1
|
Zhang B, Yang J, Mu Y, Ji X, Cai Y, Jiang N, Xie S, Qian Q, Liu F, Tan W, Dong L. Fabrication of Highly Dispersed Ru Catalysts on CeO 2 for Efficient C 3H 6 Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19533-19544. [PMID: 39324746 DOI: 10.1021/acs.est.4c07159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Emissions of volatile organic compounds (VOCs) threaten both the environment and human health. To realize the elimination of VOCs, Ru/CeO2 catalysts have been intensively investigated and applied. Although it has been widely acknowledged that the catalytic performance of platinum group metal catalysts was highly determined by their dispersion and coordination environment, the most reactive structures on Ru/CeO2 catalysts for VOCs oxidation are still ambiguous. In this work, starting from Ce-BTC (BTC = 1,3,5-benzenetricarboxylic acid) materials, atomically dispersed Ru catalysts and agglomerated Ru catalysts were successfully created via one-step hydrothermal method (Ru-CeO2-BTC) and conventional incipient wetness impregnation method (Ru/CeO2-BTC), respectively. In a typical model reaction of C3H6 oxidation, atomically dispersed Ruδ+ species with the formation of abundant Ru-O-Ce linkages on Ru-CeO2-BTC were found to perform much better than agglomerated RuOx species on Ru/CeO2-BTC. Further characterizations and mechanism study disclosed that Ru-CeO2-BTC catalyst with atomically dispersed Ru ions and more superior low temperature redox performance compared to Ru/CeO2-BTC could better facilitate the adsorption/activation of C3H6 and the decomposition/desorption of intermediates, thus exhibiting superior C3H6 oxidation activity. This work elucidated the reactive sites on Ru/CeO2 catalysts in the C3H6 oxidation reaction and provided insightful guidance for designing efficient Ru/CeO2 catalysts to eliminate VOCs.
Collapse
Affiliation(s)
- Bifeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiawei Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yibo Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoyu Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yandi Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Nan Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shaohua Xie
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Materials Science and Engineering (MSE) Program, University of California, Riverside, California 92521, United States
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Fudong Liu
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Materials Science and Engineering (MSE) Program, University of California, Riverside, California 92521, United States
| | - Wei Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Wang Y, Liu Q, Zhang T, Ma X, Guo J, Wang J, Liu F, Li S. Effect of acid/alkali treatment on the structure and catalytic performance of 3DOM CeCo 0.7Mn 0.3O 3 catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101358-101365. [PMID: 37651013 DOI: 10.1007/s11356-023-29469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023]
Abstract
In this work, Ce was used as the A-site element and three-dimensional ordered macroporous (3DOM) materials as the template to obtain 3DOM CeCo0.7Mn0.3O3 catalyst via excessive impregnation method. The catalyst was subjected to acid/alkali treatment with dilute nitric acid and sodium hydroxide solutions. The results revealed that the catalysts subjected to acid/alkali treatment exhibited better structural and catalytic activity characteristics than the bulk catalyst. Specifically, the specific surface area of the catalyst treated with acid increased from 34.86 to 60.67 m2·g-1, and the relative contents of Oads and Mn4+ species increased. Moreover, the T90% further decreased to 174 °C. As for the catalyst treated with alkali, it exhibited a rougher surface and a wider pore size distribution, producing more lattice defects which were favorable for reaction progress. The T90% was 183 °C, indicating that acid/alkali treatment both had a positive effect on the catalytic oxidation of toluene.
Collapse
Affiliation(s)
- Yongqiang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| | - Qingqing Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Tianjiao Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Xiubiao Ma
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Jia Guo
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Jiawei Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Fang Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Shi Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| |
Collapse
|
3
|
Pan C, Wang W, Fu C, Chol Nam J, Wu F, You Z, Xu J, Li J. Promoted wet peroxide oxidation of chlorinated volatile organic compounds catalyzed by FeOCl supported on macro-microporous biomass-derived activated carbon. J Colloid Interface Sci 2023; 646:320-330. [PMID: 37201460 DOI: 10.1016/j.jcis.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
Chlorinated volatile organic compounds (CVOCs) are a recalcitrant class of air pollutants, and the strongly oxidizing reactive oxygen species (ROS) generated in advanced oxidation processes (AOPs) are promising to degrade them. In this study, a FeOCl-loaded biomass-derived activated carbon (BAC) has been used as an adsorbent for accumulating CVOCs and catalyst for activating H2O2 to construct a wet scrubber for the removal of airborne CVOCs. In addition to well-developed micropores, the BAC has macropores mimicking those of biostructures, which allows CVOCs to diffuse easily to its adsorption sites and catalytic sites. Probe experiments have revealed HO• to be the dominant ROS in the FeOCl/BAC + H2O2 system. The wet scrubber performs well at pH 3 and H2O2 concentrations as low as a few mM. It is capable of removing over 90% of dichloroethane, trichloroethylene, dichloromethane and chlorobenzene from air. By applying pulsed dosing or continuous dosing to replenish H2O2 to maintain its appropriate concentration, the system achieves good long-term efficiency. A dichloroethane degradation pathway is proposed based on the analysis of intermediates. This work may provide inspiration for the design of catalyst exploiting the inherent structure of biomass for catalytic wet oxidation of CVOCs or other contaminants.
Collapse
Affiliation(s)
- Cong Pan
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Wenyu Wang
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Chenchong Fu
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Jong Chol Nam
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Feng Wu
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Zhixiong You
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Jing Xu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, P.R. China.
| | - Jinjun Li
- School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
4
|
Zhang T, Ma X, Cao J, Gong J, Jiang W, Cao H, Wang Y. Effect of B-Site Element on the Structure and Catalytic Performance for Toluene of the 3DOM CeBO 3 Catalyst. Inorg Chem 2023; 62:6352-6360. [PMID: 37045789 DOI: 10.1021/acs.inorgchem.3c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A series of 3DOM cerium-based perovskite catalysts with different B-site elements were prepared by the colloidal crystal template method and excess impregnation method with Cr, Ni, and Mn as the B-site elements. The physical and chemical properties of the catalysts were investigated by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), hydrogen temperature-programmed reduction (H2-TPR), and oxygen temperature-programmed desorption (O2-TPD) characterization techniques. The results showed that the catalyst with Mn as the B-site element had a high-quality macropore structure (pore size 200-250 nm), large specific surface area (45.26 m2/g), and abundant surface adsorbed oxygen content (Oads/Olatt = 0.46). The addition of manganese enhanced the low-temperature reducibility, and the main reduction peak was below 400 °C. The O2-TPD results showed that 3DOM CeMnO3 expressed the highest adsorption oxygen content. The 3DOM CeMnO3 possessed the best catalytic performance with T50% = 102 °C and T90% = 203 °C during the catalytic oxidation of toluene. Intermediate product study hinted that toluene was first converted into benzoic acid and benzaldehyde and then further degraded into small molecules. The catalyst with the best activity also exhibited good stability, and toluene degradation rate remained above 85% at 200°C for more than 20 h of continuous experiments.
