, Wyslouzil BE. Homogeneous nucleation of carbon dioxide in supersonic nozzles I: experiments and classical theories. Phys Chem Chem Phys 2020; 22:19282-19298. [PMID: 32815933 DOI: 10.1039/d0cp02279a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied the homogeneous nucleation of carbon dioxide in the carrier gas argon for concentrations of CO2 ranging from 2 to 39 mole percent using three experimental methods. Position-resolved pressure trace measurements (PTM) determined that the onset of nucleation occurred at temperatures between 75 and 92 K with corresponding CO2 partial pressures of 39 to 793 Pa. Small angle X-ray scattering (SAXS) measurements provided particle size distributions and aerosol number densities. Number densities of approximately 1012 cm-3, and characteristic times ranging from 6 to 13 μs, resulted in measured nucleation rates on the order of 5 × 1017 cm-3 s-1, values that are consistent with other nucleation rate measurements in supersonic nozzles. Finally, we used Fourier transform infrared (FTIR) spectroscopy to identify that the condensed CO2 particles were crystalline cubic solids with either sharp or rounded corners. Molecular dynamics simulations, however, suggest that CO2 forms liquid-like critical clusters before transitioning to the solid phase. Furthermore, the critical clusters are not in thermal equilibrium with the carrier gas. Comparisons with nucleation theories were therefore made assuming liquid-like critical clusters and incorporating non-isothermal correction factors.
Collapse
Affiliation(s)
- Kayane K Dingilian
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Roope Halonen
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland
| | - Valtteri Tikkanen
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland
| | - Bernhard Reischl
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland
| | - Hanna Vehkamäki
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland
| | - Barbara E Wyslouzil
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA. and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
14
|
Shen J, Xie HB, Elm J, Ma F, Chen J, Vehkamäki H. Methanesulfonic Acid-driven New Particle Formation Enhanced by Monoethanolamine: A Computational Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14387-14397. [PMID: 31710478 DOI: 10.1021/acs.est.9b05306] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Amines are recognized as significant enhancing species on methanesulfonic acid (MSA)-driven new particle formation (NPF). Monoethanolamine (MEA) has been detected in the atmosphere, and its concentration could be significantly increased once MEA-based postcombustion CO2 capture technology is widely implemented. Here, we evaluated the enhancing potential of MEA on MSA-driven NPF by examining the formation of MEA-MSA clusters using a combination of quantum chemical calculations and kinetics modeling. The results indicate that the -OH group of MEA can form at least one hydrogen bond with MSA or MEA in all MEA-containing clusters. The enhancing potential of MEA is higher than that of the strongest enhancing agent known so far, methylamine (MA), for MSA-driven NPF. Such high enhancing potential can be ascribed to not only the higher gas-phase basicity but also the role of the additional -OH group of MEA in increasing the binding free energy by forming additional hydrogen bonds. This clarifies the importance of hydrogen-bonding capacity from the nonamino group of amines in enhancing MSA-driven NPF. The main growth pathway for MEA-MSA clusters proceeds via the initial formation of the (MEA)1(MSA)1 cluster, followed by alternately adding one MSA and one MEA molecule, differing from the case of MA-MSA clusters.
Collapse
Affiliation(s)
- Jiewen Shen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Jonas Elm
- Department of Chemistry and iClimate , Aarhus University , Langelandsgade 140 , DK-8000 Aarhus C , Denmark
| | - Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Hanna Vehkamäki
- Institute for Atmospheric and Earth System Research/Physics , University of Helsinki , P.O. Box 64, Gustaf Hällströmin katu 2a , FI-00014 Helsinki , Finland
| |
Collapse
|
15
|
Hems RF, Wang C, Collins DB, Zhou S, Borduas-Dedekind N, Siegel JA, Abbatt JPD. Sources of isocyanic acid (HNCO) indoors: a focus on cigarette smoke. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1334-1341. [PMID: 30976776 DOI: 10.1039/c9em00107g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The sources and sinks of isocyanic acid (HNCO), a toxic gas, in indoor environments are largely uncharacterized. In particular, cigarette smoke has been identified as a significant source. In this study, controlled smoking of tobacco cigarettes was investigated in both an environmental chamber and a residence in Toronto, Canada using an acetate-CIMS. The HNCO emission ratio from side-stream cigarette smoke was determined to be 2.7 (±1.1) × 10-3 ppb HNCO/ppb CO. Side-stream smoke from a single cigarette introduced a large pulse of HNCO to the indoor environment, increasing the HNCO mixing ratio by up to a factor of ten from background conditions of 0.15 ppb. Although there was no evidence for photochemical production of HNCO from cigarette smoke in the residence, it was observed in the environmental chamber via oxidation by the hydroxyl radical (1.1 × 107 molecules per cm3), approximately doubling the HNCO mixing ratio after 30 minutes of oxidation. Oxidation of cigarette smoke by O3 (15 ppb = 4.0 × 1017 molecules per cm3) and photo-reaction with indoor fluorescent lights did not produce HNCO. By studying the temporal profiles of both HNCO and CO after smoking, it is inferred that gas-to-surface partitioning of HNCO acts as an indoor loss pathway. Even in the absence of smoking, the indoor HNCO mixing ratios in the Toronto residence were elevated compared to concurrent outdoor measurements by approximately a factor of two.
