1
|
Xin X, Kim J, Ashley DC, Huang CH. Degradation and Defluorination of Per- and Polyfluoroalkyl Substances by Direct Photolysis at 222 nm. ACS ES&T WATER 2023; 3:2776-2785. [PMID: 37588805 PMCID: PMC10425954 DOI: 10.1021/acsestwater.3c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 08/18/2023]
Abstract
The susceptibility of 19 representative per- and polyfluoroalkyl substances (PFAS) to direct photolysis and defluorination under far-UVC 222 nm irradiation was investigated. Enhanced photolysis occurred for perfluorocarboxylic acids (PFCAs), fluorotelomer unsaturated carboxylic acids (FTUCAs), and GenX, compared to that at conventional 254 nm irradiation on a similar fluence basis, while other PFAS showed minimal decay. For degradable PFAS, up to 81% of parent compound decay (photolysis rate constant (k222 nm) = 8.19-34.76 L·Einstein-1; quantum yield (Φ222 nm) = 0.031-0.158) and up to 31% of defluorination were achieved within 4 h, and the major transformation products were shorter-chain PFCAs. Solution pH, dissolved oxygen, carbonate, phosphate, chloride, and humic acids had mild impacts, while nitrate significantly affected PFAS photolysis/defluorination at 222 nm. Decarboxylation is a crucial step of photolytic decay. The slower degradation of short-chain PFCAs than long-chain ones is related to molar absorptivity and may also be influenced by chain-length dependent structural factors, such as differences in pKa, conformation, and perfluoroalkyl radical stability. Meanwhile, theoretical calculations indicated that the widely proposed HF elimination from the alcohol intermediate (CnF2n+1OH) of PFCA is an unlikely degradation pathway due to high activation barriers. These new findings are useful for further development of far-UVC technology for PFAS in water treatment.
Collapse
Affiliation(s)
- Xiaoyue Xin
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Juhee Kim
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Daniel C. Ashley
- Department
of Chemistry and Biochemistry, Spelman College, Atlanta, Georgia 30314, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Silva CP, Louros V, Silva V, Otero M, Lima DLD. Antibiotics in Aquaculture Wastewater: Is It Feasible to Use a Photodegradation-Based Treatment for Their Removal? TOXICS 2021; 9:toxics9080194. [PMID: 34437512 PMCID: PMC8402555 DOI: 10.3390/toxics9080194] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
Aquacultures are a sector facing a huge development: farmers usually applying antibiotics to treat and/or prevent diseases. Consequently, effluents from aquaculture represent a source of antibiotics for receiving waters, where they pose a potential threat due to antimicrobial resistance (AMR) induction. This has recently become a major concern and it is expectable that regulations on antibiotics’ discharge will be established in the near future. Therefore, it is urgent to develop treatments for their removal from wastewater. Among the different possibilities, photodegradation under solar radiation may be a sustainable option. Thus, this review aims at providing a survey on photolysis and photocatalysis in view of their application for the degradation of antibiotics from aquaculture wastewater. Experimental facts, factors affecting antibiotics’ removal and employed photocatalysts were hereby addressed. Moreover, gaps in this research area, as well as future challenges, were identified.
Collapse
Affiliation(s)
- Carla Patrícia Silva
- CESAM & Department of Chemistry, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (V.L.); (V.S.); (D.L.D.L.)
- Correspondence:
| | - Vitória Louros
- CESAM & Department of Chemistry, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (V.L.); (V.S.); (D.L.D.L.)
| | - Valentina Silva
- CESAM & Department of Chemistry, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (V.L.); (V.S.); (D.L.D.L.)
