1
|
Hao J, Nishiyama A, Mori S, Furukawa K, Shimizu S. Oxidation of 5,15-Dioxaporphyrin: Its Generality and Novelty as an Oxaporphyrin Analogue. Angew Chem Int Ed Engl 2023; 62:e202307862. [PMID: 37401745 DOI: 10.1002/anie.202307862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/05/2023]
Abstract
5,15-Dioxaporphyrin (DOP) is a novel meso-oxaporphyrin analogue and exhibits unique 20π-antiaromaticity, unlike its mother congener of 18π-aromatic 5-oxaporphyrin, commonly known as its cationic iron complex called verdohem, which is a key intermediate of heme catabolism. To reveal its reactivities and properties as an oxaporphyrin analogue, the oxidation of tetra-β-arylated DOP (DOP-Ar4 ) was explored in this study. Stepwise oxidation from the 20π-electron neutral state was achieved, and the corresponding 19π-electron radical cation and 18π-electron dication were characterized. Further oxidation of the 18π-aromatic dication resulted in the formation of a ring-opened dipyrrindione product by hydrolysis. Considering a similar reaction of verdoheme to ring-opened biliverdin in the heme degradation in nature, the current result consolidates the ring-opening reactivity of oxaporphyrinium cation species.
Collapse
Affiliation(s)
- Jiping Hao
- Department of Applied Chemistry, Graduate School of Engineering and Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Akihide Nishiyama
- Department of Applied Chemistry, Graduate School of Engineering and Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Shigeki Mori
- Advanced Research Support Center (ADRES), Ehime University, Matsuyama, 790-8577, Japan
| | - Ko Furukawa
- Center for Coordination of Research Facilities, Institute for Research Administrator, Niigata University, Niigata, 950-2181, Japan
| | - Soji Shimizu
- Department of Applied Chemistry, Graduate School of Engineering and Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
2
|
Taniguchi M, Lindsey JS. Absorption and Fluorescence Spectra of Open-chain Tetrapyrrole Pigments–Bilirubins, Biliverdins, Phycobilins, and Synthetic Analogues. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2023. [DOI: 10.1016/j.jphotochemrev.2023.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
3
|
Nguyen THT, Eerdun C, Okayama T, Hisanaga S, Tominaga T, Mochida T, Setsune JI. Stereochemistry and chiroptical properties of bimetallic single helicates of hexapyrrole-α, ω-dicarbaldimines with high diastereoselectivity. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s108842462150111x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bimetallic complexes of hexapyrrole-[Formula: see text],[Formula: see text]-dicarbaldimines consisting of a pair of four-coordinate metal sites adopt a helical closed [Formula: see text]-symmetric form or sigmoidal open forms depending on whether the 2,2[Formula: see text]-bipyrrole subunit at the center of the hexapyrrole chain takes cis- or trans-conformation. X-ray crystallography of a bisNi complex having N-[([Formula: see text]-1-cyclohexylethyl]carbaldimine units at both ends of the hexapyrrole chain revealed a non-symmetric heterohelical open form where the metal coordination sites of opposite helical sense sit on opposite sides of the central 2,2[Formula: see text]-bipyrrole subunit. BisPd complexes preferred a closed [Formula: see text] form and a steric bulk at the 3,3[Formula: see text]-position of the 2,2[Formula: see text]-bipyrrole subunit improved the helical sense bias. A bisPd complex with N-[([Formula: see text]-1-cyclohexylethyl]carbaldimine units adopts a helical closed [Formula: see text] form exclusively with full bias for a [Formula: see text]-helical sense. These bimetallic single stranded helicates were reversibly oxidized to [Formula: see text]-cation radicals at 0.1[Formula: see text]0.3 V vs. a ferrocene/ferrocenium couple and spectroelectrochemistry revealed remarkable absorption and CD spectral changes in the Vis-NIR region.