Collapse
Affiliation(s)
- Rachel F Hems
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
| | | | | | | | | | | | | |
Collapse
|
16
|
Ma F, Xie HB, Elm J, Shen J, Chen J, Vehkamäki H. Piperazine Enhancing Sulfuric Acid-Based New Particle Formation: Implications for the Atmospheric Fate of Piperazine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8785-8795. [PMID: 31287292 DOI: 10.1021/acs.est.9b02117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Piperazine (PZ), a cyclic diamine, is one of 160 detected atmospheric amines and an alternative solvent to the widely used monoethanolamine in post-combustion CO2 capture. Participating in H2SO4 (sulfuric acid, SA)-based new particle formation (NPF) could be an important removal pathway for PZ. Here, we employed quantum chemical calculations and kinetics modeling to evaluate the enhancing potential of PZ on SA-based NPF by examining the formation of PZ-SA clusters. The results indicate that PZ behaves more like a monoamine in stabilizing SA and can enhance SA-based NPF at the parts per trillion (ppt) level. The enhancing potential of PZ is less than that of the chainlike diamine putrescine and greater than that of dimethylamine, which is one of the strongest enhancing agents confirmed by ambient observations and experiments. After the initial formation of the (PZ)1(SA)1 cluster, the cluster mainly grows by gradual addition of SA or PZ monomer, followed by addition of (PZ)1(SA)1 cluster. We find that the ratio of PZ removal by NPF to that by the combination of NPF and oxidations is 0.5-0.97 at 278.15 K. As a result, we conclude that participation in the NPF pathway could significantly alter the environmental impact of PZ compared to only considering oxidation pathways.
Collapse
Affiliation(s)
- Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Jonas Elm
- Department of Chemistry and iClimate , Aarhus University , Langelandsgade 140 , DK- 8000 Aarhus C , Denmark
| | - Jiewen Shen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Hanna Vehkamäki
- Institute for Atmospheric and Earth System Research/Physics , University of Helsinki , P.O. Box 64, Gustaf Hällströmin katu 2a , FI-00014 Helsinki , Finland
| |
Collapse
|
17
|
Leslie MD, Ridoli M, Murphy JG, Borduas-Dedekind N. Isocyanic acid (HNCO) and its fate in the atmosphere: a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:793-808. [PMID: 30968101 DOI: 10.1039/c9em00003h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Isocyanic acid (HNCO) has recently been identified in ambient air at potentially concerning concentrations for human health. Since its first atmospheric detection, significant progress has been made in understanding its sources and sinks. The chemistry of HNCO is governed by its partitioning between the gas and liquid phases, its weak acidity, its high solubility at pH above 5, and its electrophilic chemical behaviour. The online measurement of HNCO in ambient air is possible due to recent advances in mass spectrometry techniques, including chemical ionization mass spectrometry for the detection of weak acids. To date, HNCO has been measured in North America, Europe and South Asia as well as outdoors and indoors, with mixing ratios up to 10s of ppbv. The sources of HNCO include: (1) fossil fuel combustion such as coal, gasoline and diesel, (2) biomass burning such as wildfires and crop residue burning, (3) secondary photochemical production from amines and amides, (4) cigarette smoke, and (5) combustion of materials in the built environment. Then, three losses processes can occur: (1) gas phase photochemistry, (2) heterogenous uptake and hydrolysis, and (3) dry deposition. HNCO lifetimes with respect to photolysis and OH radical oxidation are on the order of months to decades. Consequently, the removal of HNCO from the atmosphere is thought to occur predominantly by dry deposition and by heterogeneous uptake followed by hydrolysis to NH3 and CO2. A back of the envelope calculation reveals that HNCO is an insignificant global source of NH3, contributing only around 1%, but could be important for local environments. Furthermore, HNCO can react due to its electrophilic behaviour with various nucleophilic functionalities, including those present in the human body through a reaction called protein carbamoylation. This protein modification can lead to toxicity, and thus exposure to high concentrations of HNCO can lead to cardiovascular and respiratory diseases, as well as cataracts. In this critical review, we outline our current understanding of the atmospheric fate of HNCO and its potential impacts on outdoor and indoor air quality. We also call attention to the need for toxicology studies linking HNCO exposure to health effects.
Collapse
Affiliation(s)
- Michael David Leslie
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | | | | | | |
Collapse
|
18
|
Murschell T, Farmer DK. Atmospheric OH oxidation chemistry of trifluralin and acetochlor. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:650-658. [PMID: 30805573 DOI: 10.1039/c8em00507a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Trifluralin and acetochlor are two nitrogen-containing current use herbicides. While both herbicides have been observed in the atmosphere and have the potential to undergo atmospheric oxidation before deposition to off-target areas, the atmospheric photooxidation chemistry of these species is poorly understood. We use an oxidative flow reactor to expose the two herbicides to increasing concentrations of OH radicals, detecting pesticides and products using an iodide chemical ionization mass spectrometer. We identify new oxidation products and propose photooxidation mechanisms for trifluralin and acetochlor. Both herbicides contain reduced organic nitrogen atoms, and their OH oxidation produces isocyanic acid. While aerosol was observed in the flow reactor only for acetochlor, our results indicate that OH oxidation of neither herbicide would contribute to secondary organic aerosol formation under typical ambient atmospheric conditions. However, high wall losses of both pesticides in the flow reactor suggests that partitioning to pre-existing aerosol may occur and enable subsequent transport in the atmosphere.
