1
|
Chiba Y, Jin Z, Nakamura T, Nabeshima T. An Iron(II) Complex of a Tripodal 2,2´-Bipyridine with Perfluoroalkyl Linkers Showing Anion-Dependent fac/ mer Isomer Ratio. CHEM LETT 2022. [DOI: 10.1246/cl.220314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yusuke Chiba
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Zhehui Jin
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takashi Nakamura
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Tatsuya Nabeshima
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
2
|
Klahn P, Zscherp R, Jimidar CC. Advances in the Synthesis of Enterobactin, Artificial Analogues, and Enterobactin-Derived Antimicrobial Drug Conjugates and Imaging Tools for Infection Diagnosis. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1783-0751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractIron is an essential growth factor for bacteria, but although highly abundant in nature, its bioavailability during infection in the human host or the environment is limited. Therefore, bacteria produce and secrete siderophores to ensure their supply of iron. The triscatecholate siderophore enterobactin and its glycosylated derivatives, the salmochelins, play a crucial role for iron acquisition in several bacteria. As these compounds can serve as carrier molecules for the design of antimicrobial siderophore drug conjugates as well as siderophore-derived tool compounds for the detection of infections with bacteria, their synthesis and the design of artificial analogues is of interest. In this review, we give an overview on the synthesis of enterobactin, biomimetic as well as totally artificial analogues, and related drug-conjugates covering up to 12/2021.1 Introduction2 Antibiotic Crisis and Sideromycins as Natural Templates for New Antimicrobial Drugs3 Biosynthesis of Enterobactin, Salmochelins, and Microcins4 Total Synthesis of Enterobactin and Salmochelins5 Chemoenzymatic Semi-synthesis of Salmochelins and Microcin E492m Derivatives6 Synthesis of Biomimetic Enterobactin Derivatives with Natural Tris-lactone Backbone7 Synthesis of Artificial Enterobactin Derivatives without Tris-lactone Backbone8 Conclusions
Collapse
Affiliation(s)
- Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig
- Department for Chemistry and Molecular Biology, University of Gothenburg
| | - Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig
| | | |
Collapse
|
3
|
Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals. Molecules 2021. [DOI: 10.3390/molecules26226997
expr 973886017 + 973118332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Hydroxypyridinones (HOPOs) have been used in the chelation therapy of iron and actinide metals. Their application in metal-based radiopharmaceuticals has also been increasing in recent years. This review article focuses on how multidentate HOPOs can be used in targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals. The general structure of radiometal-based targeted radiopharmaceuticals, a brief description of siderophores, the basic structure and properties of bidentate HOPO, some representative HOPO multidentate chelating agents, radiopharmaceuticals based on HOPO multidentate bifunctional chelators for gallium-68, thorium-227 and zirconium-89, as well as the future prospects of HOPO multidentate bifunctional chelators in other metal-based radiopharmaceuticals are described and discussed in turn. The HOPO metal-based radiopharmaceuticals that have shown good prospects in clinical and preclinical studies are gallium-68, thorium-227 and zirconium-89 radiopharmaceuticals. We expect HOPO multidentate bifunctional chelators to be a very promising platform for building novel targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals.
Collapse
|
4
|
Zhou X, Dong L, Shen L. Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals. Molecules 2021; 26:6997. [PMID: 34834087 PMCID: PMC8619595 DOI: 10.3390/molecules26226997&set/a 916769719+956065658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Hydroxypyridinones (HOPOs) have been used in the chelation therapy of iron and actinide metals. Their application in metal-based radiopharmaceuticals has also been increasing in recent years. This review article focuses on how multidentate HOPOs can be used in targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals. The general structure of radiometal-based targeted radiopharmaceuticals, a brief description of siderophores, the basic structure and properties of bidentate HOPO, some representative HOPO multidentate chelating agents, radiopharmaceuticals based on HOPO multidentate bifunctional chelators for gallium-68, thorium-227 and zirconium-89, as well as the future prospects of HOPO multidentate bifunctional chelators in other metal-based radiopharmaceuticals are described and discussed in turn. The HOPO metal-based radiopharmaceuticals that have shown good prospects in clinical and preclinical studies are gallium-68, thorium-227 and zirconium-89 radiopharmaceuticals. We expect HOPO multidentate bifunctional chelators to be a very promising platform for building novel targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals.
Collapse
Affiliation(s)
- Xu Zhou
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Linlin Dong
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Langtao Shen
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
- National Isotope Center of Engineering and Technology, China Institute of Atomic Energy, Beijing 102413, China
- Correspondence:
| |
Collapse
|
5
|
Zhou X, Dong L, Shen L. Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals. Molecules 2021; 26:6997. [PMID: 34834087 PMCID: PMC8619595 DOI: 10.3390/molecules26226997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023] Open
Abstract
Hydroxypyridinones (HOPOs) have been used in the chelation therapy of iron and actinide metals. Their application in metal-based radiopharmaceuticals has also been increasing in recent years. This review article focuses on how multidentate HOPOs can be used in targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals. The general structure of radiometal-based targeted radiopharmaceuticals, a brief description of siderophores, the basic structure and properties of bidentate HOPO, some representative HOPO multidentate chelating agents, radiopharmaceuticals based on HOPO multidentate bifunctional chelators for gallium-68, thorium-227 and zirconium-89, as well as the future prospects of HOPO multidentate bifunctional chelators in other metal-based radiopharmaceuticals are described and discussed in turn. The HOPO metal-based radiopharmaceuticals that have shown good prospects in clinical and preclinical studies are gallium-68, thorium-227 and zirconium-89 radiopharmaceuticals. We expect HOPO multidentate bifunctional chelators to be a very promising platform for building novel targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals.
Collapse
Affiliation(s)
- Xu Zhou
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Linlin Dong
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Langtao Shen
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
- National Isotope Center of Engineering and Technology, China Institute of Atomic Energy, Beijing 102413, China
| |
Collapse
|
6
|
Morita H, Akine S, Nakamura T, Nabeshima T. Exclusive formation of a meridional complex of a tripodand and perfect suppression of guest recognition. Chem Commun (Camb) 2021; 57:2124-2127. [PMID: 33538748 DOI: 10.1039/d1cc00146a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tripodal ligands have been utilized for complexation-induced structural change, but all the tripodal complexes reported so far are facial isomers, which do not completely reduce the recognition ability by closing the binding pocket. We now report the first example of the selective synthesis of a meridional tripodal complex. The tripodal ligand with a 1,3,5-triethyl-2,4,6-tris(methylene)benzene pivot possessing 2,2'-bipyridine on each arm exclusively formed a mononuclear complex with the mer-[Fe(bpy)]2+ unit. The meridional tripodal complex has a unique structure in which one bipyridine unit is self-penetrated. As a result of cavity blockage, the ion recognition property of the tripodand has been successfully suppressed.
