1
|
Wheeler J, Black GP, Hladik ML, Sanders CJ, Teerlink J, Wong L, Zhang X, Budd R, Young TM. Characterizing pyrethroid and fipronil concentrations in biosolids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178954. [PMID: 40022979 DOI: 10.1016/j.scitotenv.2025.178954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Pesticides are prevalent in wastewater, yet few studies have measured pesticides in biosolids and aqueous media from samples collected concurrently. Seventeen California wastewater treatment plants (WWTPs) were sampled in May 2020. Biosolids samples were analyzed for 27 analytes, and paired aqueous samples (influent and effluent) were analyzed for 23 analytes. Analytes included fipronil and its transformation products (fiproles), pyrethroids, novaluron, and several other pesticides with down-the-drain transport potential. Of the 27 compounds analyzed in biosolids samples, 16 were detected in at least one sample, and 10 had a detection frequency (DF) of at least 25 %. Fipronil sulfone, fipronil sulfide, and fipronil were the most frequently detected fiproles (DF = 100 %, 94 %, and 67 %, respectively); permethrin was the most frequently detected pyrethroid (DF = 100 %), followed by bifenthrin (DF = 94 %), cyhalothrin (DF = 89 %), and etofenprox (DF = 78 %). To elucidate fipronil transformation pathways within the treatment system, data from the three sample types were compared; findings were generally consistent with transformation pathways reported previously (e.g., some fiproles were rarely detected in influent or biosolids, but frequently detected in effluent, indicating their formation during the treatment process). No correlations were found between WWTP characteristics and pesticide concentrations in biosolids. The fraction of organic carbon (fOC) of each biosolids sample was measured, and a statistically significant negative correlation was observed between fOC and some fiproles, but not fipronil; possible explanations are discussed. Additional analysis for two major agricultural pesticides (bifenthrin and permethrin) indicated that estimated mass loads of these pesticides in biosolids applied to land as a soil amendment are minimal (approximately 2 to 3 orders of magnitude lower) compared to inputs from agricultural applications. This study provides insight on the magnitude of pesticides entering the environment via land-applied biosolids; existing regulations surrounding agricultural pesticide applications are expected to also be protective of the relatively low inputs from biosolids.
Collapse
Affiliation(s)
- John Wheeler
- California Department of Pesticide Regulation, California Environmental Protection Agency, 1001 I Street, Sacramento, CA 95812, USA.
| | - Gabrielle P Black
- U.S. Geological Survey, 6000 J Street, Placer Hall, Sacramento, CA 95819, USA.
| | - Michelle L Hladik
- U.S. Geological Survey, 6000 J Street, Placer Hall, Sacramento, CA 95819, USA.
| | - Corey J Sanders
- U.S. Geological Survey, 6000 J Street, Placer Hall, Sacramento, CA 95819, USA.
| | - Jennifer Teerlink
- California Department of Pesticide Regulation, California Environmental Protection Agency, 1001 I Street, Sacramento, CA 95812, USA.
| | - Luann Wong
- University of California, Davis, 3113 Ghausi Hall, One Shields Avenue, Davis, CA 95616, USA.
| | - Xuyang Zhang
- California Department of Pesticide Regulation, California Environmental Protection Agency, 1001 I Street, Sacramento, CA 95812, USA.
| | - Robert Budd
- California Department of Pesticide Regulation, California Environmental Protection Agency, 1001 I Street, Sacramento, CA 95812, USA.
| | - Thomas M Young
- University of California, Davis, 3113 Ghausi Hall, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Devers J, Pattison DI, Hansen AB, Christensen JH. Comprehensive two-dimensional gas chromatography as a tool for targeted and non-targeted analysis of contaminants of emerging concern in wastewater. Talanta 2025; 282:127032. [PMID: 39406094 DOI: 10.1016/j.talanta.2024.127032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/20/2024]
Abstract
Wastewater is a major reservoir for chemical contaminants, both anthropogenic and biogenic. Recent chemical and toxicological analysis reveals the abundance and impact of these compounds, often termed contaminants of emerging concern (CECs). Concurrently, incomplete removal of these compounds in wastewater treatment plants sets a precedent for detailed characterisation and monitoring of such substances. Although liquid chromatography (LC) is frequently used for analysis of CECs in wastewater, gas chromatography (GC) maintains its significance for non-polar to mid-polar analytes. GC offers advantages such as increased separation efficiency, fewer matrix effects, and greater availability and reliability of reference mass spectra compared to LC. Comprehensive two-dimensional gas chromatography (GC × GC) delivers unmatched peak capacity and separational capabilities, critical in the resolution of diverse compound groups present within wastewater. When coupled with high resolution mass spectrometry, it provides a powerful identification tool with spectral databases and both 1st and 2nd dimensional retention indices, and has allowed for the separation, reliable annotation and characterisation of diverse CECs within wastewater in recent years. Herein, on the basis of recent studies from the last fifteen years, we outline cutting-edge methodologies and strategies for wastewater analysis using GC × GC. This includes sample preparation, derivatization of polar analytes, instrumental setup, and data analysis, ultimately providing the reader a framework for future non-targeted analysis of wastewater and other complex environmental matrices.