Collapse
Affiliation(s)
- Trey Murschell
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
19
|
Lockhart JP, Gross EC, Sears TJ, Hall GE. Investigating the photodissociation of H2O2 using frequency modulation laser absorption spectroscopy to monitor radical products. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Liggio J, Stroud CA, Wentzell JJB, Zhang J, Sommers J, Darlington A, Liu PSK, Moussa SG, Leithead A, Hayden K, Mittermeier RL, Staebler R, Wolde M, Li SM. Quantifying the Primary Emissions and Photochemical Formation of Isocyanic Acid Downwind of Oil Sands Operations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:14462-14471. [PMID: 29210280 DOI: 10.1021/acs.est.7b04346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Isocyanic acid (HNCO) is a known toxic species and yet the relative importance of primary and secondary sources to regional HNCO and population exposure remains unclear. Off-road diesel fuel combustion has previously been suggested to be an important regional source of HNCO, which implies that major industrial facilities such as the oil sands (OS), which consume large quantities of diesel fuel, can be sources of HNCO. The OS emissions of nontraditional toxic species such as HNCO have not been assessed. Here, airborne measurements of HNCO were used to estimate primary and secondary HNCO for the oil sands. Approximately 6.2 ± 1.1 kg hr-1 was emitted from off-road diesel activities within oil sands facilities, and an additional 116-186 kg hr-1 formed from the photochemical oxidation of diesel exhaust. Together, the primary and secondary HNCO from OS operations represent a significant anthropogenic HNCO source in Canada. The secondary HNCO downwind of the OS was enhanced by up to a factor of 20 relative to its primary emission, an enhancement factor significantly greater than previously estimated from laboratory studies. Incorporating HNCO emissions and formation into a regional model demonstrated that the HNCO levels in Fort McMurray (∼10-70 km downwind of the OS) are controlled by OS emissions; > 50% of the monthly mean HNCO arose from the OS. While the mean HNCO levels in Fort McMurray are predicted to be below the 1000 pptv level associated with potential negative health impacts, (∼25 pptv in August-September), an order of magnitude increase in concentration is predicted (250-600 pptv) when the town is directly impacted by OS plumes. The results here highlight the importance of obtaining at-source HNCO emission factors and advancing the understanding of secondary HNCO formation mechanisms, to assess and improve HNCO population exposure predictions.
Collapse
Affiliation(s)
- John Liggio
- Air Quality Research Division, Environment and Climate Change Canada , Toronto, Ontario Canada , M3H 5T4
| | - Craig A Stroud
- Air Quality Research Division, Environment and Climate Change Canada , Toronto, Ontario Canada , M3H 5T4
| | - Jeremy J B Wentzell
- Air Quality Research Division, Environment and Climate Change Canada , Toronto, Ontario Canada , M3H 5T4
| | - Junhua Zhang
- Air Quality Research Division, Environment and Climate Change Canada , Toronto, Ontario Canada , M3H 5T4
| | - Jacob Sommers
- Air Quality Research Division, Environment and Climate Change Canada , Toronto, Ontario Canada , M3H 5T4
| | - Andrea Darlington
- Air Quality Research Division, Environment and Climate Change Canada , Toronto, Ontario Canada , M3H 5T4
| | - Peter S K Liu
- Air Quality Research Division, Environment and Climate Change Canada , Toronto, Ontario Canada , M3H 5T4
| | - Samar G Moussa
- Air Quality Research Division, Environment and Climate Change Canada , Toronto, Ontario Canada , M3H 5T4
| | - Amy Leithead
- Air Quality Research Division, Environment and Climate Change Canada , Toronto, Ontario Canada , M3H 5T4
| | - Katherine Hayden
- Air Quality Research Division, Environment and Climate Change Canada , Toronto, Ontario Canada , M3H 5T4
| | - Richard L Mittermeier
- Air Quality Research Division, Environment and Climate Change Canada , Toronto, Ontario Canada , M3H 5T4
| | - Ralf Staebler
- Air Quality Research Division, Environment and Climate Change Canada , Toronto, Ontario Canada , M3H 5T4
| | - Mengistu Wolde
- National Research Council Canada , Flight Research Laboratory, Ottawa, Ontario Canada , K1A 0R6
| | - Shao-Meng Li
- Air Quality Research Division, Environment and Climate Change Canada , Toronto, Ontario Canada , M3H 5T4
| |
Collapse
|
21
|
Yu Q, Wang P, Ma F, Xie HB, He N, Chen J. Computational investigation of the nitrosation mechanism of piperazine in CO 2 capture. CHEMOSPHERE 2017; 186:341-349. [PMID: 28800535 DOI: 10.1016/j.chemosphere.2017.07.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Quantum chemistry calculations and kinetic modeling were performed to investigate the nitrosation mechanism and kinetics of diamine piperazine (PZ), an alternative solvent for widely used monoethanolamine in postcombustion CO2 capture (PCCC), by two typical nitrosating agents, NO2- and N2O3, in the presence of CO2. Various PZ species and nitrosating agents formed by the reactions of PZ, NO2-, and N2O3 with CO2 were considered. The results indicated that the reactions of PZ species having NH group with N2O3 contribute the most to the formation of nitrosamines in the absorber unit of PCCC and follow a novel three-step nitrosation mechanism, which is initiated by the formation of a charge-transfer complex. The reactions of all PZ species with NO2- proceed more slowly than the reactions of PZ species with ONOCO2-, formed by the reaction of NO2- with CO2. Therefore, the reactions of PZ species with ONOCO2- contribute more to the formation of nitrosamines in the desorber unit of PCCC. In view of CO2 effect on the nitrosation reaction of PZ, the effect through the reaction of PZ with CO2 shows a completely different tendency for different nitrosating agents. More importantly, CO2 can greatly accelerate the nitrosation reactions of PZ by NO2- through the formation of ONOCO2- in the reaction of CO2 with NO2-. This work can help to better understand the nitrosation mechanism of diamines and in the search for efficient methods to prevent the formation of carcinogenic nitrosamines in CO2 capture unit.
