1
|
Wood JP, Adrion AC. Review of Decontamination Techniques for the Inactivation of Bacillus anthracis and Other Spore-Forming Bacteria Associated with Building or Outdoor Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4045-4062. [PMID: 30901213 PMCID: PMC6547374 DOI: 10.1021/acs.est.8b05274] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Since the intentional release of Bacillus anthracis spores through the U.S. Postal Service in the fall of 2001, research and development related to decontamination for this biological agent have increased substantially. This review synthesizes the advances made relative to B. anthracis spore decontamination science and technology since approximately 2002, referencing the open scientific literature and publicly available, well-documented scientific reports. In the process of conducting this review, scientific knowledge gaps have also been identified. This review focuses primarily on techniques that are commercially available and that could potentially be used in the large-scale decontamination of buildings and other structures, as well as outdoor environments. Since 2002, the body of scientific data related to decontamination and microbial sterilization has grown substantially, especially in terms of quantifying decontamination efficacy as a function of several factors. Specifically, progress has been made in understanding how decontaminant chemistry, the materials the microorganisms are associated with, environmental factors, and microbiological methods quantitatively impact spore inactivation. While advancement has been made in the past 15 years to further the state of the science in the inactivation of bacterial spores in a decontamination scenario, further research is warranted to close the scientific gaps that remain.
Collapse
Affiliation(s)
- Joseph P. Wood
- United States Environmental Protection Agency, Offce of Research and Development, National Homeland Security Research Center, Research Triangle Park, North Carolina United States
- Corresponding Author: Phone: (919) 541-5029;
| | - Alden Charles Adrion
- United States Environmental Protection Agency, Offce of Research and Development, National Homeland Security Research Center, Research Triangle Park, North Carolina United States
- Oak Ridge Institute for Science and Education Postdoctoral Fellow, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
2
|
Grinshpun SA, Weber AM, Yermakov M, Indugula R, Elmashae Y, Reponen T, Rose L. Evaluation of personal inhalable aerosol samplers with different filters for use during anthrax responses. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2017; 14:585-595. [PMID: 28506101 PMCID: PMC6664449 DOI: 10.1080/15459624.2017.1304645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Risk of inhalation exposure to viable Bacillus anthracis (B. anthracis) spores has primarily been assessed using short-term, stationary sampling methods which may not accurately characterize the concentration of inhalable-sized spores reaching a person's breathing zone. While a variety of aerosol sampling methods have been utilized during previous anthrax responses, no consensus has yet been established for personal air sampling. The goal of this study was to determine the best sampler-filter combination(s) for the collection and extraction of B. anthracis spores. The study was designed to (1) evaluate the performance of four filter types (one mixed cellulose ester, MCE (pore size = 3 µm), two polytetrafluoroethylene, PTFE (1 and 3 µm), and one polycarbonate, PC (3 µm)); and (2) evaluate the best performing filters in two commercially available inhalable aerosol samplers (IOM and Button). Bacillus thuringiensis kurstaki [Bt(k)], a simulant for B. anthracis, served as the aerosol challenge. The filters were assessed based on criteria such as ability to maintain low pressure drop over an extended sampling period, filter integrity under various environmental conditions, spore collection and extraction efficiencies, ease of loading and unloading the filters into the samplers, cost, and availability. Three of the four tested collection filters-except MCE-were found suitable for efficient collection and recovery of Bt(k) spores sampled from dry and humid as well as dusty and clean air environments for up to 8 hr. The PC (3 µm) filter was identified as the best performing filter in this study. The PTFE (3 µm) demonstrated a comparable performance, but it is more expensive. Slightly higher concentrations were measured with the IOM inhalable sampler which is the preferred sampler's performance criterion when detecting a highly pathogenic agent with no established "safe" inhalation exposure level. Additional studies are needed to address the effects of environmental conditions and spore concentration. The data obtained in this investigation are crucial for future efforts on the development and optimization of a method for assessing inhalation exposure to B. anthracis.