Collapse
Affiliation(s)
- Tianjiao Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiubiao Ma
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Jiawei Cao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Jingyu Gong
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Wenchun Jiang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Huaixiang Cao
- Shandong Giant E-Tech Co., Ltd, Jinan 250102, P. R. China
| | - Yongqiang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
- State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, P. R. China
| |
Collapse
|
5
|
Liu W, Tao J, Zhao Y, Ren L, Li C, Wang X, Chen J, Lu J, Wu D, Peng H. Boosting the deep oxidation of propane over zeolite encapsulated Rh-Mn bimetallic nanoclusters: Elucidating the role of confinement and synergy effects. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Cheng HH, Lu IC, Huang PW, Wu YJ, Whang LM. Biological treatment of volatile organic compounds (VOCs)-containing wastewaters from wet scrubbers in semiconductor industry. CHEMOSPHERE 2021; 282:131137. [PMID: 34470173 DOI: 10.1016/j.chemosphere.2021.131137] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
This study investigated biological treatment for two kinds of volatile organic compounds (VOCs)-containing wastewaters collected from wet scrubbers in a semiconductor industry. Batch test results indicated that one wastewater containing highly volatile organic compounds was not suitable for aerated treatment conditions while the other containing much lower volatile organic compounds was suitable for aerobic treatment. Accordingly, two moving bed bioreactors, by adding commercial biocarrier BioNET, were operated under aerobic and anoxic conditions for treating low volatility wastewater (LVW) and high volatility wastewater (HVW), respectively. During 280 days of operation, the aerobic LVW bioreactor attained the highest chemical oxygen demand (COD) removal rate of 98.9 mg-COD/L/h with 81% of COD removal efficiency at hydraulic retention time (HRT) of 1 day. The anoxic HVW bioreactor performed above 80% of COD removal efficiency with the highest COD removal rate of 16.5 mg-COD/L/h at HRT of 2 days after 380 days of operation. The specific COD removal rates at different initial substrate-to-biomass (S0/X0) ratios, using either suspended sludge or microorganisms attached onto BioNET from both bioreactors, followed the Monod-type kinetics, while the half-saturation coefficients were generally higher for the microorganisms onto BioNET due presumably to relatively poor mass transfer efficiency. Based on the results of microbial community analysis using the next generation sequencing technique, the dominant communities of suspended sludge and BioNET, including nitrifiers, denitrifiers, and degraders for polycyclic aromatic hydrocarbons, were similar in the corresponded bioreactors, but microbial community shifts were observed with increased organic loadings.
Collapse
Affiliation(s)
- Hai-Hsuan Cheng
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - I-Chun Lu
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Po-Wei Huang
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Yi-Ju Wu
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Liang-Ming Whang
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan; Sustainable Environment Research Laboratory (SERL), National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan.
| |
Collapse
|
7
|
Surface modification of macroporous La0.8Sr0.2CoO3 perovskite oxides integrated monolithic catalysts for improved propane oxidation. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.06.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Feston J, Gaire S, Fardisi M, Mason LJ, Gondhalekar AD. Determining baseline toxicity of ozone against an insecticide-susceptible strain of the common bed bug, Cimex lectularius L. under laboratory conditions. PEST MANAGEMENT SCIENCE 2020; 76:3108-3116. [PMID: 32302460 DOI: 10.1002/ps.5864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/06/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Ozone gas is commercially used for deodorization and microbial control. Its efficacy against stored product insect pests is well documented. In the midst of the common bed bug (Cimex lectularius L.) outbreak, claims were made that ozone gas was effective for their control. This study was conducted to determine baseline ozone concentrations and exposure times required for the control of an insecticide-susceptible C. lectularius strain under laboratory conditions. Dichlorvos (DDVP), an organophosphate class fumigant insecticide was used as a positive control. RESULTS Nymphs and adults were more susceptible to ozone than eggs. Complete (100%) nymph and adult mortality was achieved at an ozone concentration (C) of 1500 ppm and exposure time (T) of 180 min, or concentration × time product (CT) of 270 000 ppm-min, whereas eggs required an eightfold higher CT (2 040 000 ppm-min). DDVP vapor was 2070-, 2542- and 450-fold more potent than ozone, against nymphs, adults and eggs, respectively. CONCLUSIONS Baseline ozone toxicity data provide insights on the practicality of using this gas for the management of common bed bugs. High ozone CT products required for C. lectularius control, particularly eggs, suggest that its use for treating infested human dwellings is not feasible due to logistic, safety and monetary concerns. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- James Feston
- Department of Entomology, Purdue University, West Lafayette, IN, USA
- Insects Limited, Inc., Westfield, IN, USA
| | - Sudip Gaire
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Mahsa Fardisi
- Department of Entomology, Purdue University, West Lafayette, IN, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Linda J Mason
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
9
|
Abstract
Since the late 1980s, the scientific community has been attracted to microwave energy as an alternative method of heating, due to the advantages that this technology offers over conventional heating technologies. In fact, differently from these, the microwave heating mechanism is a volumetric process in which heat is generated within the material itself, and, consequently, it can be very rapid and selective. In this way, the microwave-susceptible material can absorb the energy embodied in the microwaves. Application of the microwave heating technique to a chemical process can lead to both a reduction in processing time as well as an increase in the production rate, which is obtained by enhancing the chemical reactions and results in energy saving. The synthesis and sintering of materials by means of microwave radiation has been used for more than 20 years, while, future challenges will be, among others, the development of processes that achieve lower greenhouse gas (e.g., CO2) emissions and discover novel energy-saving catalyzed reactions. A natural choice in such efforts would be the combination of catalysis and microwave radiation. The main aim of this review is to give an overview of microwave applications in the heterogeneous catalysis, including the preparation of catalysts, as well as explore some selected microwave assisted catalytic reactions. The review is divided into three principal topics: (i) introduction to microwave chemistry and microwave materials processing; (ii) description of the loss mechanisms and microwave-specific effects in heterogeneous catalysis; and (iii) applications of microwaves in some selected chemical processes, including the preparation of heterogeneous catalysts.