Collapse
Affiliation(s)
- Qi Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Pan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Ning He
- Dalian Ligong Qiwangda Chemical Technology Co., LTD, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
22
|
Yuan B, Koss AR, Warneke C, Coggon M, Sekimoto K, de Gouw JA. Proton-Transfer-Reaction Mass Spectrometry: Applications in Atmospheric Sciences. Chem Rev 2017; 117:13187-13229. [DOI: 10.1021/acs.chemrev.7b00325] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Bin Yuan
- Institute
for Environment and Climate Research, Jinan University, Guangzhou 510632, China
- Chemical
Sciences Division, NOAA Earth System Research Laboratory (ESRL), Boulder, Colorado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado 80309, United States
- Laboratory
of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Abigail R. Koss
- Chemical
Sciences Division, NOAA Earth System Research Laboratory (ESRL), Boulder, Colorado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado 80309, United States
- Department
of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Carsten Warneke
- Chemical
Sciences Division, NOAA Earth System Research Laboratory (ESRL), Boulder, Colorado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Matthew Coggon
- Chemical
Sciences Division, NOAA Earth System Research Laboratory (ESRL), Boulder, Colorado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Kanako Sekimoto
- Chemical
Sciences Division, NOAA Earth System Research Laboratory (ESRL), Boulder, Colorado 80305, United States
- Graduate
School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| | - Joost A. de Gouw
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado 80309, United States
- Department
of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
23
|
Jankowski MJ, Olsen R, Thomassen Y, Molander P. Comparison of air samplers for determination of isocyanic acid and applicability for work environment exposure assessment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1075-1085. [PMID: 28762425 DOI: 10.1039/c7em00174f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Isocyanic acid (ICA) is one of the most abundant isocyanates formed during thermal decomposition of polyurethane (PUR), and other nitrogen containing polymers. Hot-work, such as flame cutting, forging, grinding, turning and welding may give rise to thermal decomposition of said polymers potentially forming significant amounts of ICA. A newly launched dry denuder sampler for airborne isocyanates using di-n-butylamine (DBA) demonstrated build-up of background ICA-DBA over time. Build-up of background ICA-DBA was not observed when stored at inert conditions (Ar atmosphere) for 84 days. Thus, freshly prepared denuders were used. The sampling efficiency of ICA using freshly prepared denuder samplers (0.2 L min-1), impinger + filter samplers (0.5 L min-1) using DBA and 1-(2-methoxyphenyl) piperazine (2MP)-impregnated filter cassette samplers (1 L min-1) was investigated. PTR-MS measurements of ICA were used as a quantitative reference. Dynamically generated standard ICA atmospheres covered the range 5.6 to 640 ppb at absolute humidities (AH) 4.0 and 16 g m-3. Recovered ICA was found to be 73-115% (denuder), 89-115% (impinger + filter) and 62-100% (2MP filter cassette). The method limit of detection (LOD) was equal to an amount of ICA of 24 ng (denuder), 8.9 ng (impinger + filter) and 9.4 ng (2MP filter cassette). The PTR-MS LOD for ICA was 1.8 and 2.8 ppb in atmospheres with an AH of 4 and 16 g m-3. Denuder samplers were used for personal (n = 176) and stationary (n = 31) air sampling during hot-work at six industrial sites (n = 23 workers). ICA was detected above method LOD in 66% and 58% of the personal and stationary samples, respectively. ICA workroom air concentrations were determined to be 1.8-320 ppb (median 12 ppb) (personal samples), and 1.5-44 ppb (median 6.6 ppb) (stationary samples).
Collapse
|
24
|
Xie HB, Elm J, Halonen R, Myllys N, Kurtén T, Kulmala M, Vehkamäki H. Atmospheric Fate of Monoethanolamine: Enhancing New Particle Formation of Sulfuric Acid as an Important Removal Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8422-8431. [PMID: 28651044 DOI: 10.1021/acs.est.7b02294] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Monoethanolamine (MEA), a potential atmospheric pollutant from the capture unit of a leading CO2 capture technology, could be removed by participating H2SO4-based new particle formation (NPF) as simple amines. Here we evaluated the enhancing potential of MEA on H2SO4-based NPF by examining the formation of molecular clusters of MEA and H2SO4 using combined quantum chemistry calculations and kinetics modeling. The results indicate that MEA at the parts per trillion (ppt) level can enhance H2SO4-based NPF. The enhancing potential of MEA is less than that of dimethylamine (DMA), one of the strongest enhancing agents, and much greater than methylamine (MA), in contrast to the order suggested solely by their basicity (MEA < MA < DMA). The unexpectedly high enhancing potential is attributed to the role of -OH of MEA in increasing cluster binding free energies by acting as both a hydrogen bond donor and acceptor. After the initial formation of one H2SO4 and one MEA cluster, the cluster growth mainly proceeds by first adding one H2SO4, and then one MEA, which differs from growth pathways in H2SO4-DMA and H2SO4-MA systems. Importantly, the effective removal rate of MEA due to participation in NPF is comparable to that of oxidation by hydroxyl radicals at 278.15 K, indicating NPF as an important sink for MEA.