Collapse
Affiliation(s)
- Sergey A. Grinshpun
- Center for Health-Related Aerosol Studies, Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Angela M. Weber
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Emergency Preparedness and Response Office, Atlanta, Georgia
| | - Michael Yermakov
- Center for Health-Related Aerosol Studies, Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Reshmi Indugula
- Center for Health-Related Aerosol Studies, Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Yousef Elmashae
- Center for Health-Related Aerosol Studies, Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Tiina Reponen
- Center for Health-Related Aerosol Studies, Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Laura Rose
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of Healthcare Quality Promotion, Atlanta, Georgia
| |
Collapse
|
3
|
Silvestri EE, Yund C, Taft S, Bowling CY, Chappie D, Garrahan K, Brady-Roberts E, Stone H, Nichols TL. Considerations for estimating microbial environmental data concentrations collected from a field setting. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2017; 27:141-151. [PMID: 26883476 PMCID: PMC5318663 DOI: 10.1038/jes.2016.3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
In the event of an indoor release of an environmentally persistent microbial pathogen such as Bacillus anthracis, the potential for human exposure will be considered when remedial decisions are made. Microbial site characterization and clearance sampling data collected in the field might be used to estimate exposure. However, there are many challenges associated with estimating environmental concentrations of B. anthracis or other spore-forming organisms after such an event before being able to estimate exposure. These challenges include: (1) collecting environmental field samples that are adequate for the intended purpose, (2) conducting laboratory analyses and selecting the reporting format needed for the laboratory data, and (3) analyzing and interpreting the data using appropriate statistical techniques. This paper summarizes some key challenges faced in collecting, analyzing, and interpreting microbial field data from a contaminated site. Although the paper was written with considerations for B. anthracis contamination, it may also be applicable to other bacterial agents. It explores the implications and limitations of using field data for determining environmental concentrations both before and after decontamination. Several findings were of interest. First, to date, the only validated surface/sampling device combinations are swabs and sponge-sticks on stainless steel surfaces, thus limiting availability of quantitative analytical results which could be used for statistical analysis. Second, agreement needs to be reached with the analytical laboratory on the definition of the countable range and on reporting of data below the limit of quantitation. Finally, the distribution of the microbial field data and statistical methods needed for a particular data set could vary depending on these data that were collected, and guidance is needed on appropriate statistical software for handling microbial data. Further, research is needed to develop better methods to estimate human exposure from pathogens using environmental data collected from a field setting.
Collapse
Affiliation(s)
- Erin E Silvestri
- United States Environmental Protection Agency, National Homeland Security Research Center, Threat Consequence Assessment Division, Cincinnati, Ohio, USA
| | - Cynthia Yund
- United States Environmental Protection Agency, National Homeland Security Research Center, Threat Consequence Assessment Division, Cincinnati, Ohio, USA
| | - Sarah Taft
- United States Environmental Protection Agency, National Homeland Security Research Center, Threat Consequence Assessment Division, Cincinnati, Ohio, USA
| | - Charlena Yoder Bowling
- United States Environmental Protection Agency, National Homeland Security Research Center, Threat Consequence Assessment Division, Cincinnati, Ohio, USA
| | | | | | - Eletha Brady-Roberts
- United States Environmental Protection Agency, National Homeland Security Research Center, Threat Consequence Assessment Division, Cincinnati, Ohio, USA
| | - Harry Stone
- Battelle Memorial Institute, Columbus, Ohio, USA
| | - Tonya L Nichols
- United States Environmental Protection Agency, National Homeland Security Research Center, Threat Consequence Assessment Division, Washington DC, USA
| |
Collapse
|
4
|
Gutting BW, Rukhin A, Marchette D, Mackie RS, Thran B. Dose-Response Modeling for Inhalational Anthrax in Rabbits Following Single or Multiple Exposures. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2016; 36:2031-2038. [PMID: 26889937 DOI: 10.1111/risa.12564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There is a need to advance our ability to characterize the risk of inhalational anthrax following a low-dose exposure. The exposure scenario most often considered is a single exposure that occurs during an attack. However, long-term daily low-dose exposures also represent a realistic exposure scenario, such as what may be encountered by people occupying areas for longer periods. Given this, the objective of the current work was to model two rabbit inhalational anthrax dose-response data sets. One data set was from single exposures to aerosolized Bacillus anthracis Ames spores. The second data set exposed rabbits repeatedly to aerosols of B. anthracis Ames spores. For the multiple exposure data the cumulative dose (i.e., the sum of the individual daily doses) was used for the model. Lethality was the response for both. Modeling was performed using Benchmark Dose Software evaluating six models: logprobit, loglogistic, Weibull, exponential, gamma, and dichotomous-Hill. All models produced acceptable fits to either data set. The exponential model was identified as the best fitting model for both data sets. Statistical tests suggested there was no significant difference between the single exposure exponential model results and the multiple exposure exponential model results, which suggests the risk of disease is similar between the two data sets. The dose expected to cause 10% lethality was 15,600 inhaled spores and 18,200 inhaled spores for the single exposure and multiple exposure exponential dose-response model, respectively, and the 95% lower confidence intervals were 9,800 inhaled spores and 9,200 inhaled spores, respectively.