Collapse
|
10
|
Yang Y, Ji D, Sun J, Wang Y, Yao D, Zhao S, Yu X, Zeng L, Zhang R, Zhang H, Wang Y, Wang Y. Ambient volatile organic compounds in a suburban site between Beijing and Tianjin: Concentration levels, source apportionment and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133889. [PMID: 31426000 DOI: 10.1016/j.scitotenv.2019.133889] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/07/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
Volatile organic compounds (VOCs) have vital implications for secondary pollutants, atmospheric oxidation and human health. Ambient VOCs were investigated using an online system, gas chromatography-mass spectrometry/flame ionization detector (GC-MS/FID), at a suburban site in Xianghe in the North China Plain from 6 November 2017 to 29 January 2018. Positive matrix factorization (PMF) receptor model was applied to identify the major VOC contributing sources. Four-step health risk assessment method was used to estimate risks of all risk-posing VOC species. A total of 101 VOCs were quantified, and the mean concentration of total VOCs was 61.04 ± 65.18 ppbv. The VOCs were dominated by alkanes (38.76%), followed by alkenes, aromatics, halocarbons, OVOCs, acetylene and acetonitrile. The results of PMF revealed that vehicle exhaust, industrial emissions, liquefied petroleum gas & natural gas, solvent utilization and secondary and long-lived species contributed 31.0%, 26.4%, 18.6%, 13.6% and 10.4%, respectively, to the total VOCs. Pollutant-specific and source-specific noncarcinogenic and carcinogenic risk estimates were conducted, which showed that acrolein and vehicle exhaust had evident noncarcinogenic risks of 4.9 and 0.9, respectively. The carcinogenic risks of specific species (1,3-butadiene, acetaldehyde, benzene, chloroform and 1,2-dichloroethane) and identified sources were above the United States Environmental Protection Agency (USEPA) acceptable level (1.0 × 10-6) but below the tolerable risk level (1.0 × 10-4). Vehicle exhaust was the largest contributor (56.2%) to noncarcinogenic risk, but solvent utilization (32.6%) to carcinogenic risk. Moreover, with the evolution of pollution levels, almost all VOC species, contributions of alkenes, aromatics, solvent utilization and vehicle exhaust, and pollutant-specific and source-specific risks increased continuously and noticeably. Collectively, our findings unraveled the importance of alkenes, aromatics, solvent utilization and vehicle exhaust in the evolution of pollution levels. Future studies should consider targeting these VOC groups and sources when focusing on effective reduction strategies and assessing public health risks.
Collapse
Affiliation(s)
- Yuan Yang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dongsheng Ji
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jie Sun
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yinghong Wang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Dan Yao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Shuman Zhao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xuena Yu
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Limin Zeng
- State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Renjian Zhang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Hao Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yonghong Wang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, P.O.Box 64, 00014 University of Helsinki, Helsinki, Finland.
| | - Yuesi Wang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
11
|
Yang X, Jiao R, Zhu X, Zhao S, Liao G, Yu J, Wang D. Profiling and characterization of odorous volatile compounds from the industrial fermentation of erythromycin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113130. [PMID: 31542665 DOI: 10.1016/j.envpol.2019.113130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/14/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Complaints caused by odors from the fermentation production of pharmaceuticals are common in China. The elimination of odor remains a challenge for the pharmaceutical industry to meet the increasingly strict environment regulations. Erythromycin is a representative antibiotic produced by microbial fermentation. The fermentation exhaust gas of erythromycin fermentation has an unpleasant odor, but the composition of the key odorants has not been identified. The major odorants from the fermentation production of erythromycin API were analyzed by electronic nose, olfactory measurements, gas chromatography-coupled ion mobility spectrometry (GC-IMS) and gas chromatography-mass spectrometry (GC-MS) analysis. Two compounds, 2-methylisoborneol (2-MIB) and geosmin, were identified as the major odorants of erythromycin fermentation. These had not been detected before using only GC-MS analysis of exhaust gas. Aldehydes, including hexanal, octanal, decanal, and benzaldehyde, also contribute to the odor. The composition analysis of odorants using the fermentation broth headspace was more efficient and reliable, considering the significant dilution effect of exhaust gas. The concentration of 2-MIB and geosmin in the fermentation broth greatly exceeded their odor thresholds. The production of major odorants started in the early fermentation stage and became significant in the middle stage (30-70 h). Due to the extremely low odor thresholds of 2-MIB and geosmin, advanced purification may require deodorization of erythromycin fermentation exhaust gas.
Collapse
Affiliation(s)
- Xiaofang Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Ruyuan Jiao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xinmeng Zhu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shan Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Research and Development Center, Beijing Drainage Group Co., Ltd, Beijing, 100124, China
| | - Guiying Liao
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), Wuhan, Hubei, 430074, China
| | - Jianwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), Wuhan, Hubei, 430074, China.
| |
Collapse
|
12
|
Vitola Pasetto L, Simon V, Richard R, Pic JS, Violleau F, Manero MH. Aldehydes gas ozonation monitoring: Interest of SIFT/MS versus GC/FID. CHEMOSPHERE 2019; 235:1107-1115. [PMID: 31561301 DOI: 10.1016/j.chemosphere.2019.06.186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Two analytical techniques - online Gas Chromatography coupled with Flame Ionization Detector (often used method for VOCs monitoring) versus Selected Ion Flow Tube coupled with Mass Spectrometry (a more recent technique based on direct mass spectrometry) - were compared in association to an ozone-based gas treatment. Selecting aldehydes as the representative VOCs, their concentrations were monitored during ozonation experiments by both techniques in parallel. Contradictory results were obtained in the presence of ozone. Aldehydes were up to 90% removed due to a reaction with ozone according to GC/FID analysis, whereas with SIFT/MS, aldehydes concentration remained at the same level during the experiments regardless of the ozone presence. In addition, it was demonstrated that the apparent aldehydes removal was affected by GC injector temperature, varying from 90% (when it was at 250 °C) to 60% (at 100 °C). Meanwhile, even when the ozonation reactor was heated to 100 °C, no aldehydes conversion was evidenced by SIFT/MS, suggesting that the GC injector temperature was not the only interference-causing parameter. The ozone-aldehyde reaction is probably catalyzed by some material of GC injector and/or column. An ozone-GC interference was therefore confirmed, making unsuitable the use of GC/FID with silicone stationary phase to monitor aldehydes in presence of high concentrations of ozone (at least 50 ppmv). On the other hand, SIFT/MS was validated as a reliable technique, which can be employed in order to measure VOCs concentrations in ozonation processes.
Collapse
Affiliation(s)
- Leticia Vitola Pasetto
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France; Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRA, INPT-ENSIACET, Toulouse, France
| | - Valérie Simon
- Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRA, INPT-ENSIACET, Toulouse, France
| | - Romain Richard
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Jean-Stéphane Pic
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Frédéric Violleau
- Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRA, INPT-ENSIACET, Toulouse, France.