Collapse
Affiliation(s)
- Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
- Department of Physics, University of Helsinki , P.O. Box 64, FIN-00014 Helsinki, Finland
| | - Jonas Elm
- Department of Physics, University of Helsinki , P.O. Box 64, FIN-00014 Helsinki, Finland
| | - Roope Halonen
- Department of Physics, University of Helsinki , P.O. Box 64, FIN-00014 Helsinki, Finland
| | - Nanna Myllys
- Department of Physics, University of Helsinki , P.O. Box 64, FIN-00014 Helsinki, Finland
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki , P.O. Box 55, FIN-00014 Helsinki, Finland
| | - Markku Kulmala
- Department of Physics, University of Helsinki , P.O. Box 64, FIN-00014 Helsinki, Finland
| | - Hanna Vehkamäki
- Department of Physics, University of Helsinki , P.O. Box 64, FIN-00014 Helsinki, Finland
| |
Collapse
|
25
|
Barnes I, Wiesen P, Gallus M. Rate Coefficients for the Reactions of OH Radicals with a Series of Alkyl-Substituted Amines. J Phys Chem A 2016; 120:8823-8829. [PMID: 27755865 DOI: 10.1021/acs.jpca.6b08713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rate coefficients have been determined at (298 ± 2) K and atmospheric pressure for the reaction of OH radicals with two primary monoalkyl-, one secondary dialkyl-, and five tertiary trialkyl-substituted amines in a large volume photoreactor by the relative kinetic technique. The following rate coefficients (in cm3 molecule-1 s-1 units) have been obtained: (1) 1,2-dimethylpropylamine, CH3C(CH3)HC(CH3)H)NH2, (5.08 ± 1.02) × 10-11; (2) tert-amylamine (tert-pentylamine), CH3CH2C(CH3)2NH2, (0.86 ± 0.17) × 10-11; (3) diethylamine, (CH3CH2)2NH, (7.36 ± 1.47) × 10-11; (4) N,N-dimethylethylamine, (CH3)2NCH2CH3, (7.37 ± 1.47) × 10-11; (5) N,N-dimethylpropylamine, (CH3)2NCH2CH2CH3, (10.97 ± 1.78) × 10-11; (6) N,N-dimethylisopropylamine, (CH3)2NCH(CH3)2, (9.79 ± 1.75) × 10-11; (7) N,N-diethylmethylamine, (CH3CH2)2NCH3, (8.92 ± 1.54) × 10-11; (8) triethylamine, (CH3CH2)3N, (10.86 ± 1.88) × 10-11. The quoted errors are the 2σ deviations from least-squares linear analysis of the kinetic data plus a contribution to take into account uncertainties associated with the reference compounds. With the exception of diethylamine, this study represents the first determinations of the rate coefficients for reaction of the compounds with OH radicals. The results are compared with rate coefficients available in the literature for smaller alkyl-substituted amines and also the values predicted for the compounds investigated by using a structure activity relationship (SAR). With the exception of tert-amylamine, the SAR-predicted OH rate coefficients are in good agreement with the experimental values.
Collapse
Affiliation(s)
- Ian Barnes
- Fakultät Mathematik und Naturwissenschaften, Physikalische & Theoretische Chemie, Bergische Universität Wuppertal , Gauss Strasse 20, 42119 Wuppertal, Germany
| | - Peter Wiesen
- Fakultät Mathematik und Naturwissenschaften, Physikalische & Theoretische Chemie, Bergische Universität Wuppertal , Gauss Strasse 20, 42119 Wuppertal, Germany
| | - Michael Gallus
- Fakultät Mathematik und Naturwissenschaften, Physikalische & Theoretische Chemie, Bergische Universität Wuppertal , Gauss Strasse 20, 42119 Wuppertal, Germany
| |
Collapse
|
26
|
Borduas N, Abbatt JPD, Murphy JG, So S, da Silva G. Gas-Phase Mechanisms of the Reactions of Reduced Organic Nitrogen Compounds with OH Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11723-11734. [PMID: 27690404 DOI: 10.1021/acs.est.6b03797] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Research on the fate of reduced organic nitrogen compounds in the atmosphere has gained momentum since the identification of their crucial role in particle nucleation and the scale up of carbon capture and storage technology which employs amine-based solvents. Reduced organic nitrogen compounds have strikingly different lifetimes against OH radicals, from hours for amines to days for amides to years for isocyanates, highlighting unique functional group reactivity. In this work, we use ab initio methods to investigate the gas-phase mechanisms governing the reactions of amines, amides, isocyanates and carbamates with OH radicals. We determine that N-H abstraction is only a viable mechanistic pathway for amines and we identify a reactive pathway in amides, the formyl C-H abstraction, not currently considered in structure-activity relationship (SAR) models. We then use our acquired mechanistic knowledge and tabulated literature experimental rate coefficients to calculate SAR factors for reduced organic nitrogen compounds. These proposed SAR factors are an improvement over existing SAR models because they predict the experimental rate coefficients of amines, amides, isocyanates, isothiocyanates, carbamates and thiocarbamates with OH radicals within a factor of 2, but more importantly because they are based on a sound fundamental mechanistic understanding of their reactivity.
Collapse
Affiliation(s)
- Nadine Borduas
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jennifer G Murphy
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Sui So
- Chemical and Biomolecular Engineering, University of Melbourne , Victoria 3010, Australia
| | - Gabriel da Silva
- Chemical and Biomolecular Engineering, University of Melbourne , Victoria 3010, Australia
| |
Collapse
|
27
|
Venkata Nadh R, Syama Sundar B, Radhakrishnamurti PS. Kinetics of ruthenium(III) catalyzed and uncatalyzed oxidation of monoethanolamine by N-bromosuccinimide. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2016. [DOI: 10.1134/s0036024416090296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Xie HB, Ma F, Wang Y, He N, Yu Q, Chen J. Quantum Chemical Study on ·Cl-Initiated Atmospheric Degradation of Monoethanolamine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13246-55. [PMID: 26495768 DOI: 10.1021/acs.est.5b03324] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recent findings on the formation of ·Cl in continental urban areas necessitate the consideration of ·Cl initiated degradation when assessing the fate of volatile organic pollutants. Monoethanolamine (MEA) is considered as a potential atmospheric pollutant since it is a benchmark and widely utilized solvent in a leading CO2 capture technology. Especially, ·Cl may have specific interactions with the N atom of MEA, which could make the MEA + ·Cl reaction have different pathways and products from those of the MEA + ·OH reaction. Hence, ·Cl initiated reactions with MEA were investigated by a quantum chemical method [CCSD(T)/aug-cc-pVTZ//MP2/6-31+G(3df,2p)] and kinetics modeling. Results show that the overall rate constant for ·Cl initiated H-abstraction of MEA is 5 times faster than that initiated by ·OH, and the tropospheric lifetimes of MEA will be overestimated by 6-46% when assuming that [·Cl]/[·OH] = 1-10% if the role of ·Cl is ignored. The MEA + ·Cl reaction exclusively produces MEA-N that finally transforms into several products including mutagenic nitramine and carcinogenic nitrosamine via further reactions with O2/NOx, and the contribution of ·Cl to their formation is about 25-250% of that of ·OH. Thus, it is necessary to consider ·Cl initiated tropospheric degradation of MEA for its risk assessment.