Collapse
Affiliation(s)
- Hiroki Morita
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology and WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takashi Nakamura
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Tatsuya Nabeshima
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
7
|
Workman DG, Hunter M, Wang S, Brandel J, Hubscher V, Dover LG, Tétard D. The influence of linkages between 1-hydroxy-2(1H)-pyridinone coordinating groups and a tris(2-aminoethyl)amine core in a novel series of synthetic hexadentate iron(III) chelators on antimicrobial activity. Bioorg Chem 2019; 95:103465. [PMID: 31855824 DOI: 10.1016/j.bioorg.2019.103465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/30/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
Resistance of pathogens to antimicrobials is a major current healthcare concern. In a series of linked studies, we have investigated synthetic iron chelators based on hydroxy-pyridinone ligands as novel bacteriostatic agents. Herein we describe our synthesis of several useful building blocks based on the 1-hydroxy-2(1H)-pyridinone moiety, including a novel formyl derivative, which were combined with a tris(2-aminoethyl)amine core to obtain a series of new high-affinity hexadentate Fe(III) chelators. The design principle examined by this series is the size and flexibility of the linker between the core and the metal ligands. Measurement of the pKa and stability constants (Fe3+ and Cu2+) of representative coordinating groups was performed to help rationalise the biological activity of the chelators. The novel chelators were tested on a panel of representative microorganisms with some effectively inhibiting microbial growth. We demonstrate that the nature and position of the linker between the hydroxypyridinone and the tris(2-aminoethyl)amine core has considerable impact upon microbial growth inhibition and that both amide or amine linkages can give efficacious chelators.
Collapse
Affiliation(s)
- David G Workman
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Michael Hunter
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Shuning Wang
- Université de Strasbourg, IPHC, 25 rue Becquerel, 67087 Strasbourg, France; CNRS, UMR7178, 67087 Strasbourg, France
| | - Jérémy Brandel
- Université de Strasbourg, IPHC, 25 rue Becquerel, 67087 Strasbourg, France; CNRS, UMR7178, 67087 Strasbourg, France
| | - Véronique Hubscher
- Université de Strasbourg, IPHC, 25 rue Becquerel, 67087 Strasbourg, France; CNRS, UMR7178, 67087 Strasbourg, France
| | - Lynn G Dover
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - David Tétard
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom.
| |
Collapse
|
8
|
Zhang Q, Jin B, Zheng T, Tang X, Guo Z, Peng R. Hexadentate β-Dicarbonyl(bis-catecholamine) Ligands for Efficient Uranyl Cation Decorporation: Thermodynamic and Antioxidant Activity Studies. Inorg Chem 2019; 58:14626-14634. [PMID: 31613591 DOI: 10.1021/acs.inorgchem.9b02306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The special linear dioxo cation structure of the uranyl cation, which relegates ligand coordination to an equatorial plane perpendicular to the O═U═O vector, poses an unusual challenge for the rational design of efficient chelating agents. Therefore, the planar hexadentate ligand rational design employed in this work incorporates two bidentate catecholamine (CAM) chelating moieties and a flexible linker with a β-dicarbonyl chelating moiety (β-dicarbonyl(CAM)2 ligands). The solution thermodynamics of β-dicarbonyl(CAM)2 with a uranyl cation was investigated by potentiometric and spectrophotometric titrations. The results demonstrated that the pUO22+ values are significantly higher than for the previously reported TMA(2Li-1,2-HOPO)2, and efficient chelation of the uranyl cation was realized by the planar hexadentate β-dicarbonyl(CAM)2. The efficient chelating ability of β-dicarbonyl(CAM)2 was attributed to the presence of the more flexible β-dicarbonyl chelating linker and planar hexadentate structure, which favors the geometric arrangement between ligand and uranyl coordinative preference. Meanwhile, β-dicarbonyl(CAM)2 also exhibits higher antiradical efficiency in comparison to butylated hydroxyanisole. These results indicated that β-dicarbonyl(CAM)2 has potential application prospects as a chelating agent for efficient chelation of a uranyl cation.
Collapse
Affiliation(s)
- Qingchun Zhang
- State Key Laboratory of Environment-friendly Energy Materials , Southwest University of Science and Technology , Mianyang 621010 , People's Republic of China
| | - Bo Jin
- State Key Laboratory of Environment-friendly Energy Materials , Southwest University of Science and Technology , Mianyang 621010 , People's Republic of China
| | - Tian Zheng
- State Key Laboratory of Environment-friendly Energy Materials , Southwest University of Science and Technology , Mianyang 621010 , People's Republic of China
| | - Xingyan Tang
- Sichuan Research Center of New Materials, Institute of Chemical Materials , China Academy of Engineering Physics , Chengdu 610200 , People's Republic of China
| | - Zhicheng Guo
- School of National Defense Science and Technology , Southwest University of Science and Technology , Mianyang 621010 , People's Republic of China
| | - Rufang Peng
- State Key Laboratory of Environment-friendly Energy Materials , Southwest University of Science and Technology , Mianyang 621010 , People's Republic of China
| |
Collapse
|
9
|
Ramakrishnam Raju MV, Wilharm RK, Dresel MJ, McGreal ME, Mansergh JP, Marting ST, Goodpaster JD, Pierre VC. The Stability of the Complex and the Basicity of the Anion Impact the Selectivity and Affinity of Tripodal Gadolinium Complexes for Anions. Inorg Chem 2019; 58:15189-15201. [DOI: 10.1021/acs.inorgchem.9b02133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Randall K. Wilharm
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Mark J. Dresel
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Meghan E. McGreal
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Jarrett P. Mansergh
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Spenser T. Marting
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Jason D. Goodpaster
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Valérie C. Pierre
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
New hexadentate tris(dopamine) as iron chelating agent: Synthesis, solution thermodynamic stability and antioxidant activity studies. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Deblonde GJP, Lohrey TD, Booth CH, Carter KP, Parker BF, Larsen Å, Smeets R, Ryan OB, Cuthbertson AS, Abergel RJ. Solution Thermodynamics and Kinetics of Metal Complexation with a Hydroxypyridinone Chelator Designed for Thorium-227 Targeted Alpha Therapy. Inorg Chem 2018; 57:14337-14346. [PMID: 30372069 DOI: 10.1021/acs.inorgchem.8b02430] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solution chemistry of a chelator developed for 227Th targeted alpha therapy was probed. The compound of interest is an octadentate ligand comprising four N-methyl-3-hydroxy-pyridine-2-one metal-binding units, two tertiary amine groups, and one carboxylate arm appended for bioconjugation. The seven p Ka values of the ligand and the stability constants of complexes formed with Th(IV), Hf(IV), Zr(IV), Gd(III), Eu(III), Al(III), and Fe(III) were determined. The ligand exhibits extreme thermodynamic selectivity toward tetravalent metal ions with a ca. 20 orders of magnitude difference between the formation constant of the Th(IV) species formed at physiological pH, namely [ThL]-, and that of its Eu(III) analogue. Likewise, log β110 values of 41.7 ± 0.3 and 26.9 ± 0.3 (T = 25 °C) were measured for [ThL]- and [FeIIIL]2-, respectively, highlighting the high affinity and selectivity of the ligand for Th ions over potentially competing endogenous metals. Single crystal X-ray analysis of the Fe(III) complex revealed a dinuclear 2:2 metal:chelator complex crystallizing in the space group P1̅. The formation of this dimeric species is likely favored by several intramolecular hydrogen bonds and the protonation state of the chelator in acidic media. LIII edge EXAFS data on the Th(IV) complexes of both the ligand and a monoclonal antibody conjugate revealed the expected mononuclear 1:1 metal:chelator coordination environment. This was also confirmed by high resolution mass spectrometry. Finally, kinetic experiments demonstrated that labeling the bioconjugated ligand with Th(IV) could be achieved and completed after 1 h at room temperature, reinforcing the high suitability of this chelator for 227Th targeted alpha therapy.