| | - Marie-Hélène Manero
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
13
|
Wei SM, Hu JM, Wang XD, Long C, Zhang F, Zhang ZB. Characterization of Absorption Performance for Gaseous Acetone with Ionic Liquid Solutions. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Shi-Ming Wei
- Nanjing UniversitySchool of Chemistry and Chemical Engineering 210046 Nanjing China
| | - Jia-Ming Hu
- Nanjing UniversitySchool of Chemistry and Chemical Engineering 210046 Nanjing China
| | - Xin-Dian Wang
- Nanjing UniversitySchool of Chemistry and Chemical Engineering 210046 Nanjing China
| | - Chao Long
- Nanjing UniversitySchool of Chemistry and Chemical Engineering 210046 Nanjing China
| | - Feng Zhang
- Nanjing UniversitySchool of Chemistry and Chemical Engineering 210046 Nanjing China
| | - Zhi-Bing Zhang
- Nanjing UniversitySchool of Chemistry and Chemical Engineering 210046 Nanjing China
| |
Collapse
|
14
|
Jin J, Wang M, Lu W, Zhang L, Jiang Q, Jin Y, Lu K, Sun S, Cao Q, Wang Y, Xiao M. Effect of plants and their root exudate on bacterial activities during rhizobacterium-plant remediation of phenol from water. ENVIRONMENT INTERNATIONAL 2019; 127:114-124. [PMID: 30913456 DOI: 10.1016/j.envint.2019.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/20/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
We investigated remediation of phenol from water using microbe-plant partnerships. Co-introduction of maize seedlings, Pseudomonas fluorescens rifampicin-resistant P13 and P. stutzeri P7 carrying self-transmissible TOL-like plasmids reduced phenol content in water at lower phenol concentrations (25, 50, and 75 mg/L), similar to individual introduction of the bacteria. Co-introduction of plants and bacteria significantly reduced phenol content in water at higher phenol concentrations (100, 125, and 150 mg/L) compared to using individual introduction of the bacteria. Moreover, TOL-like plasmids were transferred from P7 to P13. Addition of plants promoted the growth of both strains, leading to increased plasmid transfer. At higher phenol concentrations, addition of plants resulted in increases of catechol 2, 3-dioxygenase (C23O) activity and reduction in level of reactive oxygen species (ROS) of bacteria in the degradation experiments. Increased plasmid transfer and C23O activity and reduction in ROS level might be the major reasons why plants promote bacterial degradation of phenol at higher phenol concentrations. Furthermore, root exudate of maize seedlings and artificial root exudate (ARE) constructed using major components of the root exudate had the same effects on bacterial activities. Unlike the ARE, deletion of glucose, arabinose, or fructose or all the monosaccharides from ARE resulted in no increase in numbers of both strains and in plasmid transfer. At the higher phenol concentrations, deletion of glutamic acid, aspartic acid, alanine, or glycine or all the amino acids did not stimulate bacterial C23O activity. Deletion of fumaric, oxaloacetic or citric acids still reduced bacterial ROS level as ARE did, but, deletion of all the organic acids or DIMBOA, a hydroxamic acid, did not reduce bacterial ROS level as ARE did. The data showed that each monosaccharide might be important for sufficient numbers of plant-associated bacteria and increased plasmid transfer while each amino acid might be important for maintaining bacterial C23O activity and that DIMBOA might be responsible for the decrease in ROS levels. These results are the basis for efficient remediation of phenol from water by microbe-plant partnerships and further studies on the mechanism of rhizobacterium-plant interaction.
Collapse
Affiliation(s)
- Jieren Jin
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Min Wang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Wenwei Lu
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai 200240, China
| | - Lei Zhang
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qiuyan Jiang
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yeqing Jin
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Kaiheng Lu
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shurong Sun
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qin Cao
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yujing Wang
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai 200240, China
| | - Ming Xiao
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai 200240, China.
| |
Collapse
|
15
|
Wastewater Treatment by Catalytic Wet Peroxidation Using Nano Gold-Based Catalysts: A Review. Catalysts 2019. [DOI: 10.3390/catal9050478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nowadays, there is an increasing interest in the development of promising, efficient, and environmentally friendly wastewater treatment technologies. Among them are the advanced oxidation processes (AOPs), in particular, catalytic wet peroxidation (CWPO), assisted or not by radiation. One of the challenges for the industrial application of this process is the development of stable and efficient catalysts, without leaching of the metal to the aqueous phase during the treatment. Gold catalysts, in particular, have attracted much attention from researchers because they show these characteristics. Recently, numerous studies have been reported in the literature regarding the preparation of gold catalysts supported on various supports and testing their catalytic performance in the treatment of real wastewaters or model pollutants by CWPO. This review summarizes this research; the properties of such catalysts and their expected effects on the overall efficiency of the CWPO process, together with a description of the effect of operational variables (such as pH, temperature, oxidant concentration, catalyst, and gold content). In addition, an overview is given of the main technical issues of this process aiming at its industrial application, namely the possibility of using the catalyst in continuous flow reactors. Such considerations will provide useful information for a faster and more effective analysis and optimization of the CWPO process.
Collapse
|
16
|
Wang Z, Huang Z, Brosnahan JT, Zhang S, Guo Y, Guo Y, Wang L, Wang Y, Zhan W. Ru/CeO 2 Catalyst with Optimized CeO 2 Support Morphology and Surface Facets for Propane Combustion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5349-5358. [PMID: 30990306 DOI: 10.1021/acs.est.9b01929] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Tailoring the interfaces between active metal centers and supporting materials is an efficient strategy to obtain a superior catalyst for a certain reaction. Herein, an active interface between Ru and CeO2 was identified and constructed by adjusting the morphology of CeO2 support, such as rods (R), cubes (C), and octahedra (O), to optimize both the activity and the stability of Ru/CeO2 catalyst for propane combustion. We found that the morphology of CeO2 support does not significantly affect the chemical states of Ru species but controls the interaction between the Ru and CeO2, leading to the tuning of oxygen vacancy in the CeO2 surface around the Ru-CeO2 interface. The Ru/CeO2 catalyst possesses more oxygen vacancy when CeO2-R with predominantly exposed CeO2{110} surface facets is used, providing a higher ability to adsorb and activate oxygen and propane. As a result, the Ru/CeO2-R catalyst exhibits higher catalytic activity and stability for propane combustion compared with the Ru/CeO2-C and Ru/CeO2-O catalysts. This work highlights a new strategy for the design of efficient metal/CeO2 catalysts by engineering morphology and associated surface facet of CeO2 support for the elimination of light alkane pollutants and other volatile organic compounds.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Zhenpeng Huang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - John T Brosnahan
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Sen Zhang
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Yanglong Guo
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Yun Guo
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Li Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Yunsong Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Wangcheng Zhan
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| |
Collapse
|
17
|
Zhou J, Jiang YH, Li WH, Liu XY. Kinetics and removal formula of methyl mercaptan by ethanol absorption without neglecting solute accumulation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:1229-1234. [PMID: 30587078 DOI: 10.1080/10934529.2018.1528036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/18/2018] [Accepted: 06/06/2018] [Indexed: 06/09/2023]
Abstract
The wet scrubbing process is commonly adopted for organic odor treatment. In this study, methyl mercaptan (CH3SH) was selected as a representative hydrophobic organic odorant which was treated using an ethanol solution in a scrubbing tower. Results showed that the ethanol solution can retain the ideal CH3SH removal effect for 2.0 h. The following experimental conditions were set: intake load of 4,700 m3 m-2 h-1, spraying load of 5,100 L m-2 h-1, and volume ratio of ethanol/water at 1:5. The solute accumulation of CH3SH in the scrubbing liquid exceeded 3.01 × 10-4 kmol CH3SH/kmol ethanol when the scrubbing tower operated for more than 2.0 h. The mathematical formula which neglected solute accumulation in the ethanol solution exhibited poor adaptability to the removal effect of CH3SH by ethanol absorption. The CH3SH removal effect of solute accumulation in the ethanol solution was explored in long-term operation. Meanwhile, the CH3SH removal rate formula which considered solute accumulation in the ethanol solution could be calculated as η = a'-b'X2/Y1. The kinetic parameters of the formula fitting results were phase equilibrium constant m 0.0076, and overall mass transfer coefficient KY 4.98 kmol m-2 h-1 in the scrubbing tower. These findings can serve as a reference for engineering design and operation for the removal of CH3SH by ethanol absorption.