Collapse
Affiliation(s)
- Bradford W Gutting
- CBR Concepts and Experimentation Branch (B21), Naval Surface Warfare Center, Dahlgren Division, Dahlgren, VA, USA
| | - Andrey Rukhin
- Sensor Fusion Branch (A43), Naval Surface Warfare Center, Dahlgren Division, Dahlgren, VA, USA
| | - David Marchette
- Sensor Fusion Branch (A43), Naval Surface Warfare Center, Dahlgren Division, Dahlgren, VA, USA
| | - Ryan S Mackie
- CBR Concepts and Experimentation Branch (B21), Naval Surface Warfare Center, Dahlgren Division, Dahlgren, VA, USA
| | - Brandolyn Thran
- Army Public Health Center (Provisional), Aberdeen Proving Ground, MD, USA
| |
Collapse
|
5
|
You S, Wan MP. A Risk Assessment Scheme of Infection Transmission Indoors Incorporating the Impact of Resuspension. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2015; 35:1488-1502. [PMID: 25808677 DOI: 10.1111/risa.12350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A new risk assessment scheme was developed to quantify the impact of resuspension to infection transmission indoors. Airborne and surface pathogenic particle concentration models including the effect of two major resuspension scenarios (airflow-induced particle resuspension [AIPR] and walking-induced particle resuspension [WIPR]) were derived based on two-compartment mass balance models and validated against experimental data found in the literature. The inhalation exposure to pathogenic particles was estimated using the derived airborne concentration model, and subsequently incorporated into a dose-response model to assess the infection risk. Using the proposed risk assessment scheme, the influences of resuspension towards indoor infection transmission were examined by two hypothetical case studies. In the case of AIPR, the infection risk increased from 0 to 0.54 during 0-0.5 hours and from 0.54 to 0.57 during 0.5-4 hours. In the case of WIPR, the infection risk increased from 0 to 0.87 during 0-0.5 hours and from 0.87 to 1 during 0.5-4 hours. Sensitivity analysis was conducted based on the design-of-experiments method and showed that the factors that are related to the inspiratory rate of viable pathogens and pathogen virulence have the most significant effect on the infection probability under the occurrence of AIPR and WIPR. The risk assessment scheme could serve as an effective tool for the risk assessment of infection transmission indoors.
Collapse
Affiliation(s)
- Siming You
- Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Man Pun Wan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Nanyang, Singapore
| |
Collapse
|
6
|
Hong T, Gurian PL. Updating a B. anthracis Risk Model with Field Data from a Bioterrorism Incident. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6701-6711. [PMID: 25961107 DOI: 10.1021/acs.est.5b00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, a Bayesian framework was applied to update a model of pathogen fate and transport in the indoor environment. Distributions for model parameters (e.g., release quantity of B. anthracis spores, risk of illness, spore setting velocity, resuspension rate, sample recovery efficiency, etc.) were updated by comparing model predictions with measurements of B. anthracis spores made after one of the 2001 anthrax letter attacks. The updating process, which was implemented by using Markov chain Monte Carlo (MCMC) methods, significantly reduced the uncertainties of inputs with uniformed prior estimates: total quantity of spores released, the amount of spores exiting the room, and risk to occupants. In contrast, uncertainties were not greatly reduced for inputs for which informed prior data were available: deposition rates, resuspension rates, and sample recovery efficiencies. This suggests that prior estimates of these quantities that were obtained from a review of the technical literature are consistent with the observed behavior of spores in an actual attack. Posterior estimates of mortality risk for people in the room, when the spores were released, are on the order of 0.01 to 0.1, which supports the decision to administer prophylactic antibiotics. Multivariate sensitivity analyses were conducted to assess how effective different measurements were at reducing uncertainty in the estimated risk for the prior scenario. This analysis revealed that if the size distribution of the released particulates is known, then environmental sampling can be limited to accurately characterizing floor concentrations; otherwise, samples from multiple locations, as well as particulate and building air circulation parameters, need to be measured.
