1
|
Dinda R, Garribba E, Sanna D, Crans DC, Costa Pessoa J. Hydrolysis, Ligand Exchange, and Redox Properties of Vanadium Compounds: Implications of Solution Transformation on Biological, Therapeutic, and Environmental Applications. Chem Rev 2025. [PMID: 39818783 DOI: 10.1021/acs.chemrev.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Vanadium is a transition metal with important industrial, technological, biological, and biomedical applications widespread in the environment and in living beings. The different reactions that vanadium compounds (VCs) undergo in the presence of proteins, nucleic acids, lipids and metabolites under mild physiological conditions are reviewed. In the environment vanadium is present naturally or through anthropogenic sources, the latter having an environmental impact caused by the dispersion of VCs in the atmosphere and aquifers. Vanadium has a versatile chemistry with interconvertible oxidation states, variable coordination number and geometry, and ability to form polyoxidovanadates with various nuclearity and structures. If a VC is added to a water-containing environment it can undergo hydrolysis, ligand-exchange, redox, and other types of changes, determined by the conditions and speciation chemistry of vanadium. Importantly, the solution is likely to differ from the VC introduced into the system and varies with concentration. Here, vanadium redox, hydrolytic and ligand-exchange chemical reactions, the influence of pH, concentration, salt, specific solutes, biomolecules, and VCs on the speciation are described. One of our goals with this work is highlight the need for assessment of the VC speciation, so that beneficial or toxic species might be identified and mechanisms of action be elucidated.
Collapse
Affiliation(s)
- Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Debbie C Crans
- Department Chemistry and Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
2
|
Yuan X, Mi X, Liu C, Zhang Z, Wei X, Wang D, Tan X, Xiang R, Xie W, Zhang Y. Ultrasensitive iodide detection in biofluids based on hot electron-induced reduction of p-Nitrothiophenol on Au@Ag core-shell nanoparticles. Biosens Bioelectron 2023; 235:115365. [PMID: 37196434 DOI: 10.1016/j.bios.2023.115365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Surveillance of iodine intake is important because either inadequate or excessive amount of iodine may lead to thyroid malfunctions. Herein, we report a method for fast iodide quantification based on a plasmonic hot electron-driven chemical reaction, which occurs on Au@Ag core-shell nanoparticles (NPs) coated with p-nitrothiophenol (PNTP) molecules. Upon resonant light illumination, hot electron-hole pairs are generated in the NPs. The hot holes capture iodide ions (I-) and form AgI which decomposes under light; while the hot electrons are shifted to the electron orbital (LUMO) of PNTP and trigger its reduction to p-aminothiophenol (PATP). By measuring characteristic surface-enhanced Raman spectroscopic (SERS) peaks of PNTP and PATP, the concentration of I- in water can be quantitatively determined, with a linear response in the 0.5-20 μM range and a detection limit of 0.30 μM. The Au@Ag nanosensor was then applied for I- detection in various biofluids including urine, serum and saliva, exhibiting superior detection sensitivity and high selectivity. This sensing assay requires a small sample volume of ∼10 μL and completes the entire detection process in ∼2 min, and therefore holds significant potential for application in point-of-care settings.
Collapse
Affiliation(s)
- Xinxin Yuan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xue Mi
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zedong Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xianfeng Wei
- Department of Otolaryngology Head and Neck, Tianjin First Central Hospital, Tianjin Institute of Otolaryngology, Tianjin, 300071, China
| | - Dekun Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaoyue Tan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yuying Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
A family of amphiphilic dioxidovanadium(V) hydrazone complexes as potent carbonic anhydrase inhibitors along with anti-diabetic and cytotoxic activities. Biometals 2022; 35:499-517. [PMID: 35355153 DOI: 10.1007/s10534-022-00384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
Abstract
A family of dioxidovanadium(V) complexes (1-4) of the type [Na(H2O)x]+[VVO2(HL1-4)]- (x = 4, 4.5 and 7) where HL2- represents the dianionic form of 2-hydroxybenzoylhydrazone of 2-hydroxyacetophenone (H2L1, complex 1), 2-hydroxy-5-methylacetophenone (H2L2, complex 2), 2-hydroxy-5-methoxyacetophenone (H2L3, complex 3) and 2-hydroxy-5-chloroacetophenone (H2L4, complex 4), have been synthesized and characterized by analytical and spectral methods. These complexes exhibited the potential abilities to suppress the erythrocytes carbonic anhydrase enzymatic activity in type 1 and type 2 diabetic patients (in vitro), promising antidiabetic activity against T2 diabetic mice (in vivo). They also exhibited significant cytotoxic activity against cervical cancer (SiHa) cells (in vitro) as the IC50 value of complexes 1, 2 and 4 is substantially lower than the value found for cisplatin while that of 3 is comparable and follow the order: 4 < 1 < 2 < 3 and can kill the cells by apoptosis via the generation of reactive oxygen species (ROS). The complexes are soluble both in water and octanol media and also non-toxic at working concentrations. The antidiabetic activity of these four complexes follows the order: 4 > 2 > 1 > 3 while both the carbonic anhydrase and cytotoxic activity follow the order: 4 > 1 > 2 > 3 suggesting that complex 4, containing electron withdrawing Cl atom is the most reactive while 3 with electron donating OCH3 group is the least reactive species. The molecular docking study on hCA-I and hCA-II demonstrates that complexes interact via hydrogen bonding as well as different types of π-stacking.
Collapse
|
4
|
Shaik A, Kondaparthy V, Aveli R, Vijjulatha M, Sree Kanth S, Das Manwal D. Interaction of vanadium metal complexes with protein tyrosine phosphatase-1B enzyme along with identification of active site of enzyme by molecular modeling. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Kinetics of oxidation of antidiabetic drug metformin hydrochloride by vanadium(V) in acidic and micellar medium. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03664-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
6
|
Irving E, Tagalakis AD, Maeshima R, Hart SL, Eaton S, Lehtonen A, Stoker AW. The liposomal delivery of hydrophobic oxidovanadium complexes imparts highly effective cytotoxicity and differentiating capacity in neuroblastoma tumour cells. Sci Rep 2020; 10:16660. [PMID: 33028860 PMCID: PMC7542164 DOI: 10.1038/s41598-020-73539-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/15/2020] [Indexed: 12/31/2022] Open
Abstract
Oxidovanadium complexes with organic ligands are well known to have cytotoxic or differentiating capabilities against a range of cancer cell types. Their limited use in clinical testing though has resulted largely from uncertainties about the long-term toxicities of such complexes, due in part to the speciation to vanadate ions in the circulation. We hypothesised that more highly stable complexes, delivered using liposomes, may provide improved opportunities for oxidovanadium applications against cancer. In this study we sourced specifically hydrophobic forms of oxidovanadium complexes with the explicit aim of demonstrating liposomal encapsulation, bioavailability in cultured neuroblastoma cells, and effective cytotoxic or differentiating activity. Our data show that four ethanol-solubilised complexes with amine bisphenol, aminoalcohol bisphenol or salan ligands are equally or more effective than a previously used complex bis(maltolato)oxovanadium(V) in neuroblastoma cell lines. Moreover, we show that one of these complexes can be stably incorporated into cationic liposomes where it retains very good bioavailability, apparently low speciation and enhanced efficacy compared to ethanol delivery. This study provides the first proof-of-concept that stable, hydrophobic oxidovanadium complexes retain excellent cellular activity when delivered effectively to cancer cells with nanotechnology. This offers the improved prospect of applying oxidovanadium-based drugs in vivo with increased stability and reduced off-target toxicity.
