1
|
Liu H, Shi C, Wang S, Zhang L, Zhao J, Yang M, Chen C, Song Y, Ling Z. Clay nanoflakes and organic molecules synergistically promoting CO2 hydrate formation. J Colloid Interface Sci 2023; 641:812-819. [PMID: 36966570 DOI: 10.1016/j.jcis.2023.03.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
Carbon dioxide (CO2) reduction is an urgent challenge worldwide due to the dramatically increased CO2 concentration and concomitant environmental problems. Geological CO2 storage in gas hydrate in marine sediment is a promising and attractive way to mitigate CO2 emissions owning to its huge storage capability and safety. However, the sluggish kinetics and unclear enhancing mechanisms of CO2 hydrate formation limit the practical application of hydrate-based CO2 storage technologies. Here, we used vermiculite nanoflakes (VMNs) and methionine (Met) to investigate the synergistic promotion of natural clay surface and organic matter on CO2 hydrate formation kinetics. Induction time and t90 in VMNs dispersion with Met were shorter by one to two orders of magnitude than Met solution and VMNs dispersion. Besides, CO2 hydrate formation kinetics showed significant concentration-dependence on both Met and VMNs. The side chains of Met can promote CO2 hydrate formation by inducing water molecules to form a clathrate-like structure. However, when Met concentration exceeded 3.0 mg/mL, the critical amount of ammonium ions from dissociated Met distorted the ordered structure of water molecules, inhibiting CO2 hydrate formation. Negatively charged VMNs can attenuate this inhibition by adsorbing ammonium ions in VMNs dispersion. This work sheds light on the formation mechanism of CO2 hydrate in the presence of clay and organic matter which are the indispensable constituents of marine sediments, also contributes to the practical application of hydrate-based CO2 storage technologies.
Collapse
|
2
|
Sahu C, Sircar A, Sangwai JS, Kumar R. Effect of Methylamine, Amylamine, and Decylamine on the Formation and Dissociation Kinetics of CO2 Hydrate Relevant for Carbon Dioxide Sequestration. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chandan Sahu
- Gas Hydrate and Flow Assurance Laboratory, Petroleum Engineering Program, Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- Centre of Excellence on Carbon Dioxide Capture, Utilization, and Storage (CCUS), Indian Institute of Technology Madras, Chennai 600036, India
- School of Petroleum Technology, Pandit Deendayal Petroleum University, Raisan, Gandhinagar 382007, Gujarat, India
| | - Anirbid Sircar
- School of Petroleum Technology, Pandit Deendayal Petroleum University, Raisan, Gandhinagar 382007, Gujarat, India
| | - Jitendra S. Sangwai
- Gas Hydrate and Flow Assurance Laboratory, Petroleum Engineering Program, Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- Centre of Excellence on Carbon Dioxide Capture, Utilization, and Storage (CCUS), Indian Institute of Technology Madras, Chennai 600036, India
| | - Rajnish Kumar
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- Centre of Excellence on Carbon Dioxide Capture, Utilization, and Storage (CCUS), Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
3
|
A review of clathrate hydrate nucleation, growth and decomposition studied using molecular dynamics simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Zhao J, Liu Y, Yang L, Zhang L, Song Y. Organics-Coated Nanoclays Further Promote Hydrate Formation Kinetics. J Phys Chem Lett 2021; 12:3464-3467. [PMID: 33792319 DOI: 10.1021/acs.jpclett.1c00010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A deeper understanding of the kinetics of CO2 hydrate formation in the complicated natural environment is required for its enhanced sequestration. Here we found that the organics-coated nanoclays enriched in the natural sediments could contribute to a 92% decline of the induction time of hydrate formation. This can be ascribed to the negative charges carried by the organics and the resulting ordered arrangement of the surrounding water molecules. It was, for the first time, proposed that the abundant functional groups from the coating organics could function as a protecting crust enabling the system more resistant to the acidification potentially upon the CO2 sequestration; besides, the negative charges could help prevent the deposition of the nanoclays via interparticle repulsive forces. These would consequently secure their sustainable promoting effect on hydrate formation. The findings suggest the deposits of gas hydrate a kinetically promising geological setting for the CO2 sequestration via forming hydrates.