- CESAM & Department of Environment and Planning, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Marta Otero
- CESAM & Department of Environment and Planning, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Diana L. D. Lima
- CESAM & Department of Chemistry, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (V.L.); (V.S.); (D.L.D.L.)
| |
Collapse
|
3
|
Chen Y, Hozalski RM, Olmanson LG, Page BP, Finlay JC, Brezonik PL, Arnold WA. Prediction of Photochemically Produced Reactive Intermediates in Surface Waters via Satellite Remote Sensing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6671-6681. [PMID: 32383589 DOI: 10.1021/acs.est.0c00344] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Absorption of solar radiation by colored dissolved organic matter (CDOM) in surface waters results in the formation of photochemically produced reactive intermediates (PPRIs) that react with pollutants in water. Knowing the steady-state concentrations of PPRIs ([PPRI]ss) is critical to predicting the persistence of pollutants in sunlit surface waters. CDOM levels (a440) can be measured remotely for lakes over large areas using satellite imagery. Laboratory measurements of [PPRI]ss and apparent quantum yields (Φ) of three PPRIs (3DOM*, 1O2, and •OH) were made for 24 lake samples under simulated sunlight. The total rate of light absorption by the water samples (Ra), the rates of formation (Rf), and [PPRI]ss of 3DOM* and 1O2 linearly increased with increasing a440. The production rate of •OH was linearly correlated with a440, but the steady-state concentration was best fit by a logarithmic function. The relationship between measured a440 and Landsat 8 reflectance was used to map a440 for more than 10 000 lakes across Minnesota. Relationships of a440 with Rf, [PPRIs]ss, and Ra were coupled with satellite-based a440 assessments to map reactive species production rates and concentrations as well as contaminant transformation rates. This study demonstrates the potential for using satellite imagery for estimating contaminant loss via indirect photolysis in lakes.
Collapse
Affiliation(s)
- Yiling Chen
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| | - Leif G Olmanson
- Department of Forest Resources, University of Minnesota, 1530 Cleveland Avenue North, St. Paul, Minnesota 55108-6112, United States
| | - Benjamin P Page
- Water Resources Center, University of Minnesota, 1985 Buford Avenue, St. Paul, Minnesota 55108-6112, United States
| | - Jacques C Finlay
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1987 Upper Buford Circle, St. Paul, Minnesota 55108-6097, United States
| | - Patrick L Brezonik
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| | - William A Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| |
Collapse
|
4
|
Abstract
Coastal wetlands are ecosystems that provide multiple benefits to human settlements; nonetheless, they are seriously threatened due to both a lack of planning instruments and human activities associated mainly with urban growth. An understanding of their functioning and status is crucial for their protection and conservation. Two wetlands with different degrees of urbanization, Rocuant-Andalién (highly urbanized) and Tubul-Raqui (with little urbanization), were analyzed using temperature, salinity, dissolved oxygen, pH, turbidity, granulometry, fecal coliform, and macroinvertebrate assemblage variables in summer and winter. In both wetlands marked seasonality in salinity, temperature and sediment texture classification, regulated by oceanic influence and changes in the freshwater budget, was observed. In the Rocuant-Andalién wetland, the increases in pH, dissolved oxygen, gravel percentage, and coliform concentration were statistically significant. Urbanization generated negative impacts on macroinvertebrate assemblage structure that inhabit the wetlands; greater richness and abundance (8.5 times greater) were recorded in the Tubul-Raqui wetland than in the more urbanized wetland. The multivariate statistical analysis reflects the alteration of these complex systems.
Collapse
|
5
|
Quindt MI, Gola GF, Ramirez JA, Bonesi SM. Photo-Fries Rearrangement of Some 3-Acylestrones in Homogeneous Media: Preparative and Mechanistic Studies. J Org Chem 2019; 84:7051-7065. [DOI: 10.1021/acs.joc.9b00786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matías I. Quindt
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, C1428EGA, Argentina
- CONICET−Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, C1428EGA, Argentina
| | - Gabriel F. Gola
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, C1428EGA, Argentina
- CONICET−Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), Buenos Aires, C1428EHA, Argentina
| | - Javier A. Ramirez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, C1428EGA, Argentina
- CONICET−Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), Buenos Aires, C1428EHA, Argentina
| | - Sergio M. Bonesi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, C1428EGA, Argentina
- CONICET−Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, C1428EGA, Argentina
| |
Collapse
|