Collapse
Affiliation(s)
- Gauthier J-P Deblonde
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Trevor D Lohrey
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Chemistry , University of California, Berkeley , California 94720 , United States
| | - Corwin H Booth
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Korey P Carter
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Bernard F Parker
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Chemistry , University of California, Berkeley , California 94720 , United States
| | - Åsmund Larsen
- Department of Thorium Conjugate Research , Bayer AS , 0283 Oslo , Norway
| | - Roger Smeets
- Department of Thorium Conjugate Research , Bayer AS , 0283 Oslo , Norway
| | - Olav B Ryan
- Department of Thorium Conjugate Research , Bayer AS , 0283 Oslo , Norway
| | - Alan S Cuthbertson
- Department of Thorium Conjugate Research , Bayer AS , 0283 Oslo , Norway
| | - Rebecca J Abergel
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Nuclear Engineering , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
12
|
Cilibrizzi A, Abbate V, Chen YL, Ma Y, Zhou T, Hider RC. Hydroxypyridinone Journey into Metal Chelation. Chem Rev 2018; 118:7657-7701. [DOI: 10.1021/acs.chemrev.8b00254] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King’s College London, Stamford Street, London SE1 9NH, United Kingdom
| | - Vincenzo Abbate
- Institute of Pharmaceutical Science, King’s College London, Stamford Street, London SE1 9NH, United Kingdom
- King’s Forensics, School of Population Health & Environmental Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Yu-Lin Chen
- Institute of Pharmaceutical Science, King’s College London, Stamford Street, London SE1 9NH, United Kingdom
| | - Yongmin Ma
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, P. R. China 311402
| | - Tao Zhou
- Department of Applied Chemistry, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China 310018
| | - Robert C. Hider
- Institute of Pharmaceutical Science, King’s College London, Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
13
|
Deblonde GJP, Lohrey TD, An DD, Abergel RJ. Toxic heavy metal – Pb, Cd, Sn – complexation by the octadentate hydroxypyridinonate ligand archetype 3,4,3-LI(1,2-HOPO). NEW J CHEM 2018. [DOI: 10.1039/c7nj04559j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The toxicity of heavy metals such as lead (Pb), cadmium (Cd) and tin (Sn) has long been known but accidental exposures of large populations to these elements remain unfortunately a topical issue.
Collapse
Affiliation(s)
| | - Trevor D. Lohrey
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
- Department of Chemistry
| | - Dahlia D. An
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Rebecca J. Abergel
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
- Department of Nuclear Engineering
| |
Collapse
|
14
|
Zhang Q, Jin B, Wang X, Lei S, Liu Q, Liang H, Chu S, Peng R. Chlorofullerene C60
Cl6
: A Precursor for Straightforward Preparation of Highly Water-Soluble Poly-hydroxypyridinone Fullerene Derivatives as Potential Radionuclide Chelators. ChemistrySelect 2017. [DOI: 10.1002/slct.201702049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qingchun Zhang
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials; Southwest University of Science and Technology; Mianyang 621010 China
| | - Bo Jin
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials; Southwest University of Science and Technology; Mianyang 621010 China
| | - Xiaofang Wang
- School of Materials Science and Engineering; Southwest University of Science and Technology; Mianyang 621010 China
| | - Shan Lei
- School of Materials Science and Engineering; Southwest University of Science and Technology; Mianyang 621010 China
| | - Qiangqiang Liu
- Research Center of Laser Fusion; China Academy of Engineering Physics; Mianyang 621010 China
| | - Hua Liang
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials; Southwest University of Science and Technology; Mianyang 621010 China
| | - Shijin Chu
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials; Southwest University of Science and Technology; Mianyang 621010 China
| | - Rufang Peng
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials; Southwest University of Science and Technology; Mianyang 621010 China
| |
Collapse
|
15
|
New tris(dopamine) derivative as an iron chelator. Synthesis, solution thermodynamic stability, and antioxidant research. J Inorg Biochem 2017; 171:29-36. [DOI: 10.1016/j.jinorgbio.2017.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/09/2017] [Accepted: 03/21/2017] [Indexed: 11/19/2022]
|
16
|
Novel enterobactin analogues as potential therapeutic chelating agents: Synthesis, thermodynamic and antioxidant studies. Sci Rep 2016; 6:34024. [PMID: 27671769 PMCID: PMC5037427 DOI: 10.1038/srep34024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/06/2016] [Indexed: 11/21/2022] Open
Abstract
A series of novel hexadentate enterobactin analogues, which contain three catechol chelating moieties attached to different molecular scaffolds with flexible alkyl chain lengths, were prepared. The solution thermodynamic stabilities of the complexes with uranyl, ferric(III), and zinc(II) ions were then investigated. The hexadentate ligands demonstrate effective binding ability to uranyl ion, and the average uranyl affinities are two orders of magnitude higher than 2,3-dihydroxy-N1,N4-bis[(1,2-hydroxypyridinone-6-carboxamide)ethyl]terephthalamide [TMA(2Li-1,2-HOPO)2] ligand with similar denticity. The high affinity of hexadentate ligands could be due to the presence of the flexible scaffold, which favors the geometric agreement between the ligand and the uranyl coordination preference. The hexadentate ligands also exhibit higher antiradical efficiency than butylated hydroxyanisole (BHA). These results provide a basis for further studies on the potential applications of hexadentate ligands as therapeutic chelating agents.