Collapse
Affiliation(s)
- Jiafei Zhao
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of the Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Yanzhen Liu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of the Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Lei Yang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of the Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Lunxiang Zhang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of the Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Yongchen Song
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of the Ministry of Education, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Li Y, Chen M, Liu C, Song H, Yuan P, Zhang B, Liu D, Du P. Effects of Layer-Charge Distribution of 2:1 Clay Minerals on Methane Hydrate Formation: A Molecular Dynamics Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3323-3335. [PMID: 32109063 DOI: 10.1021/acs.langmuir.0c00183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecular dynamics simulations were used to investigate the effects of the external surface of a 2:1 clay mineral with different charge amounts and charge locations on CH4 hydrate formation. The results showed that 512, 51262, 51263, and 51264 were formed away from the clay mineral surface. The surface of the clay mineral with high- and low-charge layers was occupied by Na+ to form various distributions of outer- and inner-sphere hydration structures, respectively. The adsorbed Na+ on the high-charge layer surface reduced the H2O activity by disturbing the hydrogen bond network, resulting in low tetrahedral arrangement of H2O molecules near the layer surface, which inhibited CH4 hydrate formation. However, more CH4 molecules were adsorbed onto the vacancy in the Si-O rings of a neutral-charge layer to form semicage structures. Thus, the order parameter of H2O molecules near this surface indicated that the arrangement of H2O molecules resulted in a more optimal tetrahedral structure for CH4 hydrate formation than that near the negatively charged layer surface. Different nucleation mechanisms of the CH4 hydrate on external surfaces of clay mineral models were observed. For clay minerals with negatively charged layers (i.e., high and low charge), the homogeneous nucleation of the CH4 hydrate occurred away from the surface. For a clay mineral with a neutral-charge layer, the CH4 hydrate could nucleate either in the bulk-like solution homogeneously or at the clay mineral-H2O interface heterogeneously.
Collapse
Affiliation(s)
- Yun Li
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Chen
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
| | - Chanjuan Liu
- CAS Key Laboratory of Gas Hydrate, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Center for Gas Hydrate Research, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hongzhe Song
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Yuan
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
| | - Baifa Zhang
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Liu
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
| | - Peixin Du
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
| |
Collapse
|
6
|
Maeda N. Nucleation Curve of Carbon Dioxide Hydrate from a Linear Cooling Ramp Method. J Phys Chem A 2019; 123:7911-7919. [PMID: 31503494 DOI: 10.1021/acs.jpca.9b06633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Formation of gas hydrate is a first-order phase transition that starts with nucleation. Understanding of nucleation is of interest to many in chemical and petroleum industries, as nucleation, while beneficial in many chemical processes, is detrimental in flow assurance of oil and natural gas pipelines. A primary difficulty in the investigation of gas hydrate nucleation has been the inability of researchers to compare nucleation rates of gas hydrates across various systems of different scales and complexities, which in turn has been limiting the ability of researchers to study the nucleation process itself. In this study, a first-generation high-pressure automated lag time apparatus (HP-ALTA MkI) was used to determine the nucleation curve of structure I (sI) - forming carbon dioxide hydrate. The instrument subjected a quiescent water sample of well-defined dimensions to a large number of linear cooling ramps under isobaric conditions, and detected and recorded carbon dioxide hydrate formation temperature distributions. A survival curve was constructed from the measured ensemble, and a nucleation curve was derived from the survival curve using the empirical model-independent method we had previously reported. The nucleation rate of carbon dioxide hydrate was found to be significantly greater than that of pure methane hydrate or that of natural gas hydrate over the entire range of subcooling investigated. We provide a new physical interpretation of an experimentally determined nucleation curve and, by doing so, solve one of the outstanding puzzles of the HP-ALTA technology.
Collapse
Affiliation(s)
- Nobuo Maeda
- Department of Civil & Environmental Engineering, School of Mining and Petroleum Engineering , University of Alberta , 7-207 Donadeo ICE, 9211-116 Street NW , Edmonton , AB T6G1H9 , Canada
| |
Collapse
|
7
|
Cox SJ, Taylor DJF, Youngs TGA, Soper AK, Totton TS, Chapman RG, Arjmandi M, Hodges MG, Skipper NT, Michaelides A. Formation of Methane Hydrate in the Presence of Natural and Synthetic Nanoparticles. J Am Chem Soc 2018; 140:3277-3284. [PMID: 29401390 PMCID: PMC5860788 DOI: 10.1021/jacs.7b12050] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Natural gas hydrates occur widely
on the ocean-bed and in permafrost
regions, and have potential as an untapped energy resource. Their
formation and growth, however, poses major problems for the energy
sector due to their tendency to block oil and gas pipelines, whereas
their melting is viewed as a potential contributor to climate change.