Collapse
Affiliation(s)
- Thi Hien Thuy Nguyen
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Chaolu Eerdun
- School of Pharmaceutical Science, Inner Mongolia Medical University Jinshan Econimic & Technology Development District, Hohhot 010100, China
| | - Takuya Okayama
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Satoshi Hisanaga
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Takumi Tominaga
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Tomoyuki Mochida
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Jun-ichiro Setsune
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
4
|
Takiguchi A, Kang S, Fukui N, Kim D, Shinokubo H. Dual Emission of a Free‐Base 5‐Oxaporphyrinium Cation from its
cis
‐ and
trans
‐NH Tautomers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Asahi Takiguchi
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-chi, Chikusa-ku Nagoya 464-8603 Japan
| | - Seongsoo Kang
- Department of Chemistry and Spectroscopy Laboratory for, Functional π-Electronic Systems Yonsei University Seoul 03722 South Korea
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-chi, Chikusa-ku Nagoya 464-8603 Japan
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for, Functional π-Electronic Systems Yonsei University Seoul 03722 South Korea
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-chi, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
5
|
Takiguchi A, Kang S, Fukui N, Kim D, Shinokubo H. Dual Emission of a Free‐Base 5‐Oxaporphyrinium Cation from its
cis
‐ and
trans
‐NH Tautomers. Angew Chem Int Ed Engl 2020; 60:2915-2919. [DOI: 10.1002/anie.202013542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Asahi Takiguchi
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-chi, Chikusa-ku Nagoya 464-8603 Japan
| | - Seongsoo Kang
- Department of Chemistry and Spectroscopy Laboratory for, Functional π-Electronic Systems Yonsei University Seoul 03722 South Korea
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-chi, Chikusa-ku Nagoya 464-8603 Japan
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for, Functional π-Electronic Systems Yonsei University Seoul 03722 South Korea
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-chi, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
6
|
Taghizadeh A, Asli MD, Jamaat PR. Theoretical study of first row transitional metals effects on stabilization of verdoheme analogues. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619501311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heme catabolism is an important physiological process that converts heme to biliverdin in the presence of heme oxygenase which has an essential role in destroying unwanted heme. Verdohemes, the green iron (II) complexes of the 5-oxaporphyrin macrocycle are produced by oxidative destruction of heme. The main goal of this study is clarification of the central metal effect on stabilization of metal 5-oxaporphyrin molecules. To investigate the role of central metal on geometric and electronic properties of five coordinated verdoheme analogues, the first row transitional metals, including Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn, as the central metal of five-coordinated metal 5-oxaporphyrins were systematically calculated without any symmetry constraint by using the B3LYP as DFT method and the 6-31G basis set in gas and solvent phases. According to the results, the stabilization energy of metal 5-oxaporphyrins increases with atomic mass in the solvent phase more than in the gas phase. By reviewing the properties such as the computed frontier orbital energy, HOMO and LUMO gap energy [Formula: see text], hardness [Formula: see text], chemical potential [Formula: see text], softness (s) and electrophilicity [Formula: see text], the pharmaceutical use of this compound can be discussed.
Collapse
Affiliation(s)
- Afsaneh Taghizadeh
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Daghighi Asli
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
7
|
Gautam R, Petritis SJ, Astashkin AV, Tomat E. Paramagnetism and Fluorescence of Zinc(II) Tripyrrindione: A Luminescent Radical Based on a Redox-Active Biopyrrin. Inorg Chem 2018; 57:15240-15246. [PMID: 30418755 DOI: 10.1021/acs.inorgchem.8b02532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of bilins and other biopyrrins to form fluorescent zinc complexes has been known for more than a century; however, the exact identity of the emissive species remains uncertain in many cases. Herein, we characterize the hitherto elusive zinc complex of tripyrrin-1,14-dione, an analogue of several orange urinary pigments. As previously observed for its Pd(II), Cu(II), and Ni(II) complexes, tripyrrindione binds Zn(II) as a dianionic radical and forms a paramagnetic complex carrying an unpaired electron on the ligand π-system. This species is stable at room temperature and undergoes quasi-reversible ligand-based redox chemistry. Although the complex is isolated as a coordination dimer in the solid state, optical absorption and electron paramagnetic resonance spectroscopic studies indicate that the monomer is prevalent in a tetrahydrofuran solution. The paramagnetic Zn(II) tripyrrindione complex is brightly fluorescent (λabs = 599 nm, λem = 644 nm, ΦF = 0.23 in THF), and its study provides a molecular basis for the observation, made over several decades since the 1930s, of fluorescent behavior of tripyrrindione pigments in the presence of zinc salts. The zinc-bound tripyrrindione radical is thus a new addition to the limited number of stable radicals that are fluorescent at room temperature.