Collapse
|
17
|
Gibson S, Fernando R, Jacobs HK, Gopalan AS. Preparation of 3-benzyloxy-2-pyridinone functional linkers: Tools for the synthesis of 3,2-hydroxypyridinone (HOPO) and HOPO/hydroxamic acid chelators. Tetrahedron 2015; 71:9271-9281. [PMID: 26640304 PMCID: PMC4665106 DOI: 10.1016/j.tet.2015.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In contrast to 2,3-dihydroxypyridine, the 3-benzyloxy protected derivative, 2, undergoes facile alkylation at ambient temperatures with a variety of functionalized alkyl halides in good yields. This alkylation has been used to prepare a number of linkers that permit the attachment of 3,2-HOPO moieties onto various scaffolds using a wide range of coupling methods. The Mitsunobu reaction of 2 with representative alcohols was found to be of limited value due to competing O-alkylation that led to product mixtures. The phthalimide 3j can be converted in two steps to HOPO isocyanate 6 in excellent yields. Isocyanate 6 can be coupled to amines at room temperature or to alcohols in refluxing dichloroethane to obtain the corresponding urea or carbamate linked ligand systems. The coupling of isocyanate 6 with TREN followed by deprotection gave the tris-HOPO 10, an interesting target as it has both cationic and anionic binding sites. The HOPO hydroxylamine linker 11 was shown to be especially valuable as its coupling with carboxylic acids proceeds with the concomitant generation of an additional hydroxamate ligand moiety in the framework. The utility of this linker was shown by the preparation of two mixed HOPO-hydroxamate chelators, 16 and 19, based on the structure of desferrioxamine, a well-known trihydroxamate siderophore.
Collapse
Affiliation(s)
- Sarah Gibson
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003-8001
| | - Rasika Fernando
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003-8001
| | - Hollie K. Jacobs
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003-8001
| | - Aravamudan S. Gopalan
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003-8001
| |
Collapse
|
18
|
Bergeron RJ, Wiegand J, McManis JS, Bharti N. Desferrithiocin: a search for clinically effective iron chelators. J Med Chem 2014; 57:9259-91. [PMID: 25207964 PMCID: PMC4255733 DOI: 10.1021/jm500828f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Indexed: 01/19/2023]
Abstract
The successful search for orally active iron chelators to treat transfusional iron-overload diseases, e.g., thalassemia, is overviewed. The critical role of iron in nature as a redox engine is first described, as well as how primitive life forms and humans manage the metal. The problems that derive when iron homeostasis in humans is disrupted and the mechanism of the ensuing damage, uncontrolled Fenton chemistry, are discussed. The solution to the problem, chelator-mediated iron removal, is clear. Design options for the assembly of ligands that sequester and decorporate iron are reviewed, along with the shortcomings of the currently available therapeutics. The rationale for choosing desferrithiocin, a natural product iron chelator (a siderophore), as a platform for structure-activity relationship studies in the search for an orally active iron chelator is thoroughly developed. The study provides an excellent example of how to systematically reengineer a pharmacophore in order to overcome toxicological problems while maintaining iron clearing efficacy and has led to three ligands being evaluated in human clinical trials.
Collapse
Affiliation(s)
- Raymond J. Bergeron
- Department of Medicinal Chemistry, University of Florida, Box 100485 JHMHC, Gainesville, Florida 32610-0485, United States
| | - Jan Wiegand
- Department of Medicinal Chemistry, University of Florida, Box 100485 JHMHC, Gainesville, Florida 32610-0485, United States
| | - James S. McManis
- Department of Medicinal Chemistry, University of Florida, Box 100485 JHMHC, Gainesville, Florida 32610-0485, United States
| | - Neelam Bharti
- Department of Medicinal Chemistry, University of Florida, Box 100485 JHMHC, Gainesville, Florida 32610-0485, United States
| |
Collapse
|
19
|
Merlot AM, Kalinowski DS, Richardson DR. Novel chelators for cancer treatment: where are we now? Antioxid Redox Signal 2013; 18:973-1006. [PMID: 22424293 DOI: 10.1089/ars.2012.4540] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Under normal circumstances, cellular iron levels are tightly regulated due to the potential toxic effects of this metal ion. There is evidence that tumors possess altered iron homeostasis, which is mediated by the perturbed expression of iron-related proteins, for example, transferrin receptor 1, ferritin and ferroportin 1. The de-regulation of iron homeostasis in cancer cells reveals a particular vulnerability to iron-depletion using iron chelators. In this review, we examine the absorption of iron from the gut; its transport, metabolism, and homeostasis in mammals; and the molecular pathways involved. Additionally, evidence for alterations in iron processing in cancer are described along with the perturbations in other biologically important transition metal ions, for example, copper(II) and zinc(II). These changes can be therapeutically manipulated by the use of novel chelators that have recently been shown to be highly effective in terms of inhibiting tumor growth. RECENT ADVANCES Such chelators include those of the thiosemicarbazone class that were originally thought to target only ribonucleotide reductase, but are now known to have multiple effects, including the generation of cytotoxic radicals. CRITICAL ISSUES Several chelators have shown marked anti-tumor activity in vivo against a variety of solid tumors. An important aspect is the toxicology and the efficacy of these agents in clinical trials. FUTURE DIRECTIONS As part of the process of the clinical assessment of the new chelators, an extensive toxicological assessment in multiple animal models is essential for designing appropriate dosing protocols in humans.
Collapse
Affiliation(s)
- Angelica M Merlot
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
20
|
Sedó J, Saiz-Poseu J, Busqué F, Ruiz-Molina D. Catechol-based biomimetic functional materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013. [PMID: 23180685 DOI: 10.1002/adma.201202343] [Citation(s) in RCA: 477] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Catechols are found in nature taking part in a remarkably broad scope of biochemical processes and functions. Though not exclusively, such versatility may be traced back to several properties uniquely found together in the o-dihydroxyaryl chemical function; namely, its ability to establish reversible equilibria at moderate redox potentials and pHs and to irreversibly cross-link through complex oxidation mechanisms; its excellent chelating properties, greatly exemplified by, but by no means exclusive, to the binding of Fe(3+); and the diverse modes of interaction of the vicinal hydroxyl groups with all kinds of surfaces of remarkably different chemical and physical nature. Thanks to this diversity, catechols can be found either as simple molecular systems, forming part of supramolacular structures, coordinated to different metal ions or as macromolecules mostly arising from polymerization mechanisms through covalent bonds. Such versatility has allowed catechols to participate in several natural processes and functions that range from the adhesive properties of marine organisms to the storage of some transition metal ions. As a result of such an astonishing range of functionalities, catechol-based systems have in recent years been subject to intense research, aimed at mimicking these natural systems in order to develop new functional materials and coatings. A comprehensive review of these studies is discussed in this paper.