Although recent advances have been made in understanding bulk methane
hydrate formation, the effect of impurity particles, which are always
present under conditions relevant to industry and the environment,
remains an open question. Here we present results from neutron scattering
experiments and molecular dynamics simulations that show that the
formation of methane hydrate is insensitive to the addition of a wide
range of impurity particles. Our analysis shows that this is due to
the different chemical natures of methane and water, with methane
generally excluded from the volume surrounding the nanoparticles.
This has important consequences for our understanding of the mechanism
of hydrate nucleation and the design of new inhibitor molecules.
Collapse
Affiliation(s)
- Stephen J Cox
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom.,Thomas Young Centre and London Centre for Nanotechnology , 17-19 Gordon Street , London WC1H 0AH , United Kingdom
| | - Diana J F Taylor
- Thomas Young Centre and London Centre for Nanotechnology , 17-19 Gordon Street , London WC1H 0AH , United Kingdom.,Department of Physics and Astronomy , University College London , Gower Street , London WC1E 6BT , United Kingdom
| | - Tristan G A Youngs
- ISIS Facility , STFC Rutherford Appleton Laboratory , Harwell Oxford , Didcot OX11 0QX , United Kingdom
| | - Alan K Soper
- ISIS Facility , STFC Rutherford Appleton Laboratory , Harwell Oxford , Didcot OX11 0QX , United Kingdom
| | - Tim S Totton
- BP Exploration Operating Co. Ltd , Chertsey Road , Sunbury-on-Thames TW16 7LN , United Kingdom
| | - Richard G Chapman
- BP Exploration Operating Co. Ltd , Chertsey Road , Sunbury-on-Thames TW16 7LN , United Kingdom
| | - Mosayyeb Arjmandi
- BP Exploration Operating Co. Ltd , Chertsey Road , Sunbury-on-Thames TW16 7LN , United Kingdom
| | - Michael G Hodges
- BP Exploration Operating Co. Ltd , Chertsey Road , Sunbury-on-Thames TW16 7LN , United Kingdom
| | - Neal T Skipper
- Thomas Young Centre and London Centre for Nanotechnology , 17-19 Gordon Street , London WC1H 0AH , United Kingdom.,Department of Physics and Astronomy , University College London , Gower Street , London WC1E 6BT , United Kingdom
| | - Angelos Michaelides
- Thomas Young Centre and London Centre for Nanotechnology , 17-19 Gordon Street , London WC1H 0AH , United Kingdom.,Department of Physics and Astronomy , University College London , Gower Street , London WC1E 6BT , United Kingdom
| |
Collapse
|
8
|
Kim I, Nole M, Jang S, Ko S, Daigle H, Pope GA, Huh C. Highly porous CO2 hydrate generation aided by silica nanoparticles for potential secure storage of CO2 and desalination. RSC Adv 2017. [DOI: 10.1039/c6ra26366f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We report a new way of storing CO2 in a highly porous hydrate structure, stabilized by silica nanoparticles (NPs).
Collapse
Affiliation(s)
- Ijung Kim
- Department of Civil and Environmental Engineering
- Western New England University
- Springfield
- USA
| | - Michael Nole
- Department of Petroleum and Geosystems Engineering
- The University of Texas at Austin
- Austin
- USA
| | - Sunghyun Jang
- Department of Petroleum and Geosystems Engineering
- The University of Texas at Austin
- Austin
- USA
| | - Saebom Ko
- Department of Petroleum and Geosystems Engineering
- The University of Texas at Austin
- Austin
- USA
| | - Hugh Daigle
- Department of Petroleum and Geosystems Engineering
- The University of Texas at Austin
- Austin
- USA
| | - Gary A. Pope
- Department of Petroleum and Geosystems Engineering
- The University of Texas at Austin
- Austin
- USA
| | - Chun Huh
- Department of Petroleum and Geosystems Engineering
- The University of Texas at Austin
- Austin
- USA
| |
Collapse
|