Collapse
Affiliation(s)
- Jun Zhou
- a School of Civil Engineering and Architecture , Wuhan University of Technology , Wuhan , China
- b School of Municipal and Mapping Engineering, Hunan City University , Yiyang , China
| | - Ying He Jiang
- a School of Civil Engineering and Architecture , Wuhan University of Technology , Wuhan , China
| | - Wen Han Li
- a School of Civil Engineering and Architecture , Wuhan University of Technology , Wuhan , China
- c Henan Civil Aviation Development and Investment Co. Ltd , Zhengzhou , China
| | - Xiao Ying Liu
- a School of Civil Engineering and Architecture , Wuhan University of Technology , Wuhan , China
| |
Collapse
|
18
|
Bordoloi A, Gostomski PA. Fate of degraded pollutants in waste gas biofiltration: An overview of carbon end-points. Biotechnol Adv 2018; 37:579-588. [PMID: 30308222 DOI: 10.1016/j.biotechadv.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
The fate of the carbon from degraded pollutants in biofiltration is not well understood. The issue of missing carbon needs to be addressed quantitatively to better understand and model biofilter performance. Elucidating the various carbon end-points in various phases should contribute to the fundamental understanding of the degradation kinetics and metabolic pathways as a function of various environmental parameters. This article reviews the implications of key environmental parameters on the carbon end-points. Various studies are evaluated reporting carbon recovery over a multitude of parameters and operational conditions with respect to the analytical measurements and reported distribution of the carbon end-points.
Collapse
Affiliation(s)
- Achinta Bordoloi
- Department of Chemical and Process Engineering, University of Canterbury, New Zealand
| | - Peter A Gostomski
- Department of Chemical and Process Engineering, University of Canterbury, New Zealand.
| |
Collapse
|
19
|
Hu Z, Wang Z, Guo Y, Wang L, Guo Y, Zhang J, Zhan W. Total Oxidation of Propane over a Ru/CeO 2 Catalyst at Low Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9531-9541. [PMID: 30040879 DOI: 10.1021/acs.est.8b03448] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ruthenium (Ru) nanoparticles (∼3 nm) with mass loading ranging from 1.5 to 3.2 wt % are supported on a reducible substrate, cerium dioxide (CeO2, the resultant sample is called Ru/CeO2), for application in the catalytic combustion of propane. Because of the unique electronic configuration of CeO2, a strong metal-support interaction is generated between the Ru nanoparticles and CeO2 to stabilize Ru nanoparticles for oxidation reactions well. In addition, the CeO2 host with high oxygen storage capacity can provide an abundance of active oxygen for redox reactions and thus greatly increases the rates of oxidation reactions or even modifies the redox steps. As a result of such advantages, a remarkably high performance in the total oxidation of propane at low temperature is achieved on Ru/CeO2. This work exemplifies a promising strategy for developing robust supported catalysts for short-chain volatile organic compound removal.
Collapse
Affiliation(s)
- Zong Hu
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Zheng Wang
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Yun Guo
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Li Wang
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Yanglong Guo
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Jinshui Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Wangcheng Zhan
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| |
Collapse
|
20
|
Zhou J, Jiang YH, Li WH, Liu XY. Comparison and analysis of several wet scrubbing solutions to remove methyl mercaptan. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:819-824. [PMID: 29624480 DOI: 10.1080/10934529.2018.1455340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Wet scrubbing is regarded as an effective method to remove hydrophobic organic odorants. The focus of wet scrubbing is to choose an appropriate scrubbing liquid. In this study, methyl mercaptan (CH3SH) was selected as a representative hydrophobic organic odorant for treatment by wet scrubbing using several types of scrubbing solution: ethanol (C2H5OH), lead acetate ((CH3COO)2Pb), sodium hypochlorite (NaClO), and sodium hydroxide (NaOH). A comparative analysis of the treatment efficiency, operation cost, and environmental impact was conducted. Results of the technical and economic comparison indicate that the C2H5OH solution is the best choice of scrubbing solution among those tested. These findings serve as a reference for engineering design and operation for the removal of hydrophobic organic odorants.
Collapse
Affiliation(s)
- Jun Zhou
- a Department of Municipal Engineering , School of Civil Engineering and Architecture, Wuhan University of Technology , Wuhan , China
- b Department of Water Science and Engineering , School of Municipal and Mapping Engineering, Hunan City University , Yiyang , China
| | - Ying H Jiang
- a Department of Municipal Engineering , School of Civil Engineering and Architecture, Wuhan University of Technology , Wuhan , China
| | - Wen H Li
- a Department of Municipal Engineering , School of Civil Engineering and Architecture, Wuhan University of Technology , Wuhan , China
- c Henan Civil Aviation Development and Investment Co. Ltd , Zhengzhou , China
| | - Xiao Y Liu
- a Department of Municipal Engineering , School of Civil Engineering and Architecture, Wuhan University of Technology , Wuhan , China
| |
Collapse
|
21
|
Nigar H, Julián I, Mallada R, Santamaría J. Microwave-Assisted Catalytic Combustion for the Efficient Continuous Cleaning of VOC-Containing Air Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5892-5901. [PMID: 29660983 DOI: 10.1021/acs.est.8b00191] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A microwave-heated adsorbent-reactor system has been used for the continuous cleaning of air streams containing n-hexane at low concentrations. Both, a single catalytic bed (PtY zeolite) and a double (adsorptive DAY zeolite + catalytic PtY zeolite) fixed-bed reactor configurations were studied under dry and humid conditions. The zeolites were selectively heated by short periodic microwave pulses that caused the desorption of n-hexane and its subsequent catalytic combustion. The double bed configuration was attractive because it allowed nearly the same performance with only half of the catalyst load. The operation was especially efficient under realistic humid gas conditions that favored more intense microwave absorption, producing a faster heating of the adsorptive and catalytic beds. Under these conditions, continuous gas cleaning could be achieved with short (3 min, 30 W) microwave heating pulses every 5 min.