Collapse
Affiliation(s)
- Jason Devers
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| | - David I Pattison
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| | - Asger B Hansen
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
3
|
Milani NBL, van Gilst E, Pirok BWJ, Schoenmakers PJ. Comprehensive two-dimensional gas chromatography- A discussion on recent innovations. J Sep Sci 2023; 46:e2300304. [PMID: 37654057 DOI: 10.1002/jssc.202300304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/02/2023]
Abstract
Although comprehensive 2-D GC is an established and often applied analytical method, the field is still highly dynamic thanks to a remarkable number of innovations. In this review, we discuss a number of recent developments in comprehensive 2-D GC technology. A variety of modulation methods are still being actively investigated and many exciting improvements are discussed in this review. We also review interesting developments in detection methods, retention modeling, and data analysis.
Collapse
Affiliation(s)
- Nino B L Milani
- Van't Hoff Institute for Molecular Science (HIMS), University of Amsterdam, Amsterdam, the Netherlands
| | - Eric van Gilst
- Van't Hoff Institute for Molecular Science (HIMS), University of Amsterdam, Amsterdam, the Netherlands
| | - Bob W J Pirok
- Van't Hoff Institute for Molecular Science (HIMS), University of Amsterdam, Amsterdam, the Netherlands
| | - Peter J Schoenmakers
- Van't Hoff Institute for Molecular Science (HIMS), University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Zhang M, Meng X, Li N, Zou W, Wei H, Liu R, Sun Y, Chen W, Cui J, Wang C. Integration of solid-phase microextraction and surface-enhanced Raman spectroscopy for in-vivo screening of polybrominated diphenyl ether. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122476. [PMID: 36787678 DOI: 10.1016/j.saa.2023.122476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/21/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The monitoring of polybrominated diphenyl ethers (PBDEs) is of great significance owing to their high persistence, bioaccumulation, and toxicity to humans and animals. In this study, a sensitive and reproducible probe that integrates solid-phase microextraction and surface-enhanced Raman spectroscopy (SPME-SERS) was developed for screening PBDEs in multiphase specimens, including live fish, water, and electrical products. A roughed Cu fiber with an Ag layer was fabricated with dual functions. BDE-15 was readily extracted and detected on the SPME-SERS probe consisting of propanethiol-modified Ag nanoplates on a Cu wire. A clear linear relationship (R2 = 0.988) was established between the SERS intensity at 782 cm-1 and the logarithmic concentrations (from 100 ppb to 100 ppm), with a detection limit of 15 ppb. This proposed method enables continuous in vivo monitoring in fish without complicated pretreatments. The results obtained by this SPME-SERS approach were validated by high-performance liquid chromatography and showed good agreement. This "extracting and detecting" SPME-SERS method provides a potential tool to monitor the occurrence, formation, and migration of PBDEs.
Collapse
Affiliation(s)
- Mengping Zhang
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China
| | - Xiao Meng
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China
| | - Nianlu Li
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China
| | - Wei Zou
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China
| | - Haiyan Wei
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China
| | - Ranran Liu
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China
| | - Yaxin Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Wenwen Chen
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China
| | - Jingcheng Cui
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China.
| | - Cuijuan Wang
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China.
