1
|
Li Z, Zhou Q, Liang J, Zhang L, Fan X, Zhao D, Cai Z, Li J, Zheng D, He X, Luo Y, Wang Y, Ying B, Yan H, Sun S, Zhang J, Alshehri AA, Gong F, Zheng Y, Sun X. Defective TiO 2- x for High-Performance Electrocatalytic NO Reduction toward Ambient NH 3 Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300291. [PMID: 36919558 DOI: 10.1002/smll.202300291] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Indexed: 06/15/2023]
Abstract
Synthesis of green ammonia (NH3 ) via electrolysis of nitric oxide (NO) is extraordinarily sustainable, but multielectron/proton-involved hydrogenation steps as well as low concentrations of NO can lead to poor activities and selectivities of electrocatalysts. Herein, it is reported that oxygen-defective TiO2 nanoarray supported on Ti plate (TiO2- x /TP) behaves as an efficient catalyst for NO reduction to NH3 . In 0.2 m phosphate-buffered electrolyte, such TiO2- x /TP shows competitive electrocatalytic NH3 synthesis activity with a maximum NH3 yield of 1233.2 µg h-1 cm-2 and Faradaic efficiency of 92.5%. Density functional theory calculations further thermodynamically faster NO deoxygenation and protonation processes on TiO2- x (101) compared to perfect TiO2 (101). And the low energy barrier of 0.7 eV on TiO2- x (101) for the potential-determining step further highlights the greatly improved intrinsic activity. In addition, a Zn-NO battery is fabricated with TiO2- x /TP and Zn plate to obtain an NH3 yield of 241.7 µg h-1 cm-2 while providing a peak power density of 0.84 mW cm-2 .
Collapse
Affiliation(s)
- Zixiao Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Qiang Zhou
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Jie Liang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xiaoya Fan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Donglin Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Dongdong Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Binwu Ying
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Hong Yan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Jing Zhang
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Abdulmohsen Ali Alshehri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Feng Gong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Yinyuan Zheng
- Huzhou Key Laboratory of Translational Medicine, First People's Hospital affiliated to Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| |
Collapse
|
2
|
Liang J, Liu P, Li Q, Li T, Yue L, Luo Y, Liu Q, Li N, Tang B, Alshehri AA, Shakir I, Agboola PO, Sun C, Sun X. Amorphous Boron Carbide on Titanium Dioxide Nanobelt Arrays for High-Efficiency Electrocatalytic NO Reduction to NH 3. Angew Chem Int Ed Engl 2022; 61:e202202087. [PMID: 35212442 DOI: 10.1002/anie.202202087] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 12/17/2022]
Abstract
Electrocatalytic NO reduction is regarded as an attractive strategy to degrade the NO contaminant into useful NH3 , but the lack of efficient and stable electrocatalysts to facilitate such multiple proton-coupled electron-transfer processes impedes its applications. Here, we report on developing amorphous B2.6 C supported on a TiO2 nanoarray on a Ti plate (a-B2.6 C@TiO2 /Ti) as an NH3 -producing nanocatalyst with appreciable activity and durability toward the NO electroreduction. It shows a yield of 3678.6 μg h-1 cm-2 and a FE of 87.6 %, superior to TiO2 /Ti (563.5 μg h-1 cm-2 , 42.6 %) and a-B2.6 C/Ti (2499.2 μg h-1 cm-2 , 85.6 %). An a-B2.6 C@TiO2 /Ti-based Zn-NO battery achieves a power density of 1.7 mW cm-2 with an NH3 yield of 1125 μg h-1 cm-2 . An in-depth understanding of catalytic mechanisms is gained by theoretical calculations.