Collapse
Affiliation(s)
- Hakan Nigar
- Nanoscience Institute of Aragon and Chemical and Environmental Engineering Department , University of Zaragoza , 50018 Zaragoza , Spain
| | - Ignacio Julián
- Nanoscience Institute of Aragon and Chemical and Environmental Engineering Department , University of Zaragoza , 50018 Zaragoza , Spain
| | - Reyes Mallada
- Nanoscience Institute of Aragon and Chemical and Environmental Engineering Department , University of Zaragoza , 50018 Zaragoza , Spain
- Networking Research Centre CIBER-BBN , 28029 Madrid , Spain
| | - Jesús Santamaría
- Nanoscience Institute of Aragon and Chemical and Environmental Engineering Department , University of Zaragoza , 50018 Zaragoza , Spain
- Networking Research Centre CIBER-BBN , 28029 Madrid , Spain
| |
Collapse
|
22
|
Tabassum S. Application of a novel Mass Bio System to remove low-concentration ammonia nitrogen from water bodies. RSC Adv 2018; 8:42429-42437. [PMID: 35558405 PMCID: PMC9092111 DOI: 10.1039/c8ra08750d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/03/2018] [Indexed: 12/04/2022] Open
Abstract
Water pollution due to ammonia is one of the most serious problems faced by the human beings and other life forms worldwide. With the rapid development of economy, pollution of water resources by ammonium (NH4+) pollutants has increased severely. The water supply system has exceeded its capacity with regard to both quantity and quality of water. Many countries have already established a standard for strict limitation of ammonium nitrogen (NH4+-N) or NH3 content in drinking water. In this study, a novel Mass Bio System (MBS), a suspended biologically activated carbon granular carrier cubic particle with 2–5 mm side length and a specific gravity of 1.02–1.08, was used for water treatment. In order to find a suitable method for ammonium removal from water resources, synthetic water containing NH4+-N at a concentration of about 10 ppm was treated by MBS. NH4+-N was nitrified to nitrate nitrogen (NO3−-N) by MBS in an inner-circulated fluidized bed reactor continuously. MBS showed an efficient and stable NH4+-N nitrifying performance at temperature of 20–30 °C and DO of 3–4 mg L−1. With an influent concentration of NH4+-N at 10–15 mg L−1, the concentration of effluent NH4+-N and nitrite nitrogen (NO2−-N) was below 0.25 mg L−1, showing an average removal efficiency of above 90% within a hydraulic retention time (HRT) of 30 min. The pH value of effluent water remained at 7.2–7.3 automatically. Removal of load could reach 256.1 mg-N per (L-pellet h) and oxygen uptake rate increased to 1170.9 mg-O2 per (L-pellet h). The nitrifying process fits to zero-order degradation kinetics. High biomass retention was observed by scanning electron microscopy (SEM). Removal process of low concentration of ammonia nitrogen (about 10 ppm NH4+-N) by Novel Mass Bio System (MBS).![]()
Collapse
Affiliation(s)
- Salma Tabassum
- Chemistry Department
- Faculty of Science
- Taibah University
- Yanbu
- Saudi Arabia
| |
Collapse
|
23
|
Brodowska AJ, Nowak A, Śmigielski K. Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview. Crit Rev Food Sci Nutr 2017; 58:2176-2201. [PMID: 28394634 DOI: 10.1080/10408398.2017.1308313] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The food contamination issue requires continuous control of food at each step of the production process. High quality and safety of products are equally important factors in the food industry. They may be achieved with several, more or less technologically advanced methodologies. In this work, we review the role, contribution, importance, and impact of ozone as a decontaminating agent used to control and eliminate the presence of microorganisms in food products as well as to extend their shelf-life and remove undesirable odors. Several researchers have been focusing on the ozone's properties and applications, proving that ozone treatment technology can be applied to all types of foods, from fruits, vegetables, spices, meat, and seafood products to beverages. A compilation of those works, presented in this review, can be a useful tool for establishing appropriate ozone treatment conditions, and factors affecting the improved quality and safety of food products. A critical evaluation of the advantages and disadvantages of ozone in the context of its application in the food industry is presented as well.
Collapse
Affiliation(s)
- Agnieszka Joanna Brodowska
- a Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences , Lodz University of Technology , Lodz , Poland
| | - Agnieszka Nowak
- b Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences , Lodz University of Technology , Lodz , Poland
| | - Krzysztof Śmigielski
- a Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences , Lodz University of Technology , Lodz , Poland
| |
Collapse
|
24
|
|
25
|
Rodriguez Castillo AS, Guihéneuf S, Le Guével R, Biard PF, Paquin L, Amrane A, Couvert A. Synthesis and toxicity evaluation of hydrophobic ionic liquids for volatile organic compounds biodegradation in a two-phase partitioning bioreactor. JOURNAL OF HAZARDOUS MATERIALS 2016; 307:221-230. [PMID: 26785216 DOI: 10.1016/j.jhazmat.2015.12.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
Synthesis of several hydrophobic ionic liquids (ILs), which might be selected as good candidates for degradation of hydrophobic volatile organic compounds in a two-phase partitioning bioreactor (TPPB), were carried out. Several bioassays were also realized, such as toxicity evaluation on activated sludge and zebrafish, cytotoxicity, fluoride release in aqueous phase and biodegradability in order to verify their possible effects in case of discharge in the aquatic environment and/or human contact during industrial manipulation. The synthesized compounds consist of alkylimidazoliums, functionalized imidazoliums, isoqinoliniums, triazoliums, sulfoniums, pyrrolidiniums and morpholiniums and various counter-ions such as: PF6(-), NTf2(-) and NfO(-). Toxicity evaluation on activated sludge of each compound (5% v/v of IL) was assessed by using a glucose uptake inhibition test. Toxicity against zebrafish and cytotoxicity were evaluated by the ImPACCell platform of Rennes (France). Fluoride release in water was estimated by regular measurements using ion chromatography equipment. IL biodegradability was determined by measuring BOD28 of aqueous samples (compound concentration,1mM). All ILs tested were not biodegradable; while some of them were toxic toward activated sludge. Isoquinolinium ILs were toxic to human cancerous cell lines. Nevertheless no toxicity was found against zebrafish Danio rerio. Only one IL released fluoride after long-time agitation.
Collapse
Affiliation(s)
- Alfredo Santiago Rodriguez Castillo
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France; Université européenne de Bretagne
| | - Solène Guihéneuf
- Université européenne de Bretagne; Université de Rennes 1, Sciences Chimiques de Rennes, UMR, CNRS 6226, Groupe Ingénierie Chimique & Molécules Pour le Vivant (ICMV), Bât. 10A, Campus de Beaulieu, Avenue du Général Leclerc, CS 74205, 35042 Rennes cedex, France.