Collapse
Affiliation(s)
- Elsa Irving
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Aristides D Tagalakis
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Department of Biology, Edge Hill University, Ormskirk, L39 4QP, UK
| | - Ruhina Maeshima
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Stephen L Hart
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Ari Lehtonen
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Department of Chemistry, University of Turku, 20014, Turun yliopisto, Finland
| | - Andrew W Stoker
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
7
|
Patel N, Prajapati A, Jadeja R, Patel R, Patel S, Gupta V, Tripathi I, Dwivedi N. Model investigations for vanadium-protein interactions: Synthesis, characterization and antidiabetic properties. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Pape VFS, May NV, Gál GT, Szatmári I, Szeri F, Fülöp F, Szakács G, Enyedy ÉA. Impact of copper and iron binding properties on the anticancer activity of 8-hydroxyquinoline derived Mannich bases. Dalton Trans 2019; 47:17032-17045. [PMID: 30460942 DOI: 10.1039/c8dt03088j] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The anticancer activity of 8-hydroxyquinolines relies on complex formation with redox active copper and iron ions. Here we employ UV-visible spectrophotometry and EPR spectroscopy to compare proton dissociation and complex formation processes of the reference compound 8-hydroxyquinoline (Q-1) and three related Mannich bases to reveal possible correlations with biological activity. The studied derivatives harbor a CH2-N moiety at position 7 linked to morpholine (Q-2), piperidine (Q-3), and chlorine and fluorobenzylamino (Q-4) substituents. Solid phase structures of Q-3, Q-4·HCl·H2O, [(Cu(HQ-2)2)2]·(CH3OH)2·Cl4·(H2O)2, [Cu(Q-3)2]·Cl2 and [Cu(HQ-4)2(CH3OH)]·ZnCl4·CH3OH were characterized by single-crystal X-ray diffraction analysis. In addition, the redox properties of the copper and iron complexes were studied by cyclic voltammetry, and the direct reaction with physiologically relevant reductants (glutathione and ascorbic acid) was monitored. In vitro cytotoxicity studies conducted with the human uterine sarcoma MES-SA/Dx5 cell line reveal the significant cytotoxicity of Q-2, Q-3, and Q-4 in the sub- to low micromolar range (IC50 values 0.2-3.3 μM). Correlation analysis of the anticancer activity and the metal binding properties of the compound series indicates that, at physiological pH, weaker copper(ii) and iron(iii) binding results in elevated toxicity (e.g.Q4: pCu = 13.0, pFe = 6.8, IC50 = 0.2 μM vs.Q1: pCu = 15.1, pFe = 13.0 IC50 = 2.5 μM). Although the studied 8-hydroxyquinolines preferentially bind copper(ii) over iron(iii), the cyclic voltammetry data revealed that the more cytotoxic ligands preferentially stabilize the lower oxidation state of the metal ions. A linear relationship between the pKa (OH) and IC50 values of the studied 8-hydroxyquinolines was found. In summary, we identify Q-4 as a potent and selective anticancer candidate with significant toxicity in drug resistant cells.
Collapse
Affiliation(s)
- Veronika F S Pape
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res 2019; 188:68-98. [PMID: 30350272 PMCID: PMC6373340 DOI: 10.1007/s12011-018-1540-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Eduardo Sánchez-Lara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Brenda L. Sanchez-Gaytan
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Jose Manuel Perez-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Enrique González-Vergara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| |
Collapse
|
10
|
Singh Ghadwal R, Mehrotra RC, Singh A. Preparation and Spectroscopic Characterisation of a Series of Heterobimetallic N-phenyldiethanolaminate-alkoxide Derivatives of Oxovanadium(V). JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.3184/0308234054506857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reaction of VO(OPri)3 with two equivalents of N-phenyldiethanolamine (PhDEAH2) yields a homometallic complex [VO(PhDEA)(PhDEAH)] 1, which reacts with a number of metal alkoxides to afford heterobimetallic oxovanadium(V) complexes of the types [VO(PhDEA)2{M(OR)n-1}] [where PhDEA = C6H5N(CH2CH2O–)2], [M =: Al (n = 3, R = Pri) 2; Al (n = 3, R = But) 3; Ti (n = 4, R = Pri) 4; Zr (n = 4, R = Pri) 5; Nb (n = 5, R = Pri) 6; Ta (n = 5, R = Pri) 7. The derivative [VO(PhDEA)(OSiPh3)] 8 has been prepared by the equimolar interaction of [VO(PhDEA)(OPri)] with Ph3SiOH. All of these complexes have been characterised by spectroscopic (IR; 1H, 13C, 27Al and 51V NMR) studies, elemental analyses, and molecular weight measurements. The derivative 2 has also been characterised by FAB mass spectral studies, which supports for its monomeric nature.
Collapse
Affiliation(s)
| | | | - Anirudh Singh
- Department of Chemistry, University of Rajasthan, Jaipur-302004, India
| |
Collapse
|
11
|
Ghosh T, Mondal B. A Study on the Electronic Effect of para-substituents in the Aryloxy Ring of the Hydrazone Ligands on the Vanadium Centre in the mixed-ligand [VIVO(ONO)(NN)] families. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.3184/030823407x227480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hyperfine coupling constant (Aıı) and the redox potential (E½) values of vanadium(IV) in its mixed-ligand hydrazone complexes [VIVO(L)(bipy)], 1–4 and [VIVO(L)(phen)], 5–8, [which have been synthesised from the reaction of VIVO(acac)2 with the hydrazone ligand H2L in the presence of equimolar amount of 2,2′-bipyridine (bipy) or 1,10-phenanthroline (phen) in methanol], exhibit a linear relationship with the Hammett constant (σ) of the para-substituents in the aryloxy ring of the hydrazone ligands.
