1
|
Banerjee A, Li J, Molenda MA, Opalade AA, Adhikary A, Brennessel WW, Malkhasian AYS, Jackson TA, Chavez FA. Probing the Mechanism for 2,4'-Dihydroxyacetophenone Dioxygenase Using Biomimetic Iron Complexes. Inorg Chem 2021; 60:7168-7179. [PMID: 33900072 DOI: 10.1021/acs.inorgchem.1c00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we report the synthesis and characterization of [Fe(T1Et4iPrIP)(2-OH-AP)(OTf)](OTf) (2), [Fe(T1Et4iPrIP)(2-O-AP)](OTf) (3), and [Fe(T1Et4iPrIP)(DMF)3](OTf)3 (4) (T1Et4iPrIP = tris(1-ethyl-4-isopropyl-imidazolyl)phosphine; 2-OH-AP = 2-hydroxyacetophenone, and 2-O-AP- = monodeprotonated 2-hydroxyacetophenone). Both 2 and 3 serve as model complexes for the enzyme-substrate adduct for the nonheme enzyme 2,4'-dihydroacetophenone (DHAP) dioxygenase or DAD, while 4 serves as a model for the ferric form of DAD. Complexes 2-4 have been characterized by X-ray crystallography which reveals T1Et4iPrIP to bind iron in a tridentate fashion. Complex 2 additionally contains a bidentate 2-OH-AP ligand and a monodentate triflate ligand yielding distorted octahedral geometry, while 3 possesses a bidentate 2-O-AP- ligand and exhibits distorted trigonal bipyramidal geometry (τ = 0.56). Complex 4 displays distorted octahedral geometry with 3 DMF ligands completing the ligand set. The UV-vis spectrum of 2 matches more closely to the DAD-substrate spectrum than 3, and therefore, it is believed that the substrate for DAD is bound in the protonated form. TD-DFT studies indicate that visible absorption bands for 2 and 3 are due to MLCT bands. Complexes 2 and 3 are capable of oxidizing the coordinated substrate mimics in a stoichiometric and catalytic fashion in the presence of O2. Complex 4 does not convert 2-OH-AP to products under the same catalytic conditions; however, it becomes anaerobically reduced in the presence of 2 equiv 2-OH-AP to 2.
Collapse
Affiliation(s)
- Atanu Banerjee
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), P D Patel Institute of Applied Sciences, 388421 Anand, Gujrat, India
| | - Jia Li
- Department of Chemistry, Oakland University, Rochester, Michigan 48309-4477, United States
| | - Monika A Molenda
- Department of Chemistry, Oakland University, Rochester, Michigan 48309-4477, United States
| | - Adedamola A Opalade
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, Michigan 48309-4477, United States
| | - William W Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | | | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Ferman A Chavez
- Department of Chemistry, Oakland University, Rochester, Michigan 48309-4477, United States
| |
Collapse
|
2
|
Liebing P, Edelmann FT. Trifluoromethylated 3‐(Pyrazol‐1‐yl)propanamide (PPA) Ligands. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Phil Liebing
- Otto-von-Guericke-Universität Magdeburg Chemisches Institut Universitätsplatz 2 39106 Magdeburg Germany
| | - Frank T. Edelmann
- Otto-von-Guericke-Universität Magdeburg Chemisches Institut Universitätsplatz 2 39106 Magdeburg Germany
| |
Collapse
|
3
|
Majidi B, Amiri A, Badiei A, Shayesteh A. Dual mode colorimetric-fluorescent sensor for highly sensitive and selective detection of Mg2+ ion in aqueous media. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Palombo TM, Liebing P, Hildebrand SJ, Patrikus QR, Assarsson AP, Wang L, Amenta DS, Engelhardt F, Edelmann FT, Gilje JW. Complexes of palladium(II) chloride with 3-(pyrazol-1-yl)propanamide (PPA) and related ligands. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Zhang J, Huo LQ, Gao LL, Wang XQ, Fan LM, Fang KG, Hu TP. Luminescent and magnetic properties of three novel metal–organic polymers based on a semi-rigid tripodal carboxylic ligand. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
A Single Fluorescent Sensor for Hg2+ and Discriminately Detection of Cr3+ and Cr(VI). J Fluoresc 2015; 26:263-70. [PMID: 26518575 DOI: 10.1007/s10895-015-1708-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/20/2015] [Indexed: 12/26/2022]
|
7
|
Pal S, Chatterjee N, Bharadwaj PK. Selectively sensing first-row transition metal ions through fluorescence enhancement. RSC Adv 2014. [DOI: 10.1039/c4ra02054e] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fluorescence signaling systems that give enhancement in the presence of first-row transition metal ions are discussed.