Collapse
Affiliation(s)
- Ritika Gautam
- Department of Chemistry and Biochemistry , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Steven J Petritis
- Department of Chemistry and Biochemistry , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Andrei V Astashkin
- Department of Chemistry and Biochemistry , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Elisa Tomat
- Department of Chemistry and Biochemistry , The University of Arizona , Tucson , Arizona 85721 , United States
| |
Collapse
|
8
|
Abstract
The reactions of iron(III) hydroxyisoporphyrin, chloro[5-(hydroxy)-5,10,15,20-tetrakis(4-methyl)-5,21H-porphinato]iron(III) [Fe(4-Me-HTPI)(Cl)](-), 1 and chloro[5-(hydroxy)-5,10,15,20-tetrakis(4-methoxy-5,21H-porphinato]iron(III) [Fe(4-OMe-HTPI)(Cl)](-), 2 with different O(-), N(-) and S(-) nucleophiles have been performed to understand the reactivity of iron isoporphyrins with nucleophiles. The treatment of iron(III) hydroxy isoporphyrin with alcohols is found to form ring opened 19-benzoyl-1-alkoxy-bilin iron complexes. When alkyl amines were used the formation of ring opened 19-benzoyl-1-alkylamine-bilin iron complexes was observed, but heterocyclic N-nucleophiles such as pyridine and imidazole form benzoyl bilinone iron complexes. No role of oxygen was found in these nucleophilic ring opening reactions. The treatment of a S-nucleophile such as PhSH is found to reduce iron(III)-hydroxyisoporphyrin in the parent iron(III) porphyrin compound. The ring opening products were characterized using electronic and ESI-mass spectroscopy. The mechanism for the formation of ring opening products is based on the formation of a tetrahedral intermediate at the carbon atom near the saturated meso carbon atom similar to the hydrolytic pathway of verdoheme conversion to biliverdin.
Collapse
Affiliation(s)
- Jagannath Bhuyan
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh-791109, India.
| |
Collapse
|
9
|
Kakeya K, Aozasa M, Mizutani T, Hitomi Y, Kodera M. Nucleophilic ring opening of meso-substituted 5-oxaporphyrin by oxygen, nitrogen, sulfur, and carbon nucleophiles. J Org Chem 2014; 79:2591-600. [PMID: 24597593 DOI: 10.1021/jo5000412] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleophilic ring opening of 23H-[21,23-didehydro-10,15,20-tris(4-methoxycarbonylphenyl)-5-oxaporphyrinato](trifluoroacetato)zinc(II) with various nucleophiles such as alkoxide, amine, thiolate, and enolate gave 19-substituted bilinone zinc complexes, and they were isolated as free base bilinones. An X-ray crystallographic study demonstrated that the product of 5-oxaporphyrin with sodium methoxide was 21H,23H-(4Z,9Z,15Z)-1,21-dihydro-19-methoxy-5,10,15-tris(4-methoxycarbonylphenyl)bilin-1-one with a helicoidal conformation. The structure of the product of 5-oxaporphyrin with an enolate of ethyl acetoacetate was 21H,22H,24H-(4Z,9Z,15Z,19E)-19-(1-ethoxycarbonyl-2-oxopropylidene)-5,10,15-tris(4-methoxycarbonylphenyl)-1,19,21,24-tetrahydrobilin-1-one, with three inner NH groups. The product with SH(-) was also the same tautomer, 21H,22H,24H-19-thioxo-bilin-1-one, with three NH groups, while the products with RO(-), RNH2, and RS(-) nucleophiles were 21H,23H-bilin-1-ones with two inner NH groups. The first-order rate constants of the ring opening reaction of 5-oxaporphyrin with 1 M BnOH and BnSH in toluene at 303 K were 3.0 × 10(-4) and 6.1 × 10(-4) s(-1), respectively. The ratio of the rate of alcohol to thiol was much higher than that with methyl iodide, suggesting that 5-oxaporphyrin reacted as a hard electrophile in comparison to methyl iodide. UV-visible spectra of 19-substituted bilinones in CHCl3 at 298 K showed that the absorption maximum of the lower energy band was red-shifted in increasing order of O-substituted (645 nm), S-substituted (668 nm), N-substituted (699 nm), and C-substituted bilinones (706 nm).