Collapse
Affiliation(s)
- Tapas Ghosh
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata - 700118, India
| | - Bipul Mondal
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata - 700118, India
| |
Collapse
|
12
|
Kalniņa D, Levina A, Pei A, Gross KA, Lay PA. Synthesis, characterization and in vitro anti-cancer activity of vanadium-doped nanocrystalline hydroxyapatite. NEW J CHEM 2019. [DOI: 10.1039/c9nj03406d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanocrystalline V(v)-doped hydroxyapatite and its reduced analogue (V(v) and V(iv) mixture) show promising in vitro cytotoxicity against cultured human bone cancer cells.
Collapse
Affiliation(s)
- Daina Kalniņa
- Faculty of Materials Science and Applied Chemistry
- Riga Technical University
- Riga LV1658
- Latvia
- School of Chemistry
| | - Aviva Levina
- School of Chemistry
- University of Sydney
- Sydney
- Australia
| | - Alexander Pei
- School of Chemistry
- University of Sydney
- Sydney
- Australia
- Exchange Student from Boston University
| | - Kārlis Agris Gross
- Faculty of Materials Science and Applied Chemistry
- Riga Technical University
- Riga LV1658
- Latvia
| | - Peter A. Lay
- School of Chemistry
- University of Sydney
- Sydney
- Australia
- Sydney Analytical
| |
Collapse
|
13
|
Kurbah SD, Syiemlieh I, Lal RA. Colorimetric detection of hydrogen peroxide by dioxido-vanadium(V) complex containing hydrazone ligand: synthesis and crystal structure. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171471. [PMID: 29657759 PMCID: PMC5882683 DOI: 10.1098/rsos.171471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
Dioxido-vanadium(V) complex has been synthesized in good yield, the complex was characterized by IR, UV-visible and 1H NMR spectroscopy. Single crystal X-ray crystallography techniques were used to assign the structure of the complex. Complex crystallized with monoclinic P21/c space group with cell parameters a (Å) = 39.516(5), b (Å) = 6.2571(11), c (Å) = 17.424(2), α (°) = 90, β (°) = 102.668(12) and γ (°) = 90. The hydrazone ligand is coordinate to metal ion in tridentate fashion through -ONO- donor atoms forming a distorted square pyramidal geometry around the metal ion.
Collapse
Affiliation(s)
| | | | - Ram A. Lal
- Author for correspondence: Ram A. Lal e-mail:
| |
Collapse
|
14
|
Kurbah SD, Kumar A, Syiemlieh I, Lal RA. Pi-pi interaction and hydrogen bonding in crystal structure of vanadium(V) complex containing mono hydrazone ligand: Synthesis and protein binding studies. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Scior T, Guevara-Garcia JA, Do QT, Bernard P, Laufer S. Why Antidiabetic Vanadium Complexes are Not in the Pipeline of "Big Pharma" Drug Research? A Critical Review. Curr Med Chem 2016; 23:2874-2891. [PMID: 26997154 PMCID: PMC5068500 DOI: 10.2174/0929867323666160321121138] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/18/2022]
Abstract
Public academic research sites, private institutions as well as small companies have made substantial contributions to the ongoing development of antidiabetic vanadium compounds. But why is this endeavor not echoed by the globally operating pharmaceutical companies, also known as "Big Pharma"? Intriguingly, today's clinical practice is in great need to improve or replace insulin treatment against Diabetes Mellitus (DM). Insulin is the mainstay therapeutically and economically. So, why do those companies develop potential antidiabetic drug candidates without vanadium (vanadium- free)? We gathered information about physicochemical and pharmacological properties of known vanadium-containing antidiabetic compounds from the specialized literature, and converted the data into explanations (arguments, the "pros and cons") about the underpinnings of antidiabetic vanadium. Some discoveries were embedded in chronological order while seminal reviews of the last decade about the Medicinal chemistry of vanadium and its history were also listed for further understanding. In particular, the concepts of so-called "noncomplexed or free" vanadium species (i.e. inorganic oxido-coordinated species) and "biogenic speciation" of antidiabetic vanadium complexes were found critical and subsequently documented in more details to answer the question.
Collapse
Affiliation(s)
- Thomas Scior
- Department of Pharmacy, Faculty of Chemical Sciences, University Benemerita Universidad Autonoma de Puebla, P.O. Box: 72570, City of Puebla, Country Mexico.
| | | | | | | | | |
Collapse
|
16
|
Levina A, McLeod AI, Pulte A, Aitken JB, Lay PA. Biotransformations of Antidiabetic Vanadium Prodrugs in Mammalian Cells and Cell Culture Media: A XANES Spectroscopic Study. Inorg Chem 2015; 54:6707-18. [PMID: 25906315 PMCID: PMC4511291 DOI: 10.1021/ic5028948] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The antidiabetic activities of vanadium(V)
and -(IV) prodrugs are determined by their ability to release active
species upon interactions with components of biological media. The
first X-ray absorption spectroscopic study of the reactivity of typical
vanadium (V) antidiabetics, vanadate ([VVO4]3–, A) and a vanadium(IV) bis(maltolato)
complex (B), with mammalian cell cultures has been performed
using HepG2 (human hepatoma), A549 (human lung carcinoma), and 3T3-L1
(mouse adipocytes and preadipocytes) cell lines, as well as the corresponding
cell culture media. X-ray absorption near-edge structure data were
analyzed using empirical correlations with a library of model vanadium(V),
-(IV), and -(III) complexes. Both A and B ([V] = 1.0 mM) gradually converged into similar mixtures of predominantly
five- and six-coordinate VV species (∼75% total
V) in a cell culture medium within 24 h at 310 K. Speciation of V
in intact HepG2 cells also changed with the incubation time (from
∼20% to ∼70% VIV of total V), but it was
largely independent of the prodrug used (A or B) or of the predominant V oxidation state in the medium. Subcellular
fractionation of A549 cells suggested that VV reduction
to VIV occurred predominantly in the cytoplasm, while accumulation
of VV in the nucleus was likely to have been facilitated
by noncovalent bonding to histone proteins. The nuclear VV is likely to modulate the transcription process and to be ultimately
related to cell death at high concentrations of V, which may be important
in anticancer activities. Mature 3T3-L1 adipocytes (unlike for preadipocytes)
showed a higher propensity to form VIV species, despite
the prevalence of VV in the medium. The distinct V biochemistry
in these cells is consistent with their crucial role in insulin-dependent
glucose and fat metabolism and may also point to an endogenous role
of V in adipocytes. The first detailed
speciation study of typical antidiabetic vanadium(V/IV) complexes
in mammalian cell culture systems showed that the complexes decomposed
rapidly in cell culture media and were further metabolized by the
cells, which included interconversions of VV and VIV species.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Andrew I McLeod
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anna Pulte
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jade B Aitken
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
17
|
Kremer LE, McLeod AI, Aitken JB, Levina A, Lay PA. Vanadium(V) and -(IV) complexes of anionic polysaccharides: Controlled release pharmaceutical formulations and models of vanadium biotransformation products. J Inorg Biochem 2015; 147:227-34. [PMID: 25958254 DOI: 10.1016/j.jinorgbio.2015.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/20/2015] [Accepted: 03/28/2015] [Indexed: 02/01/2023]