Collapse
Affiliation(s)
- Sanchari Pal
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016, India
| | - Nabanita Chatterjee
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016, India
| | - Parimal K. Bharadwaj
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016, India
| |
Collapse
|
8
|
Liu SD, Zhang LW, Liu X. A highly sensitive and selective fluorescent probe for Fe3+ based on 2-(2-hydroxyphenyl)benzothiazole. NEW J CHEM 2013. [DOI: 10.1039/c2nj40978j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
|
10
|
A benzimidazole-based single molecular multianalyte fluorescent probe for the simultaneous analysis of Cu2+ and Fe3+. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2009.12.085] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Panda MK, John A, Shaikh MM, Ghosh P. Mimicking the Intradiol Catechol Cleavage Activity of Catechol Dioxygenase by High-Spin Iron(III) Complexes of a New Class of a Facially Bound [N2O] Ligand. Inorg Chem 2008; 47:11847-56. [DOI: 10.1021/ic801576f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manas K. Panda
- Department of Chemistry and National Single Crystal X-ray Diffraction Facility, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Alex John
- Department of Chemistry and National Single Crystal X-ray Diffraction Facility, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Mobin M. Shaikh
- Department of Chemistry and National Single Crystal X-ray Diffraction Facility, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Prasenjit Ghosh
- Department of Chemistry and National Single Crystal X-ray Diffraction Facility, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
12
|
Jung HJ, Singh N, Jang DO. Highly Fe3+ selective ratiometric fluorescent probe based on imine-linked benzimidazole. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.03.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Tucker NP, D'Autréaux B, Yousafzai FK, Fairhurst SA, Spiro S, Dixon R. Analysis of the nitric oxide-sensing non-heme iron center in the NorR regulatory protein. J Biol Chem 2007; 283:908-18. [PMID: 18003617 DOI: 10.1074/jbc.m705850200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NorR regulatory protein senses nitric oxide (NO) to activate genes required for NO detoxification under anaerobic and microaerobic conditions in Escherichia coli. NorR belongs to the sigma(54)-dependent family of transcriptional activators and contains an N-terminal regulatory GAF (cGMP phosphodiesterase, adenylate cyclase, FhlA) domain that controls the ATPase activity of the central AAA+ domain to regulate productive interactions with sigma(54). Binding of NO to a non-heme iron center in the GAF domain results in the formation of a mononitrosyl-iron complex and releases intramolecular repression of the AAA+ domain to enable activation of transcription. In this study, we have further characterized NorR spectroscopically and substituted conserved residues in the GAF domain. This analysis, in combination with structural modeling of the GAF domain, has identified five candidate ligands to the non-heme iron and suggests a model in which the metal ion is coordinated in a pseudo-octahedral environment by three aspartate residues, an arginine, and a cysteine.
Collapse
Affiliation(s)
- Nicholas P Tucker
- Department of Molecular Microbiology, John Innes Centre, Colney, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | |
Collapse
|
14
|
Bénisvy L, Halut S, Donnadieu B, Tuchagues JP, Chottard JC, Li Y. Monomeric Iron(II) Hydroxo and Iron(III) Dihydroxo Complexes Stabilized by Intermolecular Hydrogen Bonding. Inorg Chem 2006; 45:2403-5. [PMID: 16529458 DOI: 10.1021/ic060100r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using the multidentate ligand bis(N-methylimidazol-2-yl)-3-methylthiopropanol (L), the mononuclear iron(II) hydroxo and iron(III) dihydroxo complexes [Fe(II)(L)2(OH)](BF4) (1) and [Fe(III)(L)2(OH)2](BF4) (2) have been synthesized and characterized by X-ray diffraction and spectroscopic methods. The X-ray data suggest that the remarkable stability of the Fe-OH bond(s) in both compounds results from intermolecular hydrogen-bonding interactions between the hydroxo ligand(s) and the tertiary hydroxyl of the L ligands, which prevent further intermolecular reactions.
Collapse
Affiliation(s)
- Laurent Bénisvy
- Laboratoire de chimie et biochimie pharmacologiques et toxicologiques (CNRS UMR8601), Université René Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France
| | | | | | | | | | | |
Collapse
|