Collapse
Affiliation(s)
- Jie Liang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Pengyu Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Qinye Li
- Department of Chemistry and Biotechnology, Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Luchao Yue
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Abdulmohsen Ali Alshehri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Imran Shakir
- College of Engineering Al-Muzahmia Branch, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Philips O Agboola
- College of Engineering Al-Muzahmia Branch, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.,College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China
| |
Collapse
|
3
|
Zou W, Zhu G, Xu H, Zhu M, Zhang Y, Qin B. Temporal dependence of chlorophyll a-nutrient relationships in Lake Taihu: Drivers and management implications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114476. [PMID: 35051816 DOI: 10.1016/j.jenvman.2022.114476] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Eutrophication and its associated algal blooms are principal environmental challenges confronting lakes worldwide. The empirical relationships between nutrient (total nitrogen, TN; total phosphorus, TP) and chlorophyll a (Chla) level are widely used as a theoretical basis for lake eutrophication management. Here, seasonal environmental variables and Chla from 2005 to 2020 in Chinese shallow eutrophic Lake Taihu were examined and Chla-nutrient equations in the entire period and annually from 2005 to 2020 were explored using 95% quantile regression model. The results showed robust linear relationships of logChla-logTN and logChla-logTP in the vast majority of cases. Based on Chla-nutrient equations in the entire study period, 0.69 mg/L TN and 52 μg/L TP are recommended as nutrient threshold in Lake Taihu. Furthermore, the results revealed increasing Chla sensitivity to nutrient for each study month (i.e. February, May, August, and November) from 2005 to 2020, whose drivers included increase in water temperature and water level, decrease in wind speed, mass ratio of nitrogen to phosphorus, and grazing effect. It is noteworthy that atmospheric stilling is likely to be the key climatic factor promoting annual peak Chla in Lake Taihu. For one, the deviations of the sub-index of Trophic State Index indicated that light is a critical limiting factor of summer Chla in Lake Taihu. For another, calmer water mainly due to atmospheric stilling decreased near 40% non-algal turbidity and a substantially increased buoyant cyanobacteria during the study period, improving phytoplankton "light niche". Thus, increasing algal sensitivity to nutrient occurred until the additional algal-turbidity induce further light limitations or the exhaustion of TN (or TP) cause nutrient limitation. Given atmospheric stilling is a global phenomenon, this study would affect future algal bloom mitigation efforts in shallow lakes as temperature is always the focus in the recent literatures on global climate change.
Collapse
Affiliation(s)
- Wei Zou
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Guangwei Zhu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Hai Xu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Mengyuan Zhu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yunlin Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
4
|
Sun X. Amorphous Boron Carbide on Titanium Dioxide Nanobelt Arrays for High‐Efficiency Electrocatalytic NO Reduction to NH3. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xuping Sun
- University of Electronic Science and Technology of China Institute of Fundamental and Frontier Science No.4, Section 2, North Jianshe Road, 610054 610054 Chengdu CHINA
| |
Collapse
|
5
|
Liang J, Hu WF, Song B, Mou T, Zhang L, Luo Y, Liu Q, Alshehri AA, Hamdy MS, Yang L, Sun X. Efficient nitric oxide electroreduction toward ambient ammonia synthesis catalyzed by a CoP nanoarray. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00002d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ever-increasing anthropic NO emission from fossil fuel combustion has resulted in a series of severe environmental issues. Ambient electrocatalytic NO reduction has emerged as a promising route for sustainable...
Collapse
|
6
|
Zhang L, Liang J, Wang Y, Mou T, Lin Y, Yue L, Li T, Liu Q, Luo Y, Li N, Tang B, Liu Y, Gao S, Alshehri AA, Guo X, Ma D, Sun X. High-Performance Electrochemical NO Reduction into NH 3 by MoS 2 Nanosheet. Angew Chem Int Ed Engl 2021; 60:25263-25268. [PMID: 34519397 DOI: 10.1002/anie.202110879] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 11/08/2022]
Abstract
Electrochemical reduction of NO not only offers an attractive alternative to the Haber-Bosch process for ambient NH3 production but mitigates the human-caused unbalance of nitrogen cycle. Herein, we report that MoS2 nanosheet on graphite felt (MoS2 /GF) acts as an efficient and robust 3D electrocatalyst for NO-to-NH3 conversion. In acidic electrolyte, such MoS2 /GF attains a maximal Faradaic efficiency of 76.6 % and a large NH3 yield of up to 99.6 μmol cm-2 h-1 . Using MoS2 nanosheet-loaded carbon paper as the cathode, a proof-of-concept device of Zn-NO battery was assembled to deliver a discharge power density of 1.04 mW cm-2 and an NH3 yield of 411.8 μg h-1 mgcat. -1 . Calculations reveal that the positively charged Mo-edge sites facilitate NO adsorption/activation via an acceptance-donation mechanism and disfavor the binding of protons and the coupling of N-N bond.