Collapse
Affiliation(s)
- Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Yuanfang Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Ning He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, China
| | - Qi Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| |
Collapse
|
29
|
Karl M, Svendby T, Walker SE, Velken AS, Castell N, Solberg S. Modelling atmospheric oxidation of 2-aminoethanol (MEA) emitted from post-combustion capture using WRF-Chem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 527-528:185-202. [PMID: 25958366 DOI: 10.1016/j.scitotenv.2015.04.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Carbon capture and storage (CCS) is a technological solution that can reduce the amount of carbon dioxide (CO2) emissions from the use of fossil fuel in power plants and other industries. A leading method today is amine based post-combustion capture, in which 2-aminoethanol (MEA) is one of the most studied absorption solvents. In this process, amines are released to the atmosphere through evaporation and entrainment from the CO2 absorber column. Modelling is a key instrument for simulating the atmospheric dispersion and chemical transformation of MEA, and for projections of ground-level air concentrations and deposition rates. In this study, the Weather Research and Forecasting model inline coupled with chemistry, WRF-Chem, was applied to quantify the impact of using a comprehensive MEA photo-oxidation sequence compared to using a simplified MEA scheme. Main discrepancies were found for iminoethanol (roughly doubled in the detailed scheme) and 2-nitro aminoethanol, short MEA-nitramine (reduced by factor of two in the detailed scheme). The study indicates that MEA emissions from a full-scale capture plant can modify regional background levels of isocyanic acid. Predicted atmospheric concentrations of isocyanic acid were however below the limit value of 1 ppbv for ambient exposure. The dependence of the formation of hazardous compounds in the OH-initiated oxidation of MEA on ambient level of nitrogen oxides (NOx) was studied in a scenario without NOx emissions from a refinery area in the vicinity of the capture plant. Hourly MEA-nitramine peak concentrations higher than 40 pg m(-3) did only occur when NOx mixing ratios were above 2 ppbv. Therefore, the spatial variability and temporal variability of levels of OH and NOx need to be taken into account in the health risk assessment. The health risk due to direct emissions of nitrosamines and nitramines from full-scale CO2 capture should be investigated in future studies.
Collapse
Affiliation(s)
- M Karl
- Norwegian Institute for Air Research, NILU, P.O. Box 100, 2027 Kjeller, Norway.
| | - T Svendby
- Norwegian Institute for Air Research, NILU, P.O. Box 100, 2027 Kjeller, Norway
| | - S-E Walker
- Norwegian Institute for Air Research, NILU, P.O. Box 100, 2027 Kjeller, Norway
| | - A S Velken
- Norwegian Institute for Air Research, NILU, P.O. Box 100, 2027 Kjeller, Norway; Norwegian Environment Agency (Miljødirektoratet), 0663 Oslo, Norway
| | - N Castell
- Norwegian Institute for Air Research, NILU, P.O. Box 100, 2027 Kjeller, Norway
| | - S Solberg
- Norwegian Institute for Air Research, NILU, P.O. Box 100, 2027 Kjeller, Norway
| |
Collapse
|
30
|
McWilliams LE, Valley NA, Wren SN, Richmond GL. A means to an interface: investigating monoethanolamine behavior at an aqueous surface. Phys Chem Chem Phys 2015. [PMID: 26220791 DOI: 10.1039/c5cp02931g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of amine scrubbers to trap carbon dioxide from flue gas streams is one of the most promising avenues for atmospheric carbon dioxide reduction. However, modifications are necessary to efficiently scale these scrubbers for use in fossil fuel plants. Current advances in tailoring amines for CO2 capture involve improvements of bulk kinetic and thermodynamic parameters, with little consideration to surface chemistry and behavior. Aqueous alkanolamine solutions, such as monoethanolamine (MEA), are currently highly favored sorbents in CO2 post-combustion capture. Although numerous studies have explored MEA-CO2 chemistry at the macroscopic scale, few have investigated the role of the interface in the gas adsorption process. Additionally, as these amines become more industrially ubiquitous, their presence on and the need to understand their behavior at atmospheric and environmental surfaces will increase. This study investigates the surface behavior of monoethanolamine at the vapor/water interface, with particular focus on MEA's surface orientation and footprint. Using vibrational sum frequency spectroscopy, surface tensiometry, and computational techniques, MEA is found to adopt a constrained gauche interfacial conformation with its methylene backbone oriented toward the vapor phase and its functional groups solvated in the bulk solution. Computational and experimental analysis agree well, giving a complete picture with vibrational mode assignments and surface orientation of MEA. These findings can assist in the tailoring of amine structures or to facilitate improvements in engineering design to exploit favorable surface chemistry, as well as to serve as a starting point toward understanding aqueous amine surface behavior relevant to environmental systems.
Collapse
|
31
|
Onel L, Blitz MA, Breen J, Rickard AR, Seakins PW. Branching ratios for the reactions of OH with ethanol amines used in carbon capture and the potential impact on carcinogen formation in the emission plume from a carbon capture plant. Phys Chem Chem Phys 2015; 17:25342-53. [DOI: 10.1039/c5cp04083c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Branching ratios for the OH reaction with ethanol amines and potential risk of carcinogenic formation in the carbon capture plume.