Abstract
Uncontrolled reactions in biological media are a main obstacle for clinical translation of V-based anti-diabetic or anti-cancer pro-drugs. We investigated the use of controlled-release pharmaceutical formulations to ameliorate this issue with a series of V(V) and (IV) complexes of anionic polysaccharides. Carboxymethyl cellulose, xanthan gum, or alginic acid formulations were prepared by the reactions of [VO4](3-) with one or two molar equivalents of biological reductants, L-ascorbic acid (AA) or L-cysteine (Cys), in the presence of excess polysaccharide at pH~7 or pH~4. XANES studies with the use of a previously developed library of model V(V), V(IV) and V(III) complexes showed that reactions in the presence of AA led mostly to the mixtures of five- and six-coordinate V(IV) species, while the reactions in the presence of Cys led predominantly to the mixtures of five- and six-coordinate V(V) species. The XANES spectra of some of these samples closely matched those reported previously for [VO4](3-) biotransformation products in isolated blood plasma, red blood cells, or cultured adipocytes, which supports the hypothesis that modified polysaccharides are major binders of V(V) and V(IV) in biological systems. Studies by EPR spectroscopy suggested predominant V(IV)-carboxylato binding in complexes with polysaccharides. One of the isolated products (a V(IV)-alginato complex) showed selective release of low-molecular-mass V species at pH~8, but not at pH~2, which makes it a promising lead for the development of V-containing formulations for oral administration that are stable in the stomach, but release the active ingredient in the intestines.
Collapse
Affiliation(s)
- Lauren E Kremer
- School of Chemistry The University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew I McLeod
- School of Chemistry The University of Sydney, Sydney, NSW 2006, Australia
| | - Jade B Aitken
- School of Chemistry The University of Sydney, Sydney, NSW 2006, Australia
| | - Aviva Levina
- School of Chemistry The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter A Lay
- School of Chemistry The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
18
|
Synthesis and characterization of the anticancer and metal binding properties of novel pyrimidinylhydrazone derivatives. J Inorg Biochem 2015; 144:18-30. [DOI: 10.1016/j.jinorgbio.2014.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022]
|
19
|
Levina A, McLeod AI, Kremer LE, Aitken JB, Glover CJ, Johannessen B, Lay PA. Reactivity-activity relationships of oral anti-diabetic vanadium complexes in gastrointestinal media: an X-ray absorption spectroscopic study. Metallomics 2014; 6:1880-8. [PMID: 25100248 DOI: 10.1039/c4mt00146j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The reactions of oral V(V/IV) anti-diabetic drugs within the gastrointestinal environment (particularly in the presence of food) are a crucial factor that affects their biological activities, but to date these have been poorly understood. In order to build up reactivity-activity relationships, the first detailed study of the reactivities of typical V-based anti-diabetics, Na3V(V)O4 (A), [V(IV)O(OH2)5](SO4) (B), [V(IV)O(ma)2] (C, ma = maltolato(-)) and (NH4)[V(V)(O)2(dipic)] (D, dipic = pyridine-2,5-dicarboxylato(2-)) with simulated gastrointestinal (GI) media in the presence or absence of food components has been performed by the use of XANES (X-ray absorption near edge structure) spectroscopy. Changes in speciation under conditions that simulate interactions in the GI tract have been discerned using correlations of XANES parameters that were based on a library of model V(V), V(IV), and V(III) complexes for preliminary assessment of the oxidation states and coordination numbers. More detailed speciation analyses were performed using multiple linear regression fits of XANES from the model complexes to XANES obtained from the reaction products from interactions with the GI media. Compounds B and D were relatively stable in the gastric environment (pH ∼ 2) in the absence of food, while C was mostly dissociated, and A was converted to [V10O28](6-). Sequential gastric and intestinal digestion in the absence of food converted A, B and D to poorly absorbed tetrahedral vanadates, while C formed five- or six-coordinate V(V) species where the maltolato ligands were likely to be partially retained. XANES obtained from gastric digestion of A-D in the presence of typical food components converged to that of a mixture of V(IV)-aqua, V(IV)-amino acid and V(III)-aqua complexes. Subsequent intestinal digestion led predominantly to V(IV) complexes that were assigned as citrato or complexes with 2-hydroxyacidato donor groups from other organic compounds, including certain carbohydrates. The absence of strong reductants (such as ascorbate) in the food increased the V(V) component in gastrointestinal digestion products. These results can be used to predict the oral bioavailability of various types of V(V/IV) anti-diabetics, and the effects of taking such drugs with food.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | | | | | |
Collapse
|
20
|
Jakusch T, Enyedy ÉA, Kozma K, Paár Z, Bényei A, Kiss T. Vanadate complexes of 3-hydroxy-1,2-dimethyl-pyridinone: Speciation, structure and redox properties. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2013.12.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Horton DC, VanDerveer D, Krzystek J, Telser J, Pittman T, Crans DC, Holder AA. Spectroscopic Characterization of L-ascorbic Acid-induced Reduction of Vanadium(V) Dipicolinates: Formation of Vanadium(III) and Vanadium(IV) Complexes from Vanadium(V) Dipicolinate Derivatives. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2013.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Sutradhar M, Roy Barman T, Ghosh S, Drew MG. Synthesis and characterization of mixed-ligand complexes using a precursor mononuclear oxidovanadium(V) complex derived from a tridentate salicylhydrazone oxime ligand. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Sakurai H. The discovery of vanadyl and zinc complexes for treating diabetes and metabolic syndromes. Expert Opin Drug Discov 2013; 2:873-87. [PMID: 23489004 DOI: 10.1517/17460441.2.6.873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The incidence of diabetes mellitus has increased over the decades because of lifestyle changes. The number of people with diabetes mellitus worldwide is expected to increase from 150 million to 220 million by 2010 and to 300 million by 2025. There are two main types of diabetes mellitus. Type 1 diabetes mellitus is due to the autoimmune-mediated destruction of pancreatic β cells, resulting in absolute insulin deficiency; the patients require exogenous insulin injections. Type 2 is characterized by insulin resistance and abnormal insulin secretion and the patients require exercise, diet control and/or oral hypoglycemics. However, each treatment has some adverse effects, including physical burden, formation of self-antibodies for insulin injections, the severe side effects of hypoglycemics and the discontinuation of insulin synthesis in the pancreas. To overcome these adverse effects and replace the use of these agents, the author attempted to develop new antidiabetic agents with novel structures and mechanisms. This review focuses on the authors' recent development of vanadium and zinc complexes for antidiabetic and antimetabolic syndromes.