Collapse
Affiliation(s)
- Josep Sedó
- Centro de Investigación en Nanociencia y Nanotecnología, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | | | | | | |
Collapse
|
21
|
Fernando R, Shirley JM, Torres E, Jacobs HK, Gopalan AS. Preparation of bifunctional isocyanate hydroxamate linkers: Synthesis of carbamate and urea tethered polyhydroxamic acid chelators. Tetrahedron Lett 2012; 53:6367-6371. [PMID: 23162172 PMCID: PMC3498463 DOI: 10.1016/j.tetlet.2012.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two novel bifunctional N-methylhydroxamate-isocyanate linkers 20 and 21 were prepared in good yield and high purity from the corresponding amine salts using a biphasic reaction with phosgene. The facile ring opening reaction of N-Boc lactams using the anion of O-benzylhydroxylamine gave the protected amino hydroxamates 6a and 6c in good yields. The selective methylation of the hydroxamate nitrogen in the presence of the N-Boc group in these intermediates could be readily accomplished. The utility of the linkers was clearly demonstrated by the synthesis of the carbamate-tethered trishydroxamic acid 27 and the urea-tethered 29.
Collapse
Affiliation(s)
- Rasika Fernando
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003-8001
| | - Jonathan M. Shirley
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003-8001
| | - Emilio Torres
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003-8001
| | - Hollie K. Jacobs
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003-8001
| | - Aravamudan S. Gopalan
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003-8001
| |
Collapse
|
22
|
Santos MA, Marques SM, Chaves S. Hydroxypyridinones as “privileged” chelating structures for the design of medicinal drugs. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.08.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Szigethy G, Raymond KN. Hexadentate Terephthalamide(bis-hydroxypyridinone) Ligands for Uranyl Chelation: Structural and Thermodynamic Consequences of Ligand Variation. J Am Chem Soc 2011; 133:7942-56. [DOI: 10.1021/ja201511u] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Géza Szigethy
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-1460, United States
- Chemical Sciences Division, Glenn T. Seaborg Center, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kenneth N. Raymond
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-1460, United States
- Chemical Sciences Division, Glenn T. Seaborg Center, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
24
|
Harrington JM, Chittamuru S, Dhungana S, Jacobs HK, Gopalan AS, Crumbliss AL. Synthesis and iron sequestration equilibria of novel exocyclic 3-hydroxy-2-pyridinone donor group siderophore mimics. Inorg Chem 2011; 49:8208-21. [PMID: 20715813 DOI: 10.1021/ic902595c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The synthesis of a novel class of exocyclic bis- and tris-3,2-hydroxypyridinone (HOPO) chelators built on N(2) and N(3) aza-macrocyclic scaffolds and the thermodynamic solution characterization of their complexes with Fe(III) are described. The chelators for this study were prepared by reaction of either piperazine or N,N',N''-1,4,7-triazacyclononane with a novel electrophilic HOPO iminium salt in good yields. Subsequent removal of the benzyl protecting groups using HBr/acetic acid gave bis-HOPO chelators N(2)(etLH)(2) and N(2)(prLH)(2), and tris-HOPO chelator N(3)(etLH)(3) in excellent yields. Solution thermodynamic characterization of their complexes with Fe(III) was accomplished using spectrophotometric, potentiometric, and electrospray ionization-mass spectrometry (ESI-MS) methods. The pK(a)'s of N(2)(etLH)(2), N(2)(prLH)(2), and N(3)(etLH)(3), were determined spectrophotometrically and potentiometrically. The Fe(III) complex stability constants for the tetradentate N(2)(etLH)(2) and N(2)(prLH)(2), and hexadentate N(3)(etLH)(3), were measured by spectrophotometric and potentiometric titration, and by competition with ethylenediaminetetraacetic acid (EDTA). N(3)(etLH)(3) forms a 1:1 complex with Fe(III) with log β(110) = 27.34 ± 0.04. N(2)(prLH)(2) forms a 3:2 L:Fe complex with Fe(III) where log β(230) = 60.46 ± 0.04 and log β(110) = 20.39 ± 0.02. While N(2)(etLH)(2) also forms a 3:2 L:Fe complex with Fe(III), solubility problems precluded determining log β(230); log β(110) was found to be 20.45 ± 0.04. The pFe values of 26.5 for N(3)(etLH)(3) and 24.78 for N(2)(prLH)(2) are comparable to other siderophore molecules used in the treatment of iron overload, suggesting that these hydroxypyridinone ligands may be useful in the development of new chelation therapy agents.
Collapse
Affiliation(s)
- James M Harrington
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abergel RJ, Zawadzka AM, Hoette TM, Raymond KN. Enzymatic hydrolysis of trilactone siderophores: where chiral recognition occurs in enterobactin and bacillibactin iron transport. J Am Chem Soc 2009; 131:12682-92. [PMID: 19673474 PMCID: PMC2782669 DOI: 10.1021/ja903051q] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacillibactin and enterobactin are hexadentate catecholate siderophores produced by bacteria upon iron limitation to scavenge ferric ion and seem to be the ultimate siderophores of their two respective domains: Gram-positive and Gram-negative. Iron acquisition mediated by these trilactone-based ligands necessitates enzymatic hydrolysis of the scaffold for successful intracellular iron delivery. The esterases BesA and Fes hydrolyze bacillibactin and enterobactin, respectively, as well as the corresponding iron complexes. Bacillibactin binds iron through three 2,3-catecholamide moieties linked to a trithreonine scaffold via glycine spacers, whereas in enterobactin the iron-binding moieties are directly attached to a tri-l-serine backbone; although apparently minor, these structural differences result in markedly different iron coordination properties and iron transport behavior. Comparison of the solution thermodynamic and circular dichroism properties of bacillibactin, enterobactin and the synthetic analogs d-enterobactin, SERGlyCAM and d-SERGlyCAM has determined the role of each different feature in the siderophores' molecular structures in ferric complex stability and metal chirality. While opposite metal chiralities in the different complexes did not affect transport and incorporation in Bacillus subtilis, ferric complexes formed with the various siderophores did not systematically promote growth of the bacteria. The bacillibactin esterase BesA is less specific than the enterobactin esterase Fes; BesA can hydrolyze the trilactones of both siderophores, while only the tri-l-serine trilactone is a substrate of Fes. Both enzymes are stereospecific and cannot cleave tri-d-serine lactones. These data provide a complete picture of the microbial iron transport mediated by these two siderophores, from initial recognition and transport to intracellular iron release.