Collapse
Affiliation(s)
- L. Onel
- School of Chemistry
- University of Leeds
- Leeds
- UK
| | - M. A. Blitz
- School of Chemistry
- University of Leeds
- Leeds
- UK
- National Centre for Atmospheric Science (NCAS)
| | - J. Breen
- School of Chemistry
- University of Leeds
- Leeds
- UK
| | - A. R. Rickard
- Wolfson Atmospheric Chemistry Laboratories
- Department of Chemistry
- University of York
- York
- UK
| | - P. W. Seakins
- School of Chemistry
- University of Leeds
- Leeds
- UK
- National Centre for Atmospheric Science (NCAS)
| |
Collapse
|
32
|
Smith JD, Kinney H, Anastasio C. Aqueous benzene-diols react with an organic triplet excited state and hydroxyl radical to form secondary organic aerosol. Phys Chem Chem Phys 2015; 17:10227-37. [DOI: 10.1039/c4cp06095d] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benzene-diols are oxidized rapidly by hydroxyl radical and the triplet excited state of an aromatic carbonyl to efficiently form SOA in the aqueous phase.
Collapse
Affiliation(s)
- Jeremy D. Smith
- Department of Land
- Air and Water Resources
- University of California
- Davis
- USA
| | - Haley Kinney
- Department of Land
- Air and Water Resources
- University of California
- Davis
- USA
| | - Cort Anastasio
- Department of Land
- Air and Water Resources
- University of California
- Davis
- USA
| |
Collapse
|
33
|
Brady JM, Crisp TA, Collier S, Kuwayama T, Forestieri SD, Perraud V, Zhang Q, Kleeman MJ, Cappa CD, Bertram TH. Real-time emission factor measurements of isocyanic acid from light duty gasoline vehicles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11405-11412. [PMID: 25198906 DOI: 10.1021/es504354p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Exposure to gas-phase isocyanic acid (HNCO) has been previously shown to be associated with the development of atherosclerosis, cataracts and rheumatoid arthritis. As such, accurate emission inventories for HNCO are critical for modeling the spatial and temporal distribution of HNCO on a regional and global scale. To date, HNCO emission rates from light duty gasoline vehicles, operated under driving conditions, have not been determined. Here, we present the first measurements of real-time emission factors of isocyanic acid from a fleet of eight light duty gasoline-powered vehicles (LDGVs) tested on a chassis dynamometer using the Unified Driving Cycle (UC) at the California Air Resources Board (CARB) Haagen-Smit test facility, all of which were equipped with three-way catalytic converters. HNCO emissions were observed from all vehicles, in contrast to the idealized laboratory measurements. We report the tested fleet averaged HNCO emission factors, which depend strongly on the phase of the drive cycle; ranging from 0.46 ± 0.13 mg kg fuel(-1) during engine start to 1.70 ± 1.77 mg kg fuel(-1) during hard acceleration after the engine and catalytic converter were warm. The tested eight-car fleet average fuel based HNCO emission factor was 0.91 ± 0.58 mg kg fuel(-1), within the range previously estimated for light duty diesel-powered vehicles (0.21-3.96 mg kg fuel(-1)). Our results suggest that HNCO emissions from LDGVs represent a significant emission source in urban areas that should be accounted for in global and regional models.
Collapse
Affiliation(s)
- James M Brady
- Department of Chemistry and Biochemistry, University of California , San Diego, California 92093, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Borduas N, da Silva G, Murphy JG, Abbatt JPD. Experimental and theoretical understanding of the gas phase oxidation of atmospheric amides with OH radicals: kinetics, products, and mechanisms. J Phys Chem A 2014; 119:4298-308. [PMID: 25019427 DOI: 10.1021/jp503759f] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atmospheric amides have primary and secondary sources and are present in ambient air at low pptv levels. To better assess the fate of amides in the atmosphere, the room temperature (298 ± 3 K) rate coefficients of five different amides with OH radicals were determined in a 1 m(3) smog chamber using online proton-transfer-reaction mass spectrometry (PTR-MS). Formamide, the simplest amide, has a rate coefficient of (4.44 ± 0.46) × 10(-12) cm(3) molec(-1) s(-1) against OH, translating to an atmospheric lifetime of ∼1 day. N-methylformamide, N-methylacetamide and propanamide, alkyl versions of formamide, have rate coefficients of (10.1 ± 0.6) × 10(-12), (5.42 ± 0.19) × 10(-12), and (1.78 ± 0.43) × 10(-12) cm(3) molec(-1) s(-1), respectively. Acetamide was also investigated, but due to its slow oxidation kinetics, we report a range of (0.4-1.1) × 10(-12) cm(3) molec(-1) s(-1) for its rate coefficient with OH radicals. Oxidation products were monitored and quantified and their time traces were fitted using a simple kinetic box model. To further probe the mechanism, ab initio calculations are used to identify the initial radical products of the amide reactions with OH. Our results indicate that N-H abstractions are negligible in all cases, in contrast to what is predicted by structure-activity relationships. Instead, the reactions proceed via C-H abstraction from alkyl groups and from formyl C(O)-H bonds when available. The latter process leads to radicals that can readily react with O2 to form isocyanates, explaining the detection of toxic compounds such as isocyanic acid (HNCO) and methyl isocyanate (CH3NCO). These contaminants of significant interest are primary oxidation products in the photochemical oxidation of formamide and N-methylformamide, respectively.