Collapse
Affiliation(s)
- Hiromu Sakurai
- Kyoto Pharmaceutical University, Department of Analytical and Bioinorganic Chemistry, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
24
|
Chaves S, Canário S, Carrasco MP, Mira L, Santos MA. Hydroxy(thio)pyrone and hydroxy(thio)pyridinone iron chelators: Physico-chemical properties and anti-oxidant activity. J Inorg Biochem 2012; 114:38-46. [DOI: 10.1016/j.jinorgbio.2012.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
|
25
|
Synthesis of a mononuclear oxidovanadium(V) complex by bridge-splitting of the corresponding binuclear precursor. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Sanna D, Buglyó P, Bíró L, Micera G, Garribba E. Coordinating Properties of Pyrone and Pyridinone Derivatives, Tropolone and Catechol toward the VO2+ Ion: An Experimental and Computational Approach. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201101249] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Islam MN, Kumbhar AA, Kumbhar AS, Zeller M, Butcher RJ, Dusane MB, Joshi BN. Bis(maltolato)vanadium(III)-Polypyridyl Complexes: Synthesis, Characterization, DNA Cleavage, and Insulin Mimetic Activity. Inorg Chem 2010; 49:8237-46. [DOI: 10.1021/ic9025359] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Matthias Zeller
- Department of Chemistry, Youngstown State University, Youngstown, Ohio 44555
| | | | - Menakshi Bhat Dusane
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune-411007, India
| | - Bimba N. Joshi
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune-411007, India
| |
Collapse
|
28
|
Synthesis, structure and solution chemistry of dioxidovanadium(V) complexes with a family of hydrazone ligands. Evidence of formation of centrosymmetric dimers via H-bonds in the solid state. Inorganica Chim Acta 2010. [DOI: 10.1016/j.ica.2010.03.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Advances in research on the accumulation, redox behavior, and function of vanadium in ascidians. Biomol Concepts 2010; 1:97-107. [DOI: 10.1515/bmc.2010.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe discovery of high levels of vanadium-containing compounds in ascidian blood cells goes back to 1911. Ascidians, which are also known as tunicates or sea squirts, belong to a subphylum of the Chordata, between the vertebrates and invertebrates. This discovery attracted the attention of an interdisciplinary group of chemists, physiologists, and biochemists, in part because of interest in the possible role of vanadium in oxygen transport as a prosthetic group in respiratory pigments, which was later shown not to be such a role, and in part because of the fact that high levels of vanadium were unknown in other organisms. The intracellular concentration of vanadium in some ascidian species can be as high as 350 mm, which is 107times that in seawater. Vanadium ions, which are thought to be present in the +5 oxidation state in seawater, are reduced to the +3 oxidation state via the +4 oxidation state and are stored in the vacuoles of vanadium-containing cells called vanadocytes, where high levels of protons and sulfate ions are also found. Recently, many proteins and genes that might be involved in the accumulation and reduction of vanadium have been isolated. In this review, we not only trace the history of vanadium research but also describe recent advances in our understanding of the field from several viewpoints: (i) vanadium-accumulating blood cells, (ii) the energetics of vanadium accumulation, (iii) the redox mechanism of vanadium, (iv) the possible role of sulfate, and (v) the physiological roles of vanadium.
Collapse
|
30
|
Chaves S, Jelic R, Mendonça C, Carrasco M, Yoshikawa Y, Sakurai H, Santos MA. Complexes of hydroxy(thio)pyrone and hydroxy(thio)pyridinone with Zn(II) and Mo(VI). Thermodynamic stability and insulin-mimetic activity. Metallomics 2009; 2:220-7. [PMID: 21069160 DOI: 10.1039/b914169c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of metal-containing pharmaceuticals as insulin-mimetics has been the object of recent worldwide research. We have examined a series of zinc(II) and molybdenum(VI) complexes with model O,S-donor ligands (thiomaltol and 1,2-dimethyl-3-hydroxypyridine-4-thione (DMHTP)) and the corresponding O,O-analogues (maltol and DMHP) for their insulin-mimetic activity. Aimed at getting structure-activity relationships, some physical-chemical properties were also studied, such as metal-complex formation, speciation at different pH conditions and ligand lipophilicity. The Zn-complexes exhibit considerably higher insulin-mimetic activity than the corresponding Mo-analogues. Particularly, the bis(thiomaltolato)zinc(II) complex reveals a very high activity, ascribed to the effect of the thione π character and to the soft nature of the sulfur donor atom enhancing the Zn(II)-ligand affinity and the ligand/complex lipophilicity, two determinant parameters for delivering the metal-drug into the cells. Hence, these preliminary studies indicate that the Zn(thiomaltol)₂ complex can be considered a potential drug candidate for treatment of diabetes mellitus, upon in vivo evaluations.
Collapse
Affiliation(s)
- Sílvia Chaves
- Centro de Química Estrutural, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
31
|
Liboiron BD. Insulin-Enhancing Vanadium Pharmaceuticals: The Role of Electron Paramagnetic Resonance Methods in the Evaluation of Antidiabetic Potential. HIGH RESOLUTION EPR 2009. [DOI: 10.1007/978-0-387-84856-3_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
32
|
Chemistry of mixed-ligand methoxy bonded oxidovanadium(V) complexes with a family of hydrazone ligands containing VO3+ core and their substituent controlled methoxy-bridged dimeric forms. Polyhedron 2008. [DOI: 10.1016/j.poly.2008.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Li M, Ding W, Baruah B, Crans DC, Wang R. Inhibition of protein tyrosine phosphatase 1B and alkaline phosphatase by bis(maltolato)oxovanadium (IV). J Inorg Biochem 2008; 102:1846-53. [PMID: 18728000 DOI: 10.1016/j.jinorgbio.2008.06.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 06/01/2008] [Accepted: 06/05/2008] [Indexed: 11/25/2022]
Abstract
Vanadate has been recognized as a specific and potent phosphatase inhibitor since its structure is similar to that of phosphate. In this study, we measured the inhibition of glutathione S-transferase-tagged protein tyrosine phosphatase 1B (GST-PTP1B) and alkaline phosphatase (ALP) by the insulin enhancing compounds, bis(maltolato)oxovanadium(IV) (BMOV). The results showed that the activity of GST-PTP1B was reversibly inhibited by solutions of BMOV with an IC(50) value of 0.86+/-0.02 microM. Steady state kinetic studies showed that inhibition of GST-PTP1B by BMOV was of a mixed competitive and noncompetitive type. In addition, incubation of GST-PTP1B with BMOV showed a time-dependent biphasic inactivation of the protein. On the other hand, the inhibitory behavior of BMOV on ALP activity was reversible and competitive with an IC(50) value of 32.1+/-0.6 microM. Incubation with BMOV did not show biphasic inactivation of ALP. The reversible inhibition of GST-PTP1B by BMOV is more potent than that of ALP, but solutions of BMOV inhibited both enzymes. This data support the suggestion that mechanisms for the inhibitory effects of BMOV on GST-PTP1B and ALP are very different.