| | - Rémy Le Guével
- Plate-forme ImPACcell Structure Fédérative de Recherche BIOSIT Université de Rennes 1, Bat. 8, Campus de Villejean, 2 Avenue du Pr. Leon Bernard, CS 34317, 35043 Rennes Cedex, France
| | - Pierre-François Biard
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France; Université européenne de Bretagne
| | - Ludovic Paquin
- Université européenne de Bretagne; Université de Rennes 1, Sciences Chimiques de Rennes, UMR, CNRS 6226, Groupe Ingénierie Chimique & Molécules Pour le Vivant (ICMV), Bât. 10A, Campus de Beaulieu, Avenue du Général Leclerc, CS 74205, 35042 Rennes cedex, France
| | - Abdeltif Amrane
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France; Université européenne de Bretagne
| | - Annabelle Couvert
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France; Université européenne de Bretagne
| |
Collapse
|
26
|
Bai B, Qiao Q, Li J, Hao J. Progress in research on catalysts for catalytic oxidation of formaldehyde. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(15)61007-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Luo X, Yan Q, Wang C, Luo C, Zhou N, Jian C. Treatment of Ammonia Nitrogen Wastewater in Low Concentration by Two-Stage Ozonization. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:11975-87. [PMID: 26404353 PMCID: PMC4586718 DOI: 10.3390/ijerph120911975] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/18/2015] [Indexed: 11/16/2022]
Abstract
Ammonia nitrogen wastewater (about 100 mg/L) was treated by two-stage ozone oxidation method. The effects of ozone flow rate and initial pH on ammonia removal were studied, and the mechanism of ammonia nitrogen removal by ozone oxidation was discussed. After the primary stage of ozone oxidation, the ammonia removal efficiency reached 59.32% and pH decreased to 6.63 under conditions of 1 L/min ozone flow rate and initial pH 11. Then, the removal efficiency could be over 85% (the left ammonia concentration was lower than 15 mg/L) after the second stage, which means the wastewater could have met the national discharge standards of China. Besides, the mechanism of ammonia removal by ozone oxidation was proposed by detecting the products of the oxidation: ozone oxidation directly and ·OH oxidation; ammonia was mainly transformed into NO3−-N, less into NO2−-N, not into N2.
Collapse
Affiliation(s)
- Xianping Luo
- School of Resuorces and Environmental Engieering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China.
- Western Mining Co., Ltd., Xining 810006, Qinghai, China.
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China.
| | - Qun Yan
- School of Resuorces and Environmental Engieering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China.
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China.
| | - Chunying Wang
- School of Resuorces and Environmental Engieering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China.
- Western Mining Co., Ltd., Xining 810006, Qinghai, China.
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China.
| | - Caigui Luo
- School of Resuorces and Environmental Engieering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China.
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China.
| | - Nana Zhou
- School of Resuorces and Environmental Engieering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China.
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China.
| | - Chensheng Jian
- School of Resuorces and Environmental Engieering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China.
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China.
| |
Collapse
|
28
|
Seo M, Cho S, Lee S, Kim J, Kang YH, Uhm S. A Study on the Highly Effective Treatment of Spent Electroless Nickel Plating Solution by an Advanced Oxidation Process. APPLIED CHEMISTRY FOR ENGINEERING 2015. [DOI: 10.14478/ace.2015.1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Miao Q, Chen X, Liu L, Peng J, Fang Y. Synergetic effect based gel-emulsions and their utilization for the template preparation of porous polymeric monoliths. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13680-13688. [PMID: 25338107 DOI: 10.1021/la502988x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A polymerizable cholesteryl derivative (COA) was synthesized and used as a stabilizer for creating gel-emulsions with water in polymerizable monomers, of which they are styrene (ST), tert-butyl methacrylate (t-BMA), ethylene glycol dimethyl acrylate (EGDMA), and methyl methacrylate (MMA), etc. Interestingly, in addition to COA, the presence of a small amount of Span-80 is a necessity for the formation of the monomers containing gel-emulsions. Unlike conventional ones, the volume fraction of the dispersed phase in the gel-emulsions as created could be much lower than 74%, a critical value for routine gel-emulsions. Stabilization of these gel-emulsions as created has been attributed to the synergetic effect between COA, a typical low-molecular-mass gelator (LMMG), and Span-80, a surfactant, of which the former gels the continuous phase and the latter minimizes the interfacial energy of the continuous phase and the dispersed phase. SEM observation confirmed the network structures of COA in the gel-emulsions. Rheological tests demonstrated that the storage modulus, G', and the yield stress of the gel-emulsions decrease along with increasing the volume fraction of the dispersed phase, water, provided it is not greater than 74%-a result inconsistent with the theory explaining formation of routine gel-emulsions and in support of the conclusion that the systems under study follow a different mechanism. Furthermore, unlike LMMG-based stabilizers reported earlier, the gelator, COA, created in the present study has been functioning not only as a stabilizer but also a monomer. To illustrate the conceptual advantages, the gel-emulsions of water in ST/DVB/AIBN were polymerized. As expected, the densities and internal structures of the monoliths as prepared are highly adjustable, functionalization of the materials with cholesterol has been realized, and at the same time the problem of stabilizer leaking has been avoided. A preliminary test for gas adsorption demonstrated that the monoliths as prepared are good adsorbents for some volatile organic compounds (VOCs), in particular benzene, toluene, ethylbenzene, and xylene-the famous and toxic BTEX. It is believed that the findings reported in the present work provide not only a new strategy for creating novel gel-emulsions but also a new route for functionalizing porous polymeric monoliths.
Collapse
Affiliation(s)
- Qing Miao
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, China
| | | | | | | | | |
Collapse
|
30
|
Bokare AD, Choi W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. JOURNAL OF HAZARDOUS MATERIALS 2014; 275:121-35. [PMID: 24857896 DOI: 10.1016/j.jhazmat.2014.04.054] [Citation(s) in RCA: 1017] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/18/2014] [Accepted: 04/23/2014] [Indexed: 05/21/2023]
Abstract
Iron-catalyzed hydrogen peroxide decomposition for in situ generation of hydroxyl radicals (HO(•)) has been extensively developed as advanced oxidation processes (AOPs) for environmental applications. A variety of catalytic iron species constituting metal salts (in Fe(2+) or Fe(3+) form), metal oxides (e.g., Fe2O3, Fe3O4), and zero-valent metal (Fe(0)) have been exploited for chemical (classical Fenton), photochemical (photo-Fenton) and electrochemical (electro-Fenton) degradation pathways. However, the requirement of strict acidic conditions to prevent iron precipitation still remains the bottleneck for iron-based AOPs. In this article, we present a thorough review of alternative non-iron Fenton catalysts and their reactivity towards hydrogen peroxide activation. Elements with multiple redox states (like chromium, cerium, copper, cobalt, manganese and ruthenium) all directly decompose H2O2 into HO(•) through conventional Fenton-like pathways. The in situ formation of H2O2 and decomposition into HO(•) can be also achieved using electron transfer mechanism in zero-valent aluminum/O2 system. Although these Fenton systems (except aluminum) work efficiently even at neutral pH, the H2O2 activation mechanism is very specific to the nature of the catalyst and critically depends on its composition. This review describes in detail the complex mechanisms and emphasizes on practical limitations influencing their environmental applications.