Collapse
Affiliation(s)
- Nadine Borduas
- †Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Gabriel da Silva
- ‡Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Jennifer G Murphy
- †Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jonathan P D Abbatt
- †Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
35
|
Ge X, Shaw SL, Zhang Q. Toward understanding amines and their degradation products from postcombustion CO2 capture processes with aerosol mass spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5066-5075. [PMID: 24617831 PMCID: PMC4014145 DOI: 10.1021/es4056966] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/03/2014] [Accepted: 03/11/2014] [Indexed: 05/31/2023]
Abstract
Amine-based postcombustion CO2 capture (PCCC) is a promising technique for reducing CO2 emissions from fossil fuel burning plants. A concern of the technique, however, is the emission of amines and their degradation byproducts. To assess the environmental risk of this technique, standardized stack sampling and analytical methods are needed. Here we report on the development of an integrated approach that centers on the application of a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) for characterizing amines and PCCC-relevant species. Molecular characterization is achieved via ion chromatography (IC) and electrospray ionization high-resolution mass spectrometry (ESI-MS). The method has been optimized, particularly, by decreasing the AMS vaporizer temperature, to gain quantitative information on the elemental composition and major nitrogen-containing species in laboratory-degraded amine solvents commonly tested for PCCC applications, including ethanolamine (MEA), methyldiethanolamine (MDEA), and piperazine (PIP). The AMS-derived nitrogen-to-carbon (N/C) ratios for the degraded solvent and product mixtures agree well with the results from a total organic carbon and total nitrogen (TOC/TN) analyzer. In addition, marker ions identified in the AMS spectra are used to estimate the mass contributions of individual species. Overall, our results indicate that this new approach is suitable for characterizing PCCC-related mixtures as well as organic nitrogen species in other sample types. As an online instrument, AMS can be used for both real-time characterization of emissions from operating PCCC plants and ambient particles in the vicinity of the facilities.
Collapse
Affiliation(s)
- Xinlei Ge
- Department
of Environmental Toxicology, University
of California at Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Stephanie L. Shaw
- Electric Power
Research Institute, 3420 Hillview Avenue, Palo Alto, California 98052, United States
| | - Qi Zhang
- Department
of Environmental Toxicology, University
of California at Davis, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
36
|
Xie HB, Li C, He N, Wang C, Zhang S, Chen J. Atmospheric chemical reactions of monoethanolamine initiated by OH radical: mechanistic and kinetic study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1700-6. [PMID: 24438015 DOI: 10.1021/es405110t] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Monoethanolamine (MEA) is a benchmark and widely utilized solvent in amine-based postcombustion CO2 capture (PCCC), a leading technology for reducing CO2 emission from fossil fuel power plants. The large-scale implementation of PCCC would lead to inevitable discharges of amines to the atmosphere. Therefore, understanding the kinetics and mechanisms of the transformation of representative amine MEA in the atmosphere is of great significance for risk assessment of the amine-based PCCC. In this study, the H-abstraction reaction of MEA with ·OH, and ensuing reactions of produced MEA-radicals, including isomerization, dissociation, and bimolecular reaction MEA-radicals+O2, were investigated by quantum chemical calculation [M06-2X/aug-cc-pVTZ//M06-2X/6-311++G(d,p)] and kinetic modeling. The calculated overall rate constant [(7.27 × 10(-11)) cm(3) molecule(-1) s(-1)] for H-abstraction is in excellent agreement with the experimental value [(7.02 ± 0.46) × 10(-11) cm(3) molecule(-1) s(-1)]. The results show that the product branching ratio of NH2CH2 · CHOH (MEA-β) (43%) is higher than that of NH2 · CHCH2OH (MEA-α) (39%), clarifying that MEA-α is not an exclusive product. On the basis of the unveiled reaction mechanisms of MEA-radicals + O2, the proton transfer reaction mass spectrometry signal (m/z 60.044), not recognized in the experiment, was identified.
Collapse
Affiliation(s)
- Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | | | | | | | | | | |
Collapse
|
37
|
Zhu L, Schade GW, Nielsen CJ. Real-time monitoring of emissions from monoethanolamine-based industrial scale carbon capture facilities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:14306-14314. [PMID: 24215596 DOI: 10.1021/es4035045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We demonstrate the capabilities and properties of using Proton Transfer Reaction time-of-flight mass spectrometry (PTR-ToF-MS) to real-time monitor gaseous emissions from industrial scale amine-based carbon capture processes. The benchmark monoethanolamine (MEA) was used as an example of amines needing to be monitored from carbon capture facilities, and to describe how the measurements may be influenced by potentially interfering species in CO2 absorber stack discharges. On the basis of known or expected emission compositions, we investigated the PTR-ToF-MS MEA response as a function of sample flow humidity, ammonia, and CO2 abundances, and show that all can exhibit interferences, thus making accurate amine measurements difficult. This warrants a proper sample pretreatment, and we show an example using a dilution with bottled zero air of 1:20 to 1:10 to monitor stack gas concentrations at the CO2 Technology Center Mongstad (TCM), Norway. Observed emissions included many expected chemical species, dominantly ammonia and acetaldehyde, but also two new species previously not reported but emitted in significant quantities. With respect to concerns regarding amine emissions, we show that accurate amine quantifications in the presence of water vapor, ammonia, and CO2 become feasible after proper sample dilution, thus making PTR-ToF-MS a viable technique to monitor future carbon capture facility emissions, without conventional laborious sample pretreatment.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Chemistry, University of Oslo , P.O. Box 1033 Blindern, 0315, Oslo, Norway
| | | | | |
Collapse
|
38
|
Onel L, Thonger L, Blitz MA, Seakins PW, Bunkan AJC, Solimannejad M, Nielsen CJ. Gas-Phase Reactions of OH with Methyl Amines in the Presence or Absence of Molecular Oxygen. An Experimental and Theoretical Study. J Phys Chem A 2013; 117:10736-45. [DOI: 10.1021/jp406522z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- L. Onel
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - L. Thonger
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - M. A. Blitz
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - P. W. Seakins
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - A. J. C. Bunkan
- CTCC,
Department of Chemistry, University of Oslo, P.O.Box 1033 Blindern, 0315 Oslo, Norway
| | - M. Solimannejad
- CTCC,
Department of Chemistry, University of Oslo, P.O.Box 1033 Blindern, 0315 Oslo, Norway
| | - C. J. Nielsen
- CTCC,
Department of Chemistry, University of Oslo, P.O.Box 1033 Blindern, 0315 Oslo, Norway
| |
Collapse
|