Collapse
Affiliation(s)
- Ming Li
- College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | | | |
Collapse
|
34
|
Dinda R, Sengupta P, Sutradhar M, Mak TCW, Ghosh S. Solution Study of a Structurally Characterized Monoalkoxo-Bound Monooxo-Vanadium(V) Complex: Spontaneous Generation of the Corresponding Oxobridged Divanadium(V,V) Complex and its Electroreduction to a Mixed-Valence Species in Solution. Inorg Chem 2008; 47:5634-40. [DOI: 10.1021/ic702172p] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rupam Dinda
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032, India, Department of Chemistry, NIT, Rourkela-769008, Orissa, India, Department of Chemistry, Fergusson College, S. C. Road, Pune-411004, India, Department of Chemistry, University of Calcutta, University College of Science; 92, Acharya Prafulla Chandra Road, Kolkata 700 009, India, and Department of Chemistry, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People’s Republic of
| | - Parbati Sengupta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032, India, Department of Chemistry, NIT, Rourkela-769008, Orissa, India, Department of Chemistry, Fergusson College, S. C. Road, Pune-411004, India, Department of Chemistry, University of Calcutta, University College of Science; 92, Acharya Prafulla Chandra Road, Kolkata 700 009, India, and Department of Chemistry, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People’s Republic of
| | - Manas Sutradhar
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032, India, Department of Chemistry, NIT, Rourkela-769008, Orissa, India, Department of Chemistry, Fergusson College, S. C. Road, Pune-411004, India, Department of Chemistry, University of Calcutta, University College of Science; 92, Acharya Prafulla Chandra Road, Kolkata 700 009, India, and Department of Chemistry, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People’s Republic of
| | - Thomas C. W. Mak
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032, India, Department of Chemistry, NIT, Rourkela-769008, Orissa, India, Department of Chemistry, Fergusson College, S. C. Road, Pune-411004, India, Department of Chemistry, University of Calcutta, University College of Science; 92, Acharya Prafulla Chandra Road, Kolkata 700 009, India, and Department of Chemistry, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People’s Republic of
| | - Saktiprosad Ghosh
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032, India, Department of Chemistry, NIT, Rourkela-769008, Orissa, India, Department of Chemistry, Fergusson College, S. C. Road, Pune-411004, India, Department of Chemistry, University of Calcutta, University College of Science; 92, Acharya Prafulla Chandra Road, Kolkata 700 009, India, and Department of Chemistry, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People’s Republic of
| |
Collapse
|
35
|
Zhai F, Wang X, Li D, Zhang H, Li R, Song L. Synthesis and biological evaluation of decavanadate Na4Co(H2O)6V10O28.18H2O. Biomed Pharmacother 2008; 63:51-5. [PMID: 18378419 DOI: 10.1016/j.biopha.2008.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Accepted: 01/10/2008] [Indexed: 10/22/2022] Open
Abstract
We have reported the synthesis and biological evaluation of a decavanadate Na(4)Co(H(2)O)(6)V(10)O(28).18H(2)O (CoV(10)) designed as a potential antitumoral agent. The human cancer cell lines SMMC-7721 (liver cancer) and SK-OV-3 (ovary cancer) were tested for their viability by the MTT method in vitro, which showed that the compound exhibited a remarkable activity against two cell lines with IC(50) values smaller than 0.24 microg/mL, 0.32 microg/mL, respectively. CoV(10) showed the tumor growth suppression for Hep-A-22 (mice liver cancer) in tumor bearing mice in vivo. In addition, using flow cytometry analysis, the ratio of apoptotic cells was up to 8.33% with treatment of CoV(10) at 1.56 microg/mL after 30 min, suggesting that the antitumoral activity of CoV(10) comes from the activation of the apoptotic pathway.
Collapse
Affiliation(s)
- Fengying Zhai
- Key laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, PR China
| | | | | | | | | | | |
Collapse
|
36
|
Chaves S, Gil M, Canário S, Jelic R, Romão MJ, Trincão J, Herdtweck E, Sousa J, Diniz C, Fresco P, Santos MA. Biologically relevant O,S-donor compounds. Synthesis, molybdenum complexation and xanthine oxidase inhibition. Dalton Trans 2008:1773-82. [DOI: 10.1039/b717172b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Islam MK, Tsuboya C, Kusaka H, Aizawa SI, Ueki T, Michibata H, Kanamori K. Reduction of vanadium(V) to vanadium(IV) by NADPH, and vanadium(IV) to vanadium(III) by cysteine methyl ester in the presence of biologically relevant ligands. Biochim Biophys Acta Gen Subj 2007; 1770:1212-8. [PMID: 17574763 DOI: 10.1016/j.bbagen.2007.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 04/18/2007] [Accepted: 05/09/2007] [Indexed: 11/23/2022]
Abstract
To better understand the mechanism of vanadium reduction in ascidians, we examined the reduction of vanadium(V) to vanadium(IV) by NADPH and the reduction of vanadium(IV) to vanadium(III) by L-cysteine methyl ester (CysME). UV-vis and electron paramagnetic resonance spectroscopic studies indicated that in the presence of several biologically relevant ligands vanadium(V) and vanadium(IV) were reduced by NADPH and CysME, respectively. Specifically, NADPH directly reduced vanadium(V) to vanadium(IV) with the assistance of ligands that have a formation constant with vanadium(IV) of greater than 7. Also, glycylhistidine and glycylaspartic acid were found to assist the reduction of vanadium(IV) to vanadium(III) by CysME.