Collapse
Affiliation(s)
- Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.,School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jie Liang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Yuanyuan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Ting Mou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Yiting Lin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Luchao Yue
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.,School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Yonglan Luo
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Yang Liu
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Shuyan Gao
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Abdulmohsen Ali Alshehri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Xiaodong Guo
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| |
Collapse
|
7
|
Zhang L, Liang J, Wang Y, Mou T, Lin Y, Yue L, Li T, Liu Q, Luo Y, Li N, Tang B, Liu Y, Gao S, Alshehri AA, Guo X, Ma D, Sun X. High‐Performance Electrochemical NO Reduction into NH
3
by MoS
2
Nanosheet. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110879] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Longcheng Zhang
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 Sichuan China
- School of Chemical Engineering Sichuan University Chengdu 610065 Sichuan China
| | - Jie Liang
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 Sichuan China
| | - Yuanyuan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering Henan University Kaifeng 475004 Henan China
| | - Ting Mou
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 Sichuan China
| | - Yiting Lin
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 Sichuan China
| | - Luchao Yue
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 Sichuan China
- School of Chemical Engineering Sichuan University Chengdu 610065 Sichuan China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 Sichuan China
| | - Qian Liu
- Institute for Advanced Study Chengdu University Chengdu 610106 Sichuan China
| | - Yonglan Luo
- Institute for Advanced Study Chengdu University Chengdu 610106 Sichuan China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science Shandong Normal University Jinan 250014 Shandong China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science Shandong Normal University Jinan 250014 Shandong China
| | - Yang Liu
- School of Materials Science and Engineering Henan Normal University Xinxiang 453007 Henan China
| | - Shuyan Gao
- School of Materials Science and Engineering Henan Normal University Xinxiang 453007 Henan China
| | - Abdulmohsen Ali Alshehri
- Chemistry Department Faculty of Science King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Xiaodong Guo
- School of Chemical Engineering Sichuan University Chengdu 610065 Sichuan China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering Henan University Kaifeng 475004 Henan China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 Sichuan China
| |
Collapse
|
8
|
Da Pan, Tao L, Sun K, Golston LM, Miller DJ, Zhu T, Qin Y, Zhang Y, Mauzerall DL, Zondlo MA. Methane emissions from natural gas vehicles in China. Nat Commun 2020; 11:4588. [PMID: 32917876 PMCID: PMC7486943 DOI: 10.1038/s41467-020-18141-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
Natural gas vehicles (NGVs) have been promoted in China to mitigate air pollution, yet our measurements and analyses show that NGV growth in China may have significant negative impacts on climate change. We conducted real-world vehicle emission measurements in China and found high methane emissions from heavy-duty NGVs (90% higher than current emission limits). These emissions have been ignored in previous emission estimates, leading to biased results. Applying our observations to life-cycle analyses, we found that switching to NGVs from conventional vehicles in China has led to a net increase in greenhouse gas (GHG) emissions since 2000. With scenario analyses, we also show that the next decade will be critical for China to reverse the trend with the upcoming China VI standard for heavy-duty vehicles. Implementing and enforcing the China VI standard is challenging, and the method demonstrated here can provide critical information regarding the fleet-level CH4 emissions from NGVs.