Collapse
Affiliation(s)
- Kazuhisa Kakeya
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, and Center for Nanoscience Research, Doshisha University , Kyotanabe, Kyoto 610-0321, Japan
| | | | | | | | | |
Collapse
|
10
|
Chen LD, Zou XU, Bühlmann P. Cyanide-Selective Electrode Based on Zn(II) Tetraphenylporphyrin as Ionophore. Anal Chem 2012; 84:9192-8. [DOI: 10.1021/ac301910c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Li D. Chen
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota
55455, United States
| | - Xu U. Zou
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota
55455, United States
| | - Philippe Bühlmann
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota
55455, United States
| |
Collapse
|
11
|
Kakeya K, Nakagawa A, Mizutani T, Hitomi Y, Kodera M. Synthesis, Reactivity, and Spectroscopic Properties of meso-Triaryl-5-oxaporphyrins. J Org Chem 2012; 77:6510-9. [DOI: 10.1021/jo3010342] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazuhisa Kakeya
- Department of Molecular Chemistry and Biochemistry,
Faculty of Science and Engineering, and Center for Nanoscience Research, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Aya Nakagawa
- Department of Molecular Chemistry and Biochemistry,
Faculty of Science and Engineering, and Center for Nanoscience Research, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Tadashi Mizutani
- Department of Molecular Chemistry and Biochemistry,
Faculty of Science and Engineering, and Center for Nanoscience Research, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Yutaka Hitomi
- Department of Molecular Chemistry and Biochemistry,
Faculty of Science and Engineering, and Center for Nanoscience Research, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Masahito Kodera
- Department of Molecular Chemistry and Biochemistry,
Faculty of Science and Engineering, and Center for Nanoscience Research, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
12
|
Abstract
Contemporary methods for the modification of porphyrins are presented. In association with the Third International Conference on Porphyrins and Phthalocyanines (ICPP-3) a survey of current method developments and reactivity studies is made. The review focuses on synthetic transformations of porphyrins currently in use for various applications and on functional group transformations. A brief survey of important developments covers selectively the literature from late 2001 to early 2004.
Collapse
Affiliation(s)
- Mathias O. Senge
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Golm, Germany
| | - Julia Richter
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Golm, Germany
| |
Collapse
|
13
|
Effect of the axial ligands on the structure and reactivity of tin verdoheme in the ring opening process. Inorganica Chim Acta 2010. [DOI: 10.1016/j.ica.2009.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Gheidi M, Safari N, Zahedi M. Theoretical investigation of the ring opening process of verdoheme to biliverdin in the presence of dioxygen. J Mol Model 2010; 16:1401-13. [DOI: 10.1007/s00894-010-0644-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 12/10/2009] [Indexed: 10/19/2022]
|
15
|
Davari MD, Bahrami H, Zahedi M, Safari N. Theoretical investigations on the hydrolysis pathway of tin verdoheme complexes: elucidation of tin's ring opening inhibition role. J Mol Model 2009; 15:1299-315. [PMID: 19373497 DOI: 10.1007/s00894-009-0495-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 02/25/2009] [Indexed: 12/24/2022]
Abstract
In order to obtain a better molecular understanding of inhibitory role of tin metal in the verdoheme ring opening process, hydrolysis of three possibly six, five, and four coordinate verdoheme complexes of tin(IV) and (II) have been studied using DFT method. The results of calculations indicate that, in excellent accord with experimental reports, hydrolysis of different possibly coordinated tin(IV) and (II) verdohemes does not lead to the opening of the macrocycle. Contrary to iron and zinc verdohemes, in five and four coordinate verdoheme complexes of tin(IV) and (II), formation of open ring helical complexes of tin are unfavorable both thermodynamically and kinetically. In these pathways, coordination of hydroxide nucleophile to tin metal due to the highly charged, exclusive oxophilicity nature of the Sn center, and high affinity of Sn to increase coordination state are proposed responsible as inhibiting roles of tin via the ring opening. While, in saturated six coordinate tin(IV) and (II) verdoheme complexes the ring opening of tin verdohemes is possible thermodynamically, but it is not predicted to occur from a kinetics point of view. In the six coordinate pathway, tin plays no coordination role and direct addition of hydroxide nucleophile to the positive oxo-carbon centers and formation of closed ring hydroxy compounds is proposed for preventing the verdoheme ring opening. These key points and findings have been corroborated by the results obtained from atomic charge analysis, geometrical parameters, and molecular orbital calculations. In addition, the results of inhibiting ring opening reaction of tin verdoheme complexes could support the great interest of tin porphyrin analogues as pharmacologic means of chemoprevention of neonatal jaundice by the competitive inhibitory action of tin porphyrins on heme oxygenase.