| |
Collapse
|
5
|
A comparison of liquid-liquid extraction and stir bar sorptive extraction for multiclass organic contaminants in wastewater by comprehensive two-dimensional gas chromatography time of flight mass spectrometry. Talanta 2021; 221:121481. [DOI: 10.1016/j.talanta.2020.121481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 01/17/2023]
|
6
|
Śmiełowska M, Zabiegała B. Current trends in analytical strategies for the determination of polybrominated diphenyl ethers (PBDEs) in samples with different matrix compositions – Part 2: New approaches to PBDEs determination. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Tang J, Ma S, Liu R, Yue C, Li G, Yu Y, Yang Y, An T. The pollution profiles and human exposure risks of chlorinated and brominated PAHs in indoor dusts from e-waste dismantling workshops: Comparison of GC-MS, GC-MS/MS and GC × GC-MS/MS determination methods. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122573. [PMID: 32278123 DOI: 10.1016/j.jhazmat.2020.122573] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/05/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
The toxicities of some chlorinated and brominated polycyclic aromatic hydrocarbons (X-PAHs) are higher than their corresponding parent PAHs. However, the identification and quantitation of X-PAHs in environment are still changeable and limitedly reported. To develop a robust method for routine analysis of X-PAHs in environmental samples, the determination of 34 X-PAHs was performed and compared using different instruments, including gas chromatography-mass spectrometry (GC-MS), gas chromatography-tandem mass spectrometry (GC-MS/MS) in both electron ionization (EI) and negative chemical ionization (NCI) modes, and comprehensive two-dimensional gas chromatograph-tandem mass spectrometer (GC × GC-MS/MS). GC-EI-MS/MS possessed the highest sensitivity with method detection limits of 2.00-40.0 and 2.00-20.0 pg/g dry weight (dw) for Cl-PAHs and Br-PAHs, respectively. This validated method was then applied to analyze X-PAHs in indoor dusts from a typical e-waste dismantling workshop, and the concentrations of Σ18Br-PAHs (8.80-399 ng/g dw) were higher than Σ16Cl-PAHs (7.91-137 ng/g dw). The toxicity equivalency quantities (TEQs) of Cl-PAHs at e-waste dismantling workshop and Br-PAHs at raw materials crushing workshop showed the highest values of 176 and 453 pg·TEQ/g, respectively. Cl-PAHs and Br-PAHs posed a potential health risk to workers through dust ingestion in workshops. Further attention should be payed to the formation mechanism of X-PAHs and the health risk.
Collapse
Affiliation(s)
- Jian Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515100, China
| | - Ranran Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Congcong Yue
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515100, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yan Yang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515100, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Pico Y, Alfarhan AH, Barcelo D. How recent innovations in gas chromatography-mass spectrometry have improved pesticide residue determination: An alternative technique to be in your radar. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115720] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Crucello J, Pierone DV, Hantao LW. Simple and cost-effective determination of polychlorinated biphenyls in insulating oils using an ionic liquid-based stationary phase and flow modulated comprehensive two-dimensional gas chromatography with electron capture detection. J Chromatogr A 2020; 1610:460530. [DOI: 10.1016/j.chroma.2019.460530] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
|
10
|
Weggler BA, Gruber B, Teehan P, Jaramillo R, Dorman FL. Inlets and sampling. SEP SCI TECHNOL 2020. [DOI: 10.1016/b978-0-12-813745-1.00005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Gough DV, Song DH, Schöneich S, Prebihalo SE, Synovec RE. Development of Ultrafast Separations Using Negative Pulse Partial Modulation To Enable New Directions in Gas Chromatography. Anal Chem 2019; 91:7328-7335. [DOI: 10.1021/acs.analchem.9b01085] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Derrick V. Gough
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Dong H. Song
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Sonia Schöneich
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Sarah E. Prebihalo
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Robert E. Synovec
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| |
Collapse
|
12
|
Column selection approach to achieve a high peak capacity in comprehensive three-dimensional gas chromatography. Talanta 2019; 195:822-829. [DOI: 10.1016/j.talanta.2018.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 11/15/2022]
|
13
|
HUANG XM, WU Y, CUI JT, WANG FH, WANG X, LI YF, WU WY. Applications of High-Resolution Mass Spectrometry in Determination of Chlorinated Paraffins. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61144-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