Collapse
Affiliation(s)
- Tao Hong
- ICF International, 2635 Meridian Parkway #200, Durham, North Carolina 27713, United States
| | - Patrick L Gurian
- ICF International, 2635 Meridian Parkway #200, Durham, North Carolina 27713, United States
| |
Collapse
|
7
|
Gutting B. Deterministic models of inhalational anthrax in New Zealand white rabbits. Biosecur Bioterror 2014; 12:29-41. [PMID: 24527843 PMCID: PMC3934436 DOI: 10.1089/bsp.2013.0067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/09/2013] [Indexed: 11/12/2022]
Abstract
Computational models describing bacterial kinetics were developed for inhalational anthrax in New Zealand white (NZW) rabbits following inhalation of Ames strain B. anthracis. The data used to parameterize the models included bacterial numbers in the airways, lung tissue, draining lymph nodes, and blood. Initial bacterial numbers were deposited spore dose. The first model was a single exponential ordinary differential equation (ODE) with 3 rate parameters that described mucociliated (physical) clearance, immune clearance (bacterial killing), and bacterial growth. At 36 hours postexposure, the ODE model predicted 1.7×10⁷ bacteria in the rabbit, which agreed well with data from actual experiments (4.0×10⁷ bacteria at 36 hours). Next, building on the single ODE model, a physiological-based biokinetic (PBBK) compartmentalized model was developed in which 1 physiological compartment was the lumen of the airways and the other was the rabbit body (lung tissue, lymph nodes, blood). The 2 compartments were connected with a parameter describing transport of bacteria from the airways into the body. The PBBK model predicted 4.9×10⁷ bacteria in the body at 36 hours, and by 45 hours the model showed all clearance mechanisms were saturated, suggesting the rabbit would quickly succumb to the infection. As with the ODE model, the PBBK model results agreed well with laboratory observations. These data are discussed along with the need for and potential application of the models in risk assessment, drug development, and as a general aid to the experimentalist studying inhalational anthrax.
Collapse
Affiliation(s)
- Bradford Gutting
- Bradford Gutting, PhD, is a Toxicologist, Naval Surface Warfare Center Dahlgren Division (NSWCDD) , Dahlgren, Virginia
| |
Collapse
|
8
|
Lee SD, Calfee MW, Mickelsen L, Wolfe S, Griffin J, Clayton M, Griffin-Gatchalian N, Touati A. Evaluation of surface sampling for Bacillus spores using commercially available cleaning robots. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2595-2601. [PMID: 23431954 DOI: 10.1021/es4000356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Five commercially available domestic cleaning robots were evaluated on their effectiveness for sampling aerosol-deposited Bacillus atrophaeus spores on different indoor material surfaces. The five robots tested include three vacuum types (R1, R2, and R3), one wet wipe (R4), and one wet vacuum (R5). Tests were conducted on two different surface types (carpet and laminate) with 10(6) colony forming units of B. atrophaeus spores deposited per coupon (35.5 cm × 35.5 cm). Spores were deposited on the center surface (30.5 × 30.5 cm) of the coupon's total surface area (71.5 × 71.5 cm), and the surfaces were sampled with an individual robot in an isolation chamber. Chamber air was sampled using a biofilter sampler to determine the potential for resuspension of spores during sampling. Robot test results were compared to currently used surface sampling methods (vacuum sock for carpet and sponge wipe for laminate). The test results showed that the average sampling efficacies for R1, R2, and R3 on carpet were 26, 162, and 92% of vacuum sock sampling efficacy, respectively. On laminate, R1, R2, R3, R4, and R5 average sampling efficacies were 8, 11, 2, 62, and 32% of sponge wipe sampling efficacy, respectively. We conclude that some robotic cleaners were as efficacious as the currently used surface sampling methods for B. atrophaeus spores on these surfaces.