Collapse
Affiliation(s)
- Alok D Bokare
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Wonyong Choi
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea.
| |
Collapse
|
31
|
Ye J, Shang J, Li Q, Xu W, Liu J, Feng X, Zhu T. The use of vacuum ultraviolet irradiation to oxidize SO₂ and NOx for simultaneous desulfurization and denitrification. JOURNAL OF HAZARDOUS MATERIALS 2014; 271:89-97. [PMID: 24632363 DOI: 10.1016/j.jhazmat.2014.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 02/06/2014] [Accepted: 02/08/2014] [Indexed: 06/03/2023]
Abstract
A simple and efficient method for simultaneous desulfurization and denitrification via vacuum ultraviolet (VUV) irradiation and with no additional chemicals is presented. The simultaneous removal of 90% SO2 and 96% NOx (NO+NO2) was achieved from the simulated flue gas under the irradiation from a low-pressure mercury lamp with main wavelengths of 185 and 254 nm, respectively. The composition, flow rate, and temperature of the simulated flue gas, as well as the VUV light intensity, were evaluated as the factors impacting on the efficiency of SO2 and NOx removal. The OH, HO2, O, and O3 produced from the photolysis of H2O and O2 were concluded as the major reactive oxygen species that oxidized SO2 and NOx. The additional OH and HO2 generated through the reactions of NO+HO2 and SO2+OH/HO2 improved treatment efficiency, while the oxidation products of NOx, e.g., NO2, HNO2, HNO3, and HNO4, consumed massive reactive oxygen species (such as O, OH, and HO2) and thereby reducing the removal efficiencies. The main reaction products were characterized as H2SO4 and HNO3 by ion chromatography, which could be used as chemical or fertilizer raw materials.
Collapse
Affiliation(s)
- Junhui Ye
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jing Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China.
| | - Qian Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Weiwei Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jia Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Xiang Feng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Tong Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
32
|
Wu CY, Chou MS, Lin JH. Oxidative scrubbing of DMS-containing waste gases by hypochlorite solution. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2013.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Li J, Xie CJ, Yan LS, Cai J, Xie P. Carbonyl Levels and Personal Exposures in Large Shopping Malls of Nanchang, China. ANAL LETT 2013. [DOI: 10.1080/00032719.2012.747092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Diekmann N, Burghartz M, Remus L, Kaufholz AL, Nawrath T, Rohde M, Schulz S, Roselius L, Schaper J, Mamber O, Jahn D, Jahn M. Microbial communities related to volatile organic compound emission in automobile air conditioning units. Appl Microbiol Biotechnol 2012. [DOI: 10.1007/s00253-012-4564-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Ralebitso-Senior TK, Senior E, Di Felice R, Jarvis K. Waste gas biofiltration: advances and limitations of current approaches in microbiology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8542-8573. [PMID: 22746978 DOI: 10.1021/es203906c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
As confidence in gas biofiltration efficacy grows, ever more complex malodorant and toxic molecules are ameliorated. In parallel, for many countries, emission control legislation becomes increasingly stringent to accommodate both public health and climate change imperatives. Effective gas biofiltration in biofilters and biotrickling filters depends on three key bioreactor variables: the support medium; gas molecule solubilization; and the catabolic population. Organic and inorganic support media, singly or in combination, have been employed and their key criteria are considered by critical appraisal of one, char. Catabolic species have included fungal and bacterial monocultures and, to a lesser extent, microbial communities. In the absence of organic support medium (soil, compost, sewage sludge, etc.) inoculum provision, a targeted enrichment and isolation program must be undertaken followed, possibly, by culture efficacy improvement. Microbial community process enhancement can then be gained by comprehensive characterization of the culturable and total populations. For all species, support medium attachment is critical and this is considered prior to filtration optimization by water content, pH, temperature, loadings, and nutrients manipulation. Finally, to negate discharge of fungal spores, and/or archaeal and/or bacterial cells, capture/destruction technologies are required to enable exploitation of the mineralization product CO(2).
Collapse
|
36
|
Zhang LZ, Zhang XR, Miao QZ, Pei LX. Selective permeation of moisture and VOCs through polymer membranes used in total heat exchangers for indoor air ventilation. INDOOR AIR 2012; 22:321-330. [PMID: 22145748 DOI: 10.1111/j.1600-0668.2011.00762.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
UNLABELLED Fresh air ventilation is central to indoor environmental control. Total heat exchangers can be key equipment for energy conservation in ventilation. Membranes have been used for total heat exchangers for more than a decade. Much effort has been spent to achieve water vapor permeability of various membranes; however, relatively little attention has been paid to the selectivity of moisture compared with volatile organic compounds (VOCs) through such membranes. In this investigation, the most commonly used membranes, both hydrophilic and hydrophobic ones, are tested for their permeability for moisture and five VOCs (acetic acid, formaldehyde, acetaldehyde, toluene, and ethane). The selectivity of moisture vs. VOCs in these membranes is then evaluated. With a solution-diffusion model, the solubility and diffusivity of moisture and VOCs in these membranes are calculated. The resulting data could provide some reference for future material selection. PRACTICAL IMPLICATIONS Total heat exchangers are important equipment for fresh air ventilation with energy conservation. However, their implications for indoor air quality in terms of volatile organic compound permeation have not been known. The data in this article help us to clarify the impacts on indoor VOC levels of membrane-based heat exchangers. Guidelines for material selection can be obtained for future use total heat exchangers for building ventilation.
Collapse
Affiliation(s)
- L-Z Zhang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.
| | | | | | | |
Collapse
|
37
|
Redox potential as a means to control the treatment of slurry to lower HS emissions. SENSORS 2012; 12:5349-62. [PMID: 22778588 PMCID: PMC3386687 DOI: 10.3390/s120505349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/10/2012] [Accepted: 04/10/2012] [Indexed: 11/25/2022]
Abstract
Slurry can be oxidized to eliminate undesirable emissions, including malodorous hydrogen sulfide (H2S). However, it is difficult to assess the optimal amount of oxidizing agent required. In this study, one cow and one pig manure, each in three particle size ranges were oxidized with 0–350 mg ozone/L manure. Redox and H2S concentration were measured continuously. During ozonation the manures gave equivalent redox potential curves. A relatively rapid rise in redox potential was observed within a range of −275 mV to −10 mV, with all manures changing as a minimum from −200 mV to −80 mV. The gaseous H2S emissions were decreased by 99.5% during the redox increase (−200 mV to −80 mV). This is attributed to H2S oxidation by ozone and oxygen, and is not due to H2S deprotonation or gas flushing. By identifying the initiation of the final redox level following the rise, the amount of ozone required to remove H2S from the manure samples was estimated to be in the range of 6–24 mg O3/L manure, depending on the type of manure. Hence, continuous monitoring of redox potential (termination of the redox rise) during the oxidation treatment is a simple method of achieving cost-effective minimization of H2S emissions from slurry.
Collapse
|
38
|
Novel Bioreactors for Waste Gas Treatment. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2012. [DOI: 10.1007/978-94-007-2439-6_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Study on the poisoning tolerance and stability of perovskite catalysts for catalytic combustion of volatile organic compounds. REACTION KINETICS MECHANISMS AND CATALYSIS 2010. [DOI: 10.1007/s11144-010-0235-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|