Collapse
Affiliation(s)
- Da Pan
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA. .,Center for Mid-Infrared Technologies for Health and The Environmental, NSF-ERC, Princeton, NJ, 08544, USA.
| | - Lei Tao
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA.,Center for Mid-Infrared Technologies for Health and The Environmental, NSF-ERC, Princeton, NJ, 08544, USA
| | - Kang Sun
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, 14260, USA.,Research and Education in eNergy, Environment and Water (RENEW) Institute, University at Buffalo, Buffalo, NY, 14260, USA
| | - Levi M Golston
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA.,Center for Mid-Infrared Technologies for Health and The Environmental, NSF-ERC, Princeton, NJ, 08544, USA
| | - David J Miller
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA.,Center for Mid-Infrared Technologies for Health and The Environmental, NSF-ERC, Princeton, NJ, 08544, USA.,Currently at Environmental Defense Fund, New York, NY, 10010, USA
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871, Beijing, China
| | - Yue Qin
- Department of Geography, The Ohio State University, Columbus, OH, 43210, USA.,Sustainability Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Yan Zhang
- Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Denise L Mauzerall
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA.,Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ, 08544, USA
| | - Mark A Zondlo
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA. .,Center for Mid-Infrared Technologies for Health and The Environmental, NSF-ERC, Princeton, NJ, 08544, USA.
| |
Collapse
|
9
|
Using Bayesian change point model to enhance understanding of the shifting nutrients-phytoplankton relationship. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2018.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Estimation of the Nutrient and Chlorophyll a Reference Conditions in Taihu Lake Based on A New Method with Extreme⁻Markov Theory. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15112372. [PMID: 30373173 PMCID: PMC6266888 DOI: 10.3390/ijerph15112372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/04/2022]
Abstract
The nutrient reference conditions of lakes play a key role for lake water quality control and water resource management. The inferential models are important methods for calculating reference values; however, the dependence and “cluster” in time series make time series data difficult to be applied in these methods. A new method based on Markov chain theory, which is used for modeling the dependence of data, and extreme statistics was proposed. The new method was used to estimate the nutrient and chlorophyll a reference conditions in Taihu Lake, which is the third largest freshwater lake in China. The results showed that there was remarkable dependence between the effective observations of total nitrogen (TN), total phosphorus (TP), and chlorophyll a. The recommended reference conditions of TN, TP, and chlorophyll a in Taihu Lake were 0.69 mg/L, 0.029 mg/L, and 1.89 μg/L. Their 95% confidence intervals were 0.62–0.76 mg/L, 0.028–0.030 mg/L, and 1.55–2.23 μg/L. These results were consistent with previous researches, which showed that the proposed method is reliable and effective. The length of the intervals was remarkably reduced when compared with several methods. This implied that the proposed method could make full use of the observation data in time series and significantly improve the precision of the estimation results of reference conditions. In general, the proposed method could provide high precision and reliable lake nutrient reference conditions, which would be beneficial to lake water resource management and can be used for estimating the TN, TP, and chlorophyll a reference conditions of other lakes.
Collapse
|
11
|
Huo S, Ma C, Xi B, Zhang Y, Wu F, Liu H. Development of methods for establishing nutrient criteria in lakes and reservoirs: A review. J Environ Sci (China) 2018; 67:54-66. [PMID: 29778174 DOI: 10.1016/j.jes.2017.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/23/2017] [Accepted: 07/17/2017] [Indexed: 06/08/2023]
Abstract
Nutrient criteria provide a scientific foundation for the comprehensive evaluation, prevention, control and management of water eutrophication. In this review, the literature was examined to systematically evaluate the benefits, drawbacks, and applications of statistical analysis, paleolimnological reconstruction, stressor-response model, and model inference approaches for nutrient criteria determination. The developments and challenges in the determination of nutrient criteria in lakes and reservoirs are presented. Reference lakes can reflect the original states of lakes, but reference sites are often unavailable. Using the paleolimnological reconstruction method, it is often difficult to reconstruct the historical nutrient conditions of shallow lakes in which the sediments are easily disturbed. The model inference approach requires sufficient data to identify the appropriate equations and characterize a waterbody or group of waterbodies, thereby increasing the difficulty of establishing nutrient criteria. The stressor-response model is a potential development direction for nutrient criteria determination, and the mechanisms of stressor-response models should be studied further. Based on studies of the relationships among water ecological criteria, eutrophication, nutrient criteria and plankton, methods for determining nutrient criteria should be closely integrated with water management requirements.
Collapse
Affiliation(s)
- Shouliang Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chunzi Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yali Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hongliang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|