Collapse
Affiliation(s)
- Sang Don Lee
- National Homeland Security Research Center, United States Environmental Protection Agency , Research Triangle Park, North Carolina, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Piepel GF, Amidan BG, Hu R. Laboratory studies on surface sampling of Bacillus anthracis contamination: summary, gaps and recommendations. J Appl Microbiol 2012; 113:1287-304. [PMID: 22747878 DOI: 10.1111/j.1365-2672.2012.05381.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 06/11/2012] [Accepted: 06/23/2012] [Indexed: 11/28/2022]
Abstract
This article summarizes previous laboratory studies to characterize the performance of methods for collecting, storing/transporting, processing and analysing samples from surfaces contaminated by Bacillus anthracis or related surrogates. The focus is on plate culture and count estimates of surface contamination for swab, wipe and vacuum samples of porous and nonporous surfaces. Summaries of the previous studies and their results were assessed to identify gaps in information needed as inputs to calculate key parameters critical to risk management in biothreat incidents. One key parameter is the number of samples needed to make characterization or clearance decisions with specified statistical confidence. Other key parameters include the ability to calculate, following contamination incidents, the (i) estimates of B. anthracis contamination, as well as the bias and uncertainties in the estimates and (ii) confidence in characterization and clearance decisions for contaminated or decontaminated buildings. Gaps in knowledge and understanding identified during the summary of the studies are discussed. Additional work is needed to quantify (i) the false-negative rates of surface-sampling methods with lower concentrations on various surfaces and (ii) the effects on performance characteristics of: aerosol vs liquid deposition of spores, using surrogates instead of B. anthracis, real-world vs laboratory conditions and storage and transportation conditions. Recommendations are given for future evaluations of data from existing studies and possible new studies.
Collapse
Affiliation(s)
- G F Piepel
- Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | |
Collapse
|
10
|
Hong T, Gurian PL. Characterizing bioaerosol risk from environmental sampling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:6714-6722. [PMID: 22568610 DOI: 10.1021/es300197n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In the aftermath of a release of microbiological agents, environmental sampling must be conducted to characterize the release sufficiently so that mathematical models can then be used to predict the subsequent dispersion and human health risks. Because both the dose-response and environmental transport of aerosolized microbiological agents are functions of the effective aerodynamic diameter of the particles, environmental assessments should consider not only the total amount of agents but also the size distributions of the aerosolized particles. However, typical surface sampling cannot readily distinguish among different size particles. This study evaluates different approaches to estimating risk from measurements of microorganisms deposited on surfaces after an aerosol release. For various combinations of sampling surfaces, size fractions, HVAC operating conditions, size distributions of release spores, uncertainties in surface measurements, and the accuracy of model predictions are tested in order to assess how much detail can realistically be identified from surface sampling results. The recommended modeling and sampling scheme is one choosing 3, 5, and 10 μm diameter particles as identification targets and taking samples from untracked floor, wall, and the HVAC filter. This scheme provides reasonably accurate, but somewhat conservative, estimates of risk across a range of different scenarios. Performance of the recommended sampling scheme is tested by using data from a large-scale field test as a case study. Sample sizes of 10-25 in each homogeneously mixed environmental compartment are sufficient to develop order of magnitude estimates of risk. Larger sample sizes have little benefit unless uncertainties in sample recoveries can be reduced.
Collapse
Affiliation(s)
- Tao Hong
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States.
| | | |
Collapse
|
11
|
Hong T, Gurian PL, Huang Y, Haas CN. Prioritizing risks and uncertainties from intentional release of selected Category A pathogens. PLoS One 2012; 7:e32732. [PMID: 22412915 PMCID: PMC3295774 DOI: 10.1371/journal.pone.0032732] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 02/02/2012] [Indexed: 12/22/2022] Open
Abstract
This paper synthesizes available information on five Category A pathogens (Bacillus anthracis, Yersinia pestis, Francisella tularensis, Variola major and Lassa) to develop quantitative guidelines for how environmental pathogen concentrations may be related to human health risk in an indoor environment. An integrated model of environmental transport and human health exposure to biological pathogens is constructed which 1) includes the effects of environmental attenuation, 2) considers fomite contact exposure as well as inhalational exposure, and 3) includes an uncertainty analysis to identify key input uncertainties, which may inform future research directions. The findings provide a framework for developing the many different environmental standards that are needed for making risk-informed response decisions, such as when prophylactic antibiotics should be distributed, and whether or not a contaminated area should be cleaned up. The approach is based on the assumption of uniform mixing in environmental compartments and is thus applicable to areas sufficiently removed in time and space from the initial release that mixing has produced relatively uniform concentrations. Results indicate that when pathogens are released into the air, risk from inhalation is the main component of the overall risk, while risk from ingestion (dermal contact for B. anthracis) is the main component of the overall risk when pathogens are present on surfaces. Concentrations sampled from untracked floor, walls and the filter of heating ventilation and air conditioning (HVAC) system are proposed as indicators of previous exposure risk, while samples taken from touched surfaces are proposed as indicators of future risk if the building is reoccupied. A Monte Carlo uncertainty analysis is conducted and input-output correlations used to identify important parameter uncertainties. An approach is proposed for integrating these quantitative assessments of parameter uncertainty with broader, qualitative considerations to identify future research priorities.