Collapse
Affiliation(s)
- Rebecca J Abergel
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | | | | | | |
Collapse
|
26
|
Sornosa Ten A, Humbert N, Verdejo B, Llinares JM, Elhabiri M, Jezierska J, Soriano C, Kozlowski H, Albrecht-Gary AM, García-España E. Cu2+ Coordination Properties of a 2-Pyridine Heptaamine Tripod: Characterization and Binding Mechanism. Inorg Chem 2009; 48:8985-97. [DOI: 10.1021/ic9010955] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alejandra Sornosa Ten
- Laboratoire de Physico-Chimie Bioinorganique, Institut de Chimie, UMR 7177 CNRS-UdS, Université de Strasbourg, ECPM 25, rue Becquerel, 67200 Strasbourg, France
| | - Nicolas Humbert
- Laboratoire de Physico-Chimie Bioinorganique, Institut de Chimie, UMR 7177 CNRS-UdS, Université de Strasbourg, ECPM 25, rue Becquerel, 67200 Strasbourg, France
| | - Begoña Verdejo
- Instituto de Ciencia Molecular (ICMOL), Departamentos de Química Inorgánica y Orgánica, Universidad de Valencia, Edificio de Institutos, Apartado de Correos 22085, 46071 Valencia, Spain
| | - José M. Llinares
- Instituto de Ciencia Molecular (ICMOL), Departamento de Química Orgánica, Fundació General de la Universidad de Valencia, Spain
| | - Mourad Elhabiri
- Laboratoire de Physico-Chimie Bioinorganique, Institut de Chimie, UMR 7177 CNRS-UdS, Université de Strasbourg, ECPM 25, rue Becquerel, 67200 Strasbourg, France
| | - Julia Jezierska
- Faculty of Chemistry, University of Wroclaw, 14 Joliot-Curie St, 50-383 Wroclaw, Poland
| | - Conxa Soriano
- Instituto de Ciencia Molecular (ICMOL), Departamentos de Química Inorgánica y Orgánica, Universidad de Valencia, Edificio de Institutos, Apartado de Correos 22085, 46071 Valencia, Spain
| | - Henryk Kozlowski
- Faculty of Chemistry, University of Wroclaw, 14 Joliot-Curie St, 50-383 Wroclaw, Poland
| | - Anne-Marie Albrecht-Gary
- Laboratoire de Physico-Chimie Bioinorganique, Institut de Chimie, UMR 7177 CNRS-UdS, Université de Strasbourg, ECPM 25, rue Becquerel, 67200 Strasbourg, France
| | - Enrique García-España
- Instituto de Ciencia Molecular (ICMOL), Departamentos de Química Inorgánica y Orgánica, Universidad de Valencia, Edificio de Institutos, Apartado de Correos 22085, 46071 Valencia, Spain
| |
Collapse
|
27
|
Hoette TM, Abergel RJ, Xu J, Strong RK, Raymond KN. The role of electrostatics in siderophore recognition by the immunoprotein Siderocalin. J Am Chem Soc 2009; 130:17584-92. [PMID: 19053425 DOI: 10.1021/ja8074665] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron is required for virulence of most bacterial pathogens, many of which rely on siderophores, small-molecule chelators, to scavenge iron in mammalian hosts. As an immune response, the human protein Siderocalin binds both apo and ferric siderophores in order to intercept delivery of iron to the bacterium, impeding virulence. The introduction of steric clashes into the siderophore structure is an important mechanism of evading sequestration. However, in the absence of steric incompatibilities, electrostatic interactions determine siderophore strength of binding by Siderocalin. By using a series of isosteric enterobactin analogues, the contribution of electrostatic interactions, including both charge-charge and cation-pi, to the recognition of 2,3-catecholate siderophores has been deconvoluted. The analogues used in the study incorporate a systematic combination of 2,3-catecholamide (CAM) and N-hydroxypyridinonate (1,2-HOPO) binding units on a tris(2-aminoethyl)amine (tren) backbone, [tren(CAM)(m)(1,2-HOPO)(n), where m = 0, 1, 2, or 3 and n = 3 - m]. The shape complementarity of the synthetic analogue series was determined through small-molecule crystallography, and the binding interactions were investigated through a fluorescence-based binding assay. These results were modeled and correlated through ab initio calculations of the electrostatic properties of the binding units. Although all the analogues are accommodated in the binding pocket of Siderocalin, the ferric complexes incorporating decreasing numbers of CAM units are bound with decreasing affinities (K(d) = >600, 43, 0.8, and 0.3 nM for m = 0-3). These results elucidate the role of electrostatics in the mechanism of siderophore recognition by Siderocalin.
Collapse
Affiliation(s)
- Trisha M Hoette
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | | | | | | | | |
Collapse
|
28
|
Crumbliss AL, Harrington JM. Iron sequestration by small molecules: Thermodynamic and kinetic studies of natural siderophores and synthetic model compounds. ADVANCES IN INORGANIC CHEMISTRY 2009. [DOI: 10.1016/s0898-8838(09)00204-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
Abergel RJ, Clifton MC, Pizarro JC, Warner JA, Shuh DK, Strong RK, Raymond KN. The siderocalin/enterobactin interaction: a link between mammalian immunity and bacterial iron transport. J Am Chem Soc 2008; 130:11524-34. [PMID: 18680288 PMCID: PMC3188318 DOI: 10.1021/ja803524w] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The siderophore enterobactin (Ent) is produced by enteric bacteria to mediate iron uptake. Ent scavenges iron and is taken up by the bacteria as the highly stable ferric complex [Fe (III)(Ent)] (3-). This complex is also a specific target of the mammalian innate immune system protein, Siderocalin (Scn), which acts as an antibacterial agent by specifically sequestering siderophores and their ferric complexes during infection. Recent literature suggesting that Scn may also be involved in cellular iron transport has increased the importance of understanding the mechanism of siderophore interception and clearance by Scn; Scn is observed to release iron in acidic endosomes and [Fe (III)(Ent)] (3-) is known to undergo a change from catecholate to salicylate coordination in acidic conditions, which is predicted to be sterically incompatible with the Scn binding pocket (also referred to as the calyx). To investigate the interactions between the ferric Ent complex and Scn at different pH values, two recombinant forms of Scn with mutations in three residues lining the calyx were prepared: Scn-W79A/R81A and Scn-Y106F. Binding studies and crystal structures of the Scn-W79A/R81A:[Fe (III)(Ent)] (3-) and Scn-Y106F:[Fe (III)(Ent)] (3-) complexes confirm that such mutations do not affect the overall conformation of the protein but do weaken significantly its affinity for [Fe (III)(Ent)] (3-). Fluorescence, UV-vis, and EXAFS spectroscopies were used to determine Scn/siderophore dissociation constants and to characterize the coordination mode of iron over a wide pH range, in the presence of both mutant proteins and synthetic salicylate analogues of Ent. While Scn binding hinders salicylate coordination transformation, strong acidification results in the release of iron and degraded siderophore. Iron release may therefore result from a combination of Ent degradation and coordination change.