Collapse
Affiliation(s)
- Mahdi D Davari
- Department of Chemistry, Faculty of Sciences, Shahid Beheshti University, Tehran, Iran
| | | | | | | |
Collapse
|
16
|
Bröring M, Köhler S, Link S, Burghaus O, Pietzonka C, Kelm H, Krüger HJ. Iron Chelates of 2,2′-Bidipyrrin: Stable Analogues of the Labile Iron Bilins. Chemistry 2008; 14:4006-16. [DOI: 10.1002/chem.200701919] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Jamaat PR, Safari N, Ghiasi M, Naghavi SSAD, Zahedi M. Noninnocent effect of axial ligand on the heme degradation process: a theoretical approach to hydrolysis pathway of verdoheme to biliverdin. J Biol Inorg Chem 2007; 13:121-32. [DOI: 10.1007/s00775-007-0308-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Accepted: 09/21/2007] [Indexed: 11/24/2022]
|
18
|
Wood TE, Thompson A. Advances in the chemistry of dipyrrins and their complexes. Chem Rev 2007; 107:1831-61. [PMID: 17430001 DOI: 10.1021/cr050052c] [Citation(s) in RCA: 504] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tabitha E Wood
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada
| | | |
Collapse
|
19
|
Gheidi M, Safari N, Bahrami H, Zahedi M. Theoretical investigations of the hydrolysis pathway of verdoheme to biliverdin. J Inorg Biochem 2006; 101:385-95. [PMID: 17197029 DOI: 10.1016/j.jinorgbio.2006.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 10/19/2006] [Accepted: 10/27/2006] [Indexed: 10/23/2022]
Abstract
Conversion of iron(II) verdoheme to iron biliverdin in the presence of OH(-) was investigated using B3LYP method. Both 3-21G and 6-31G* basis sets were employed for geometry optimization calculation as well as energy stabilization estimation. Calculation at 6-31G* level was found necessary for a correct spin state estimation of the iron complexes. Two possible pathways for the conversion of iron verdoheme to iron biliverdin were considered. In one path the iron was six-coordinate while in the other it was considered to be five-coordinate. In the six-coordinated pathway, the ground state of bis imidazole iron verdoheme is singlet while that for open chain iron biliverdin it is triplet state with 4.86 kcal/mol more stable than the singlet state. The potential energy surface suggests that a spin inversion take place during the course of reaction after TS. The ring opening process in the six-coordinated pathway is in overall -2.26 kcal/mol exothermic with a kinetic barrier of 9.76 kcal/mol. In the five-coordinated pathway the reactant and product are in the ground triplet state. In this path, hydroxyl ion attacks the iron center to produce a complex, which is only 1.59 kcal/mol more stable than when OH(-) directly attacks the macrocycle. The activation barrier for the conversion of iron hydroxy species to the iron biliverdin complex by a rebound mechanism is estimated to be 32.68 kcal/mol. Large barrier for rebound mechanism, small barrier of 4.18 kcal/mol for ring opening process of the hydroxylated macrocycle, and relatively same stabilities for complexes resulted by the attack of nucleophile to the iron and macrocycle indicate that five-coordinated pathway with direct attack of nucleophile to the 5-oxo position of macrocycle might be the path for the conversion of verdoheme to biliverdin.