Collapse
Affiliation(s)
- Mohammad K Islam
- Department of Chemistry, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Synthesis and characterization of some oxovanadium(V) complexes with internally functionallized oximes. Crystal and molecular structure of heptacoordinated [VOCl{ON=C(CH3) (C4H3S-2)}2] · CH3OH. TRANSIT METAL CHEM 2007. [DOI: 10.1007/s11243-007-0182-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Synthesis, structure, solution chemistry and the electronic effect of para substituents on the vanadium center in a family of mixed-ligand [VVO(ONO)(ON)] complexes. Inorganica Chim Acta 2007. [DOI: 10.1016/j.ica.2006.10.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Sharma V, Sharma V, Bohra R, Drake JE, Hursthouse MB, Light ME. Synthesis and characterization of some oxovanadium(V) complexes with internally functionalized oximes: Crystal and molecular structures of heptacoordinated [VO{ONC(CH3)(C4H3O-2)}3] and [VO{ONC(CH3)(C4H3S-2)}3]·0.5C6H6. Inorganica Chim Acta 2007. [DOI: 10.1016/j.ica.2006.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Ghosh T, Mondal B, Patra R. A study on the electronic effect of para substituents in the aryloxy ring of the hydrazone ligands on the vanadium centre in a family of mixed-ligand [VVO(ONO)(OO)] complexes. TRANSIT METAL CHEM 2007. [DOI: 10.1007/s11243-007-0191-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
|
43
|
Mies KA, Wirgau JI, Crumbliss AL. Ternary Complex Formation Facilitates a Redox Mechanism for Iron Release from a Siderophore. Biometals 2006; 19:115-26. [PMID: 16718598 DOI: 10.1007/s10534-005-4342-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 10/21/2005] [Indexed: 10/24/2022]
Abstract
While the naturally occurring reducing agents glutathione (GSH) and ascorbate (H2A) alone are ineffective at reducing iron(III) sequestered by the siderophore ferrioxamine B, the addition of an iron(II) chelator, sulfonated bathophenanthroline (BPDS), facilitates reduction by either reducing agent. A mechanism is described in which a ternary complex is formed between ferrioxamine B and BPDS in a rapidly established pre-equilibrium step, which is followed by rate limiting reduction of the ternary complex by glutathione or ascorbate. Spectral, thermodynamic, and kinetic evidence are given for ternary complex formation. Ascorbate was found to be slightly more efficient at reducing the ternary complex than glutathione (k4=2.1 x 10(-3) M(-1) s(-1) and k4=6.3 x 10(-4) M(-1) s(-1), respectively) at pH 7. Reduction is followed by a rapid ligand exchange step where iron is released from ferrioxamine B to form tris-(BPDS)iron(II). The implications of these results for siderophore mediated iron transport and release are discussed.
Collapse
Affiliation(s)
- Kassy A Mies
- Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
| | | | | |
Collapse
|
44
|
Wilkins PC, Johnson MD, Holder AA, Crans DC. Reduction of Vanadium(V) byl-Ascorbic Acid at Low and Neutral pH: Kinetic, Mechanistic, and Spectroscopic Characterization. Inorg Chem 2006; 45:1471-9. [PMID: 16471958 DOI: 10.1021/ic050749g] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
L-Ascorbic acid interacts with vanadium(V) over the pH range of 0.4-7.0 to form three different coordination complexes. Both inner- and outer-sphere electron-transfer pathways are proposed to form vanadium(IV) complexes with L-ascorbate or dehydroascorbate, respectively. Effects of the pH on the coordination of L-ascorbic acid to the vanadium(V) center were observed and are presumably related to the speciation of the vanadium(V) ion. Three vanadium(IV) complexes were observed using ambient-temperature electron paramagnetic resonance spectroscopy. Two of these complexes are proposed to be vanadium(IV) L-ascorbate complexes, and one is consistent with a vanadium(IV) dehydroascorbic acid complex proposed earlier. These reduction reactions will occur under physiological conditions and could be important to the reduction of vanadium(V)-containing coordination complexes used as insulin-enhancing agents for treatment of diabetes.
Collapse
Affiliation(s)
- Patricia C Wilkins
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, 88003, USA
| | | | | | | |
Collapse
|
45
|
Ghosh T, Roy A, Bhattacharya S, Banerjee S. A family of mixed-ligand oxovanadium(V) complexes incorporating tridentate ONO donor hydrazone ligands derived from acetylhydrazide and 2-hydroxybenzaldehyde/2-hydroxyacetophenone. TRANSIT METAL CHEM 2005. [DOI: 10.1007/s11243-005-0727-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Monga V, Patrick BO, Orvig C. Group 13 and Lanthanide Complexes with Mixed O,S Anionic Ligands Derived from Maltol. Inorg Chem 2005; 44:2666-77. [PMID: 15819552 DOI: 10.1021/ic048693y] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Four mixed O,S binding ligand precursors derived from maltol (3-hydroxy-2-methyl-4-pyrone) have been chelated to gallium(III), indium(III), and lanthanide(III) ions to yield a series of metal complexes. The four ligand precursors include two pyranthiones, 3-hydroxy-2-methyl-4-pyranthione, commonly known as thiomaltol (Htma), and 2-ethyl-3-hydroxy-4-pyranthione, commonly known as ethylthiomaltol (Hetma), and two pyridinethiones, 3-hydroxy-2-methyl-4(H)-pyridinethione (Hmppt) and 3-hydroxy-1,2-dimethyl-4-pyridinethione (Hdppt). Dimeric forms of the pyridinethiones, Hmppt dimer and Hdppt dimer, were also isolated and characterized. Complete characterization of the monomeric organic compounds is reported including acidity constants and crystal structures of Htma, Hetma, and Hdppt dimer. Reacting the four monomeric ligand precursors with Ga(3+) and In(3+) ions yielded new tris(bidentate ligand) complexes. X-ray-quality crystals of the fac isomer of Ga(tma)(3) were also obtained. New complexes with a range of lanthanides (Ln(3+)) were also synthesized with the two pyranthiones, Htma and Hetma. The synthesis reactions yielded complexes of the type LnL(3).xH(2)O and LnL(2)(OH).xH(2)O, as indicated by elemental analysis and spectroscopic evidence such as mass spectral data and IR and NMR spectra.