Collapse
Affiliation(s)
- Rebecca J. Abergel
- Department of Chemistry, University of California, Berkeley, CA 94720-1460
| | - Matthew C. Clifton
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Juan C. Pizarro
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Jeffrey A. Warner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - David K. Shuh
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Roland K. Strong
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Kenneth N. Raymond
- Department of Chemistry, University of California, Berkeley, CA 94720-1460
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
30
|
Moore EG, Seitz M, Raymond KN. Use of YbIII-centered near-infrared (NIR) luminescence to determine the hydration state of a 3,2-HOPO-based MRI contrast agent. Inorg Chem 2008; 47:8571-3. [PMID: 18729353 DOI: 10.1021/ic801060x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis, structure, and characterization of a [Yb(Tren-Me-3,2-HOPO)(H 2O) 2] complex are reported. As a result of its Yb (III) emission in the near-infrared region, sensitized by the Me-3,2-HOPO chromophore, this complex can be utilized for the first time to determine the hydration state, q, via the luminescence lifetimes and hence the solution structure of these Me-3,2-HOPO-type ligands, which have attracted significant interest in complex with Gd (III) as possible next-generation magnetic resonance imaging contrast agents.
Collapse
Affiliation(s)
- Evan G Moore
- Department of Chemistry, University of California, Berkeley, California 94720, and the Chemical Sciences Division, Glenn T. Seaborg Center, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | | | | |
Collapse
|
31
|
Samuel APS, Moore EG, Melchior M, Xu J, Raymond KN. Water-soluble 2-hydroxyisophthalamides for sensitization of lanthanide luminescence. Inorg Chem 2008; 47:7535-44. [PMID: 18671388 DOI: 10.1021/ic800328g] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of octadentate ligands featuring the 2-hydroxyisophthalamide (IAM) antenna chromophore to sensitize Tb(III) and Eu(III) luminescence has been prepared and characterized. The length of the alkyl amine scaffold that links the four IAM moieties has been varied to investigate the effect of the ligand backbone on the stability and photophysical properties of the Ln(III) complexes. The amine backbones utilized in this study are N,N,N',N'-tetrakis-(2-aminoethyl)-ethane-1,2-diamine [H(2,2)-], N,N,N',N'-tetrakis-(2-aminoethyl)-propane-1,3-diamine [H(3,2)-], and N,N,N',N'-tetrakis-(2-aminoethyl)-butane-1,4-diamine [H(4,2)-]. These ligands also incorporate methoxyethylene [MOE] groups on each of the IAM chromophores to increase their water solubility. The aqueous ligand protonation constants and Tb(III) and Eu(III) formation constants were determined from solution thermodynamic studies. The resulting values indicate that at physiological pH the Eu(III) and Tb(III) complexes of H(2,2)-IAM-MOE and H(4,2)-IAM-MOE are sufficiently stable to prevent dissociation at nanomolar concentrations. The photophysical measurements for the Tb(III) complexes gave overall quantum yield values of 0.56, 0.39, and 0.52 respectively for the complexes with H(2,2)-IAM-MOE, H(3,2)-IAM-MOE, and H(4,2)-IAM-MOE, while the corresponding Eu(III) complexes displayed significantly weaker luminescence, with quantum yield values of 0.0014, 0.0015, and 0.0058, respectively. Analysis of the steady state Eu(III) emission spectra provides insight into the solution symmetries of the complexes. The combined solubility, stability, and photophysical performance of the Tb(III) complexes in particular make them well suited to serve as the luminescent reporter group in high sensitivity time-resolved fluoroimmunoassays.
Collapse
Affiliation(s)
- Amanda P S Samuel
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | | | | | | | | |
Collapse
|
32
|
Abergel RJ, Warner JA, Shuh DK, Raymond KN. Enterobactin protonation and iron release: structural characterization of the salicylate coordination shift in ferric enterobactin. J Am Chem Soc 2007; 128:8920-31. [PMID: 16819888 PMCID: PMC3188320 DOI: 10.1021/ja062046j] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The siderophore enterobactin (Ent) is produced by many species of enteric bacteria to mediate iron uptake. This iron scavenger can be reincorporated by the bacteria as the ferric complex [Fe(III)(Ent)](3)(-) and is subsequently hydrolyzed by an esterase to facilitate intracellular iron release. Recent literature reports on altered protein recognition and binding of modified enterobactin increase the significance of understanding the structural features and solution chemistry of ferric enterobactin. The structure of the neutral protonated ferric enterobactin complex [Fe(III)(H(3)Ent)](0) has been the source of some controversy and confusion in the literature. To demonstrate the proposed change of coordination from the tris-catecholate [Fe(III)(Ent)](3)(-) to the tris-salicylate [Fe(III)(H(3)Ent)](0) upon protonation, the coordination chemistry of two new model compounds N,N',N''-tris[2-(hydroxybenzoyl)carbonyl]cyclotriseryl trilactone (SERSAM) and N,N',N''-tris[2-hydroxy,3-methoxy(benzoyl)carbonyl]cyclotriseryl trilactone (SER(3M)SAM) was examined in solution and solid state. Both SERSAM and SER(3M)SAM form tris-salicylate ferric complexes with spectroscopic and solution thermodynamic properties (with log beta(110)() values of 39 and 38 respectively) similar to those of [Fe(III)(H(3)Ent)](0). The fits of EXAFS spectra of the model ferric complexes and the two forms of ferric enterobactin provided bond distances and disorder factors in the metal coordination sphere for both coordination modes. The protonated [Fe(III)(H(3)Ent)](0) complex (d(Fe)(-)(O) = 1.98 A, sigma(2)(stat)(O) = 0.00351(10) A(2)) exhibits a shorter average Fe-O bond length but a much higher static Debye-Waller factor for the first oxygen shell than the catecholate [Fe(III)(Ent)](3)(-) complex (d(Fe)(-)(O) = 2.00 A, sigma(2)(stat)(O) = 0.00067(14) A(2)). (1)H NMR spectroscopy was used to monitor the amide bond rotation between the catecholate and salicylate geometries using the gallic complexes of enterobactin: [Ga(III)(Ent)](3)(-) and [Ga(III)(H(3)Ent)](0). The ferric salicylate complexes display quasi-reversible reduction potentials from -89 to -551 mV (relative to the normal hydrogen electrode NHE) which supports the feasibility of a low pH iron release mechanism facilitated by biological reductants.