Collapse
Affiliation(s)
- Mahin Gheidi
- Department of Chemistry, Faculty of Sciences, Shahid Beheshti University, Evin 19839-63113, Tehran, Iran
| | | | | | | |
Collapse
|
20
|
Bahrami H, Zahedi M, Safari N. Theoretical investigations of the reactivity of verdoheme analogues: opening of the planar macrocycle by amide, dimethyl amide, and hydroxide nucleophiles to form helical biliverdin type complexes. J Inorg Biochem 2006; 100:1449-61. [PMID: 16781778 DOI: 10.1016/j.jinorgbio.2006.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 04/17/2006] [Accepted: 04/17/2006] [Indexed: 11/13/2022]
Abstract
Nucleophilic addition reactions of NH(2)(-),NMe(2)(-) and OH(-) to a zinc(II) verdoheme complex have been investigated using B3LYP method. Results show that presence of zinc(II) ion in the center of macrocycle leads to an increase of positive charge on the carbon atoms adjacent to the oxygen in the zinc(II) verdoheme complex relative to the free 5-oxaporphyrin macrocycle. It has been determined that an intermediate is initially formed by nucleophilic attack to one of aforementioned carbon atoms. This intermediate is then directly converted to helical open-ring complex [Zn(II)(OEBNü)] or [Zn(II)(BNü)] by passing through a transition state. Even though the most positive center for the nucleophile to attack is the zinc ion of zinc(II) verdoheme, it has been shown that such addition does not lead to a stable intermediate. Thus the zinc atom has no coordination role in transferring the nucleophiles to the oxo-carbon, but it just has the effect of activating oxo-carbon for nucleophile addition. The following order of nucleophile strength has been obtained: NH(2)(-) > NMe(2)(-) > OH(-) NBO analysis has shown that interaction of nucleophile with the zinc ion of zinc(II) verdoheme complex decreases charge transfer of porphyrin ring to the zinc. This can be translated as an effective perturbation in the complex planar structure and thus an unstable intermediate. Even though the NBO analysis has demonstrated that bond strength of the oxo-carbon with the oxygen atom in the zinc(II) verdoheme is diminished when nucleophile has connected to the oxo-carbon, a relatively more stable intermediate is formed. Besides, it has been illustrated that molecular orbital calculations satisfy the NBO findings.
Collapse
Affiliation(s)
- Homayoon Bahrami
- Department of Chemistry, Faculty of Sciences, Shahid Beheshti University, Evin, 19839-63113, Tehran, Iran
| | | | | |
Collapse
|
21
|
Szterenberg L, Latos-Grazyński L, Wojaczyński J. Metallobiliverdin radicals--DFT studies. Chemphyschem 2003; 4:691-8. [PMID: 12901300 DOI: 10.1002/cphc.200200611] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Several aspects of the molecular and electronic structure of biliverdin derivatives have been studied using density functional theory (DFT). The calculations have been performed for complexes of trianion (BvO2)3- and dianion [BvO(OH)]2-, derived from two tautomeric forms of biliverdin, BvO2H3 and [BvO(OH)]H2, with redox innocent metal ions: lithium(I), zinc(II), and gallium(III). One-electron-oxidized and reduced forms of each complex (cation and anion radicals) have been also considered. The molecular structures of all species investigated are characterized by a helical arrangement of tetrapyrrolic ligands with the metal ion lying in the plane formed by the two central pyrrole rings. The spin density distribution in four types of metallobiliverdin radicals--[(BvO2.)Mn+]n-2,[[BvO(OH).]Mn+]n-1 (cation radicals),[(BvO2.)Mn+]n-4,[[BvO(OH).]Mn+]n-3 (anion radicals)--has been investigated. In general, the absolute values of spin density on meso carbon atoms were larger than for the beta-carbon atoms. Sign alteration of spin density has been found for meso positions, and also for the beta-carbon atoms of at least two pyrrole rings. The calculated spin density maps accounted for the essential NMR spectroscopic features of iron biliverdin derivatives, including the considerable isotropic shifts detected for the meso resonances and shift alteration at the meso and beta-positions.
Collapse
Affiliation(s)
- Ludmiła Szterenberg
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383 Wrocław, Poland
| | | | | |
Collapse
|