Collapse
Affiliation(s)
- Tao Hong
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, Pennsylvania, United States of America.
| | | | | | | |
Collapse
|
12
|
False-negative rate and recovery efficiency performance of a validated sponge wipe sampling method. Appl Environ Microbiol 2011; 78:846-54. [PMID: 22138998 DOI: 10.1128/aem.07403-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recovery of spores from environmental surfaces varies due to sampling and analysis methods, spore size and characteristics, surface materials, and environmental conditions. Tests were performed to evaluate a new, validated sponge wipe method using Bacillus atrophaeus spores. Testing evaluated the effects of spore concentration and surface material on recovery efficiency (RE), false-negative rate (FNR), limit of detection (LOD), and their uncertainties. Ceramic tile and stainless steel had the highest mean RE values (48.9 and 48.1%, respectively). Faux leather, vinyl tile, and painted wood had mean RE values of 30.3, 25.6, and 25.5, respectively, while plastic had the lowest mean RE (9.8%). Results show roughly linear dependences of RE and FNR on surface roughness, with smoother surfaces resulting in higher mean REs and lower FNRs. REs were not influenced by the low spore concentrations tested (3.10 × 10(-3) to 1.86 CFU/cm(2)). Stainless steel had the lowest mean FNR (0.123), and plastic had the highest mean FNR (0.479). The LOD(90) (≥1 CFU detected 90% of the time) varied with surface material, from 0.015 CFU/cm(2) on stainless steel up to 0.039 on plastic. It may be possible to improve sampling results by considering surface roughness in selecting sampling locations and interpreting spore recovery data. Further, FNR values (calculated as a function of concentration and surface material) can be used presampling to calculate the numbers of samples for statistical sampling plans with desired performance and postsampling to calculate the confidence in characterization and clearance decisions.
Collapse
|
13
|
Linkov I, Coles JB, Welle P, Bates M, Keisler J. Anthrax cleanup decisions: statistical confidence or confident response. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:9471-9472. [PMID: 22029373 DOI: 10.1021/es203479t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Igor Linkov
- Environmental Laboratory, US Army Engineer Research and Development Center, US Army Corps of Engineers, Vicksburg, Mississippi 01742, USA.
| | | | | | | | | |
Collapse
|
14
|
Hong T, Gurian PL, Ward NFD. Setting risk-informed environmental standards for Bacillus anthracis spores. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2010; 30:1602-1622. [PMID: 20626695 DOI: 10.1111/j.1539-6924.2010.01443.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In many cases, human health risk from biological agents is associated with aerosol exposures. Because air concentrations decline rapidly after a release, it may be necessary to use concentrations found in other environmental media to infer future or past aerosol exposures. This article presents an approach for linking environmental concentrations of Bacillus. anthracis (B. anthracis) spores on walls, floors, ventilation system filters, and in human nasal passages with human health risk from exposure to B. anthracis spores. This approach is then used to calculate example values of risk-informed concentration standards for both retrospective risk mitigation (e.g., prophylactic antibiotics) and prospective risk mitigation (e.g., environmental clean up and reoccupancy). A large number of assumptions are required to calculate these values, and the resulting values have large uncertainties associated with them. The values calculated here suggest that documenting compliance with risks in the range of 10(-4) to 10(-6) would be challenging for small diameter (respirable) spore particles. For less stringent risk targets and for releases of larger diameter particles (which are less respirable and hence less hazardous), environmental sampling would be more promising.
Collapse
Affiliation(s)
- Tao Hong
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | | | | |
Collapse
|