García-Córcoles MT, Rodríguez-Gómez R, de Alarcón-Gómez B, Çipa M, Martín-Pozo L, Kauffmann JM, Zafra-Gómez A. Chromatographic Methods for the Determination of Emerging Contaminants in Natural Water and Wastewater Samples: A Review. Crit Rev Anal Chem 2018; 49:160-186. [DOI: 10.1080/10408347.2018.1496010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- M. T. García-Córcoles
- Department of Analytical Chemistry, Research Group of Analytical Chemistry and Life Sciences, University of Granada, Granada, Spain
| | - R. Rodríguez-Gómez
- Department of Analytical Chemistry, Research Group of Analytical Chemistry and Life Sciences, University of Granada, Granada, Spain
- Laboratory of Instrumental Analysis and Bioelectrochemistry, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - B. de Alarcón-Gómez
- Department of Analytical Chemistry, Research Group of Analytical Chemistry and Life Sciences, University of Granada, Granada, Spain
| | - M. Çipa
- Department of Chemistry, University of Tirana, Tirana, Albania
| | | | - J.-M. Kauffmann
- Laboratory of Instrumental Analysis and Bioelectrochemistry, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - A. Zafra-Gómez
- Department of Analytical Chemistry, Research Group of Analytical Chemistry and Life Sciences, University of Granada, Granada, Spain
| |
Collapse
|
15
|
Gruber B, Weggler B, Jaramillo R, Murrell K, Piotrowski P, Dorman F. Comprehensive two-dimensional gas chromatography in forensic science: A critical review of recent trends. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Prebihalo SE, Berrier KL, Freye CE, Bahaghighat HD, Moore NR, Pinkerton DK, Synovec RE. Multidimensional Gas Chromatography: Advances in Instrumentation, Chemometrics, and Applications. Anal Chem 2017; 90:505-532. [DOI: 10.1021/acs.analchem.7b04226] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sarah E. Prebihalo
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Kelsey L. Berrier
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Chris E. Freye
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - H. Daniel Bahaghighat
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Nicholas R. Moore
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - David K. Pinkerton
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Robert E. Synovec
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| |
Collapse
|
17
|
Pixel-by-pixel correction of retention time shifts in chromatograms from comprehensive two-dimensional gas chromatography coupled to high resolution time-of-flight mass spectrometry. J Chromatogr A 2017. [DOI: 10.1016/j.chroma.2017.05.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Samanipour S, Baz-Lomba JA, Alygizakis NA, Reid MJ, Thomaidis NS, Thomas KV. Two stage algorithm vs commonly used approaches for the suspect screening of complex environmental samples analyzed via liquid chromatography high resolution time of flight mass spectroscopy: A test study. J Chromatogr A 2017; 1501:68-78. [DOI: 10.1016/j.chroma.2017.04.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/06/2017] [Accepted: 04/17/2017] [Indexed: 11/26/2022]
|
19
|
Samanipour S, Dimitriou-Christidis P, Nabi D, Arey JS. Elevated Concentrations of 4-Bromobiphenyl and 1,3,5-Tribromobenzene Found in Deep Water of Lake Geneva Based on GC×GC-ENCI-TOFMS and GC×GC-μECD. ACS OMEGA 2017; 2:641-652. [PMID: 31457461 PMCID: PMC6641002 DOI: 10.1021/acsomega.6b00440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/03/2017] [Indexed: 05/31/2023]
Abstract
We quantified the concentrations of two little-studied brominated pollutants, 1,3,5-tribromobenzene (TBB) and 4-bromobiphenyl (4BBP), in the deep water column and sediments of Lake Geneva. We found aqueous concentrations of 625 ± 68 pg L-1 for TBB and 668 ± 86 pg L-1 for 4BBP over a depth range of 70-191.5 m (near-bottom depth), based on duplicate measurements taken at five depths during three separate 1 month sampling periods at our sampling site near Vidy Bay. These levels of TBB and 4BBP were 1 or 2 orders of magnitude higher than the quantified aqueous concentrations of the components of the pentabrominated biphenyl ether technical mixture, which is a flame retardant product that had a high production volume in Europe before 2001. We observed statistically significant vertical concentration trends for both TBB and 2,2',4,4',6-pentabromobiphenyl ether in the deep water column, which indicates that transport and/or degradation processes affect these compounds. These measurements were enabled by application of a comprehensive two-dimensional gas chromatograph coupled to an electron capture negative chemical ionization time-of-flight mass spectrometer (GC×GC-ENCI-TOFMS) and to a micro-electron capture detector (GC×GC-μECD). GC×GC-ENCI-TOFMS and GC×GC-μECD were found to be >10× more sensitive toward brominated pollutants than conventional GC×GC-EI-TOFMS (with an electron impact (EI) ionization source), the latter of which had insufficient sensitivity to detect these emerging brominated pollutants in the analyzed samples. GC×GC also enabled the estimation of several environmentally relevant partitioning properties of TBB and 4BBP, further confirming previous evidence that these pollutants are bioaccumulative and have long-range transport potential.