Collapse
Affiliation(s)
- Vishakha Monga
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | | | | |
Collapse
|
47
|
Noblía P, Vieites M, Parajón-Costa BS, Baran EJ, Cerecetto H, Draper P, González M, Piro OE, Castellano EE, Azqueta A, López de Ceráin A, Monge-Vega A, Gambino D. Vanadium(V) complexes with salicylaldehyde semicarbazone derivatives bearing in vitro anti-tumor activity toward kidney tumor cells (TK-10): crystal structure of [VVO2(5-bromosalicylaldehyde semicarbazone)]. J Inorg Biochem 2005; 99:443-51. [PMID: 15621276 DOI: 10.1016/j.jinorgbio.2004.10.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 09/29/2004] [Accepted: 10/18/2004] [Indexed: 11/28/2022]
Abstract
As a contribution to the development of novel vanadium complexes with pharmacologically interesting moieties, new dioxovanadium(V) semicarbazone complexes with the formula cis-VO(2)L, where L=5-bromosalicylaldehyde semicarbazone and 2-hydroxynaphtalen-1-carboxaldehyde semicarbazone have been synthesized and characterized by (1)H and (13)C NMR, Raman and FTIR spectroscopies. Results were compared with those previously reported for other three analogous complexes of this series. The five complexes were tested in three different human tumor cell lines for bioactivity as potential anti-tumor agents, showing selective cytotoxicity on TK-10 cell line. Results showed that structural modifications on the semicarbazone moiety could have a significant effect on the anti-tumor activity of the vanadium complexes. In addition, the electrochemical behavior of all the complexes was studied. No apparent correlation could be demonstrated between reduction potentials of the complexes and their anti-tumor activities. The molecular structure of the novel [V(V)O(2)(5-bromosalicylaldehyde semicarbazone)] complex was solved by X-ray diffraction methods. The vanadium atom shows a distorted square pyramidal coordination sphere. The (VO(2))(+) cation is coordinated to a nearly planar (L)(-) anion acting as a tridentate ligand through both oxygen and one nitrogen atoms.
Collapse
Affiliation(s)
- Pabla Noblía
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, C. C. 1157, 11800 Montevideo, Uruguay
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Noblía P, Baran E, Otero L, Draper P, Cerecetto H, González M, Piro O, Castellano E, Inohara T, Adachi Y, Sakurai H, Gambino D. New Vanadium(V) Complexes with Salicylaldehyde Semicarbazone Derivatives: Synthesis, Characterization, and in vitro Insulin-Mimetic Activity− Crystal Structure of [VvO2(salicylaldehyde semicarbazone)]. Eur J Inorg Chem 2004. [DOI: 10.1002/ejic.200300421] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Triantafillou GD, Tolis EI, Terzis A, Deligiannakis Y, Raptopoulou CP, Sigalas MP, Kabanos TA. Monomeric Oxovanadium(IV) Compounds of the General Formula cis-[VIV(O)(X)(LNN)2]+/0 {X = OH-, Cl-, SO42- and LNN = 2,2‘-Bipyridine (Bipy) or 4,4‘-Disubstituted Bipy}. Inorg Chem 2003; 43:79-91. [PMID: 14704056 DOI: 10.1021/ic034440d] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reaction of [V(IV)OCl(2)(THF)(2)] in aqueous solution with 2 equiv of AgBF(4) or AgSbF(6) and then with 2 equiv of 2,2'-bipyridine (bipy), 4,4'-di-tert-butyl-2,2'-bipyridine (4,4'-dtbipy), or 4,4'-di-methyl-2,2'-bipyridine (4,4'-dmbipy) affords compounds of the general formula cis-[V(IV)O(OH)(L(NN))(2)]Y [where L(NN) = bipy, Y = BF(4)(-) (1), L(NN) = 4,4'-dtbipy, Y = BF(4)(-) (2.1.2H(2)O), L(NN) = 4,4'-dmbipy, Y = BF(4)(-) (3.2H(2)O), and L(NN) = 4,4'-dtbipy, Y = SbF(6)(-) (4)]. Sequential addition of 1 equiv of Ba(ClO(4))(2) and then of 2 equiv of bipy to an aqueous solution containing 1 equiv of V(IV)OSO(4).5H(2)O yields cis-[V(IV)O(OH)(bipy)(2)]ClO(4) (5). The monomeric compounds 1-5 contain the cis-[V(IV)O(OH)](+) structural unit. Reaction of 1 equiv of V(IV)OSO(4).5H(2)O in water and of 1 equiv of [V(IV)OCl(2)(THF)(2)] in ethanol with 2 equiv of bipy gives the compounds cis-[V(IV)O(OSO(3))(bipy)(2)].CH(3)OH.1.5H(2)O (6.CH(3)OH.1.5H(2)O) and cis-[V(IV)OCl(bipy)(2)]Cl (7), respectively, while reaction of 1 equiv of [V(IV)OCl(2)(THF)(2)] in CH(2)Cl(2) with 2 equiv of 4,4'-dtbipy gives the compound cis-[V(IV)OCl(4,4'-dtbipy)(2)]Cl.0.5CH(2)Cl(2) (8.0.5CH(2)Cl(2)). Compounds cis-[V(IV)O(BF(4))(4,4'-dtbipy)(2)]BF(4) (9), cis-[V(IV)O(BF(4))(4,4'-dmbipy)(2)]BF(4) (10), and cis-[V(IV)O(SbF(6))(4,4'-dtbipy)(2)]SbF(6) (11) were synthesized by sequential addition of 2 equiv of 4,4'-dtbipy or 4,4'-dmbipy and 2 equiv of AgBF(4) or AgSbF(6) to a dichloromethane solution containing 1 equiv of [V(IV)OCl(2)(THF)(2)]. The crystal structures of 2.1.2H(2)O, 6.CH(3)OH.1.5H(2)O, and 8.0.5CH(2)Cl(2) were demonstrated by X-ray diffraction analysis. Crystal data are as follows: Compound 2.1.2H(2)O crystallizes in the orthorhombic space group Pbca with (at 298 K) a = 21.62(1) A, b = 13.33(1) A, c = 27.25(2) A, V = 7851(2) A(3), Z = 8. Compound 6.CH(3)OH.1.5H(2)O crystallizes in the monoclinic space group P2(1)/a with (at 298 K) a = 12.581(4) A, b = 14.204(5) A, c = 14.613(6) A, beta = 114.88(1) degrees, V = 2369(1), Z = 4. Compound 8.0.5CH(2)Cl(2) crystallizes in the orthorhombic space group Pca2(1) with (at 298 K) a = 23.072(2) A, b = 24.176(2) A, c = 13.676(1) A, V = 7628(2) A(3), Z = 8 with two crystallographically independent molecules per asymmetric unit. In addition to the synthesis and crystallographic studies, we report the optical, infrared, magnetic, conductivity, and CW EPR properties of these oxovanadium(IV) compounds as well as theoretical studies on [V(IV)O(bipy)(2)](2+) and [V(IV)OX(bipy)(2)](+/0) species (X = OH(-), SO(4)(2)(-), Cl(-)).
Collapse
|
50
|
|