Collapse
Affiliation(s)
- Saer Samanipour
- School
of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC IIE LMCE GR C2 544 Station
2, 1015 Lausanne, Switzerland
- Norwegian
Institute for Water Research, Gaustadalléen 21, 0349 Oslo, Norway
| | - Petros Dimitriou-Christidis
- School
of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC IIE LMCE GR C2 544 Station
2, 1015 Lausanne, Switzerland
- Firmenich, Route des Jeunes 1, 1227 Les Acacias, Switzerland
| | - Deedar Nabi
- School
of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC IIE LMCE GR C2 544 Station
2, 1015 Lausanne, Switzerland
- Bigelow
Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, Maine 04544, United
States
| | - J. Samuel Arey
- School
of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC IIE LMCE GR C2 544 Station
2, 1015 Lausanne, Switzerland
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Überlandstr. 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
20
|
Xia D, Gao L, Zheng M, Tian Q, Huang H, Qiao L. A Novel Method for Profiling and Quantifying Short- and Medium-Chain Chlorinated Paraffins in Environmental Samples Using Comprehensive Two-Dimensional Gas Chromatography-Electron Capture Negative Ionization High-Resolution Time-of-Flight Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7601-7609. [PMID: 27183176 DOI: 10.1021/acs.est.6b01404] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chlorinated paraffins (CPs) are complex technical mixtures containing thousands of isomers. Analyzing CPs in environmental matrices is extremely challenging. CPs have broad, unresolved profiles when analyzed by one-dimensional gas chromatography (GC). Comprehensive two-dimensional GC (GC×GC) can separate CPs with a high degree of orthogonality. A novel method for simultaneously profiling and quantifying short- and medium-chain CPs, using GC×GC coupled with electron capture negative ionization high-resolution time-of-flight mass spectrometry, was developed. The method allowed 48 CP formula congener groups to be analyzed highly selectively in one injection through accurate mass measurements of the [M - Cl](-) ions in full scan mode. The correlation coefficients (R(2)) for the linear calibration curves for different chlorine contents were 0.982 for short-chain CPs and 0.945 for medium-chain CPs. The method was successfully used to determine CPs in sediment and fish samples. By using this method, with enhanced chromatographic separation and high mass resolution, interferences between CP congeners and other organohalogen compounds, such as toxaphene, are minimized. New compounds, with the formulas C9H14Cl6 and C9H13Cl7, were found in sediment and biological samples for the first time. The method was shown to be a powerful tool for the analysis of CPs in environmental samples.
Collapse
Affiliation(s)
- Dan Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100085, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Qichang Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Huiting Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| |
Collapse
|
21
|
Alam MS, Harrison RM. Recent advances in the application of 2-dimensional gas chromatography with soft and hard ionisation time-of-flight mass spectrometry in environmental analysis. Chem Sci 2016; 7:3968-3977. [PMID: 30155039 PMCID: PMC6013788 DOI: 10.1039/c6sc00465b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/27/2016] [Indexed: 12/23/2022] Open
Abstract
Two-dimensional gas chromatography has huge power for separating complex mixtures. The principles of the technique are outlined together with an overview of detection methods applicable to GC × GC column effluent with a focus on selectivity. Applications of GC × GC techniques in the analysis of petroleum-related and airborne particulate matter samples are reviewed. Mass spectrometric detection can be used alongside spectral libraries to identify eluted compounds, but in complex petroleum-related and atmospheric samples, when used conventionally at high ionisation energies, may not allow differentiation of structural isomers. Available low energy ionisation methods are reviewed and an example given of the additional structural information which can be extracted by measuring mass spectra at both low and high ionisation energies, hence greatly enhancing the selectivity of the technique.
Collapse
Affiliation(s)
- Mohammed S Alam
- School of Geography, Earth and Environmental Sciences , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK .
| | - Roy M Harrison
- School of Geography, Earth and Environmental Sciences , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK .
| |
Collapse
|
22
|
Collin WR, Nuñovero N, Paul D, Kurabayashi K, Zellers ET. Comprehensive two-dimensional gas chromatographic separations with a temperature programmed microfabricated thermal modulator. J Chromatogr A 2016; 1444:114-22. [DOI: 10.1016/j.chroma.2016.03.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 01/25/2023]
|