Collapse
Affiliation(s)
- Rebecca J. Abergel
- Contribution from the Department of Chemistry, University of California, Berkeley, CA 94720-1460
| | - Jeffrey A. Warner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - David K. Shuh
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Kenneth N. Raymond
- Contribution from the Department of Chemistry, University of California, Berkeley, CA 94720-1460
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
33
|
Abergel RJ, Raymond KN. Synthesis and thermodynamic evaluation of mixed hexadentate linear iron chelators containing hydroxypyridinone and terephthalamide units. Inorg Chem 2007; 45:3622-31. [PMID: 16634594 PMCID: PMC3685440 DOI: 10.1021/ic052111a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of new linear iron chelators containing hydroxypyridinone and terephthalamide (TAMmeg) moieties have been prepared. All are hexadentate ligands composed of a systematically varied combination of methyl-3,2-hydroxypyridinone and 2,3-dihydroxyterephthalamide binding units; most are based on a spermidine scaffold, but one incorporates the bifunctional 2,3-dihydroxyterephthalamide unit as an integral part of the backbone. Protonation and ferric iron complex formation constants have been determined from solution thermodynamic studies, giving log beta(110) values of 25.7, 30.7, 36.3, 43.8, and 45.0, respectively. The ferric complexes display reversible reduction potentials from -276 to -1032 mV (measured relative to the normal hydrogen electrode) in alkaline solution. The incremental replacement of hydroxypyridinone units by terephthalamide binding groups progressively reduces the ligand acidity, markedly increases the iron-chelate stability, and improves the selectivity for the ferric ion over the ferrous ion. While the majority of iron chelators forming very stable ferric complexes are based on a tripodal backbone such as TREN, the ferric 5-LIO(TAMmeg)(2)(TAM) complex, despite its nontripodal scaffold, is one of the most stable iron complexes yet reported. Moreover, the high affinity for the ferric ion of the discussed linear ligands strongly correlates with their ability to remove iron in vivo.
Collapse
|
34
|
Affiliation(s)
- K.M. Clarke Jurchen
- a Department of Chemistry , University of California at Berkeley , CA 94720-1460, USA
| | - K.N. Raymond
- a Department of Chemistry , University of California at Berkeley , CA 94720-1460, USA
| |
Collapse
|
35
|
Abstract
Synthetic analogues were designed to highlight the effect of the glycine moiety of bacillibactin on the overall stability of the ferric complex as compared to synthetic analogues of enterobactin. Insertion of a variety of amino acids to catecholamide analogues based on a Tren (tris(2-aminoethyl)amine) backbone increased the overall acidity of the ligands, causing an enhancement of the stability of the resulting ferric complex as compared to TRENCAM. Solution thermodynamic behavior of these siderophores and their synthetic analogues was investigated through potentiometric and spectrophotometric titrations. X-ray crystallography, circular dichroism, and molecular modeling were used to determine the chirality and geometry of the ferric complexes of bacillibactin and its analogues. In contrast to the Tren scaffold, addition of a glycine to the catechol chelating arms causes an inversion of the trilactone backbone, resulting in opposite chiralities of the two siderophores and a destabilization of the ferric complex of bacillibactin compared to ferric enterobactin.
Collapse
Affiliation(s)
- Emily A. Dertz
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Jide Xu
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Kenneth N. Raymond
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| |
Collapse
|
36
|
Thompson KH, Barta CA, Orvig C. Metal complexes of maltol and close analogues in medicinal inorganic chemistry. Chem Soc Rev 2006; 35:545-56. [PMID: 16729148 DOI: 10.1039/b416256k] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The family of hydroxypyrones and close congeners, the hydroxypyridinones, is a particularly versatile class of ligands. The most widely investigated for medicinal applications are the 3-hydroxy-4-pyrones and the 1,2- 3,2- and 3,4-hydroxypyridinones. Key features of these ligands are: a six-membered ring, with a ring N or O atom either ortho or para to a ketone group, and two ortho exocyclic oxygen atoms. Readily functionalizable, the hydroxypyrones and hydroxypyridinones allow one to achieve a range of di- and trivalent metallocomplex stabilities and can include tissue or molecular targeting features by design. Research over the past several decades has greatly expanded the array of ligands that are the subject of this critical review. Ligand applications as diverse as iron removal or supplementation, contrast agents in imaging applications, and mobilization of undesirable excess metal ions will be surveyed herein.
Collapse
Affiliation(s)
- Katherine H Thompson
- Medicinal Inorganic Chemistry Group, Chemistry Department, University of British Columbia, Vancouver, BC, Canada V6T 1Z1.
| | | | | |
Collapse
|
37
|
Kalinowski DS, Richardson DR. The Evolution of Iron Chelators for the Treatment of Iron Overload Disease and Cancer. Pharmacol Rev 2005; 57:547-83. [PMID: 16382108 DOI: 10.1124/pr.57.4.2] [Citation(s) in RCA: 559] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The evolution of iron chelators from a range of primordial siderophores and aromatic heterocyclic ligands has lead to the formation of a new generation of potent and efficient iron chelators. For example, various siderophore analogs and synthetic ligands, including ICL670A [4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid], 4'-hydroxydesazadesferrithiocin, and Triapine, have been developed from predecessors and illustrate potent iron-mobilizing or antineoplastic activities. This review focuses on the evolution of iron chelators from initial lead compounds through to the development of novel chelating agents, many of which show great potential to be clinically applied in the treatment of iron overload disease and cancer.
Collapse
Affiliation(s)
- Danuta S Kalinowski
- The Iron Metabolism and Chelation Program, Children's Cancer Institute Australia for Medical Research, Sydney, New South Wales, Australia
| | | |
Collapse
|
38
|
Gorden AEV, Shuh DK, Tiedemann BEF, Wilson RE, Xu J, Raymond KN. Sequestered Plutonium: [PuIV{5LIO(Me-3,2-HOPO)}2]?The First Structurally Characterized Plutonium Hydroxypyridonate Complex. Chemistry 2005; 11:2842-8. [PMID: 15744705 DOI: 10.1002/chem.200401193] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The first single-crystal X-ray diffraction analysis of a hydroxypyridonate plutonium(IV) complex is presented, that of the tetradentate ligand 5LIO(Me-3,2-HOPO) with Pu(IV). The [Pu(IV){5LIO(Me-3,2-HOPO)}(2)] complex crystallizes in the space group Pna2(1) with the asymmetric unit cell containing two unique eight-coordinate plutonium complexes and one perchlorate anion. According to shape measure analysis, the geometry of both Pu centers is closest to a bicapped trigonal prism (C(2v) symmetry, for Pu 1: S(C(2v))=13.48 degrees , S(D(4d))=15.43 degrees , S(D(4d))=16.10 degrees ). The average bond length for the Pu--O(phenolic) is 2.31(4) A, whereas the Pu--O(amide) distances are slightly longer, averaging 2.40(2) A. The preparative chemistry of this compound and the implications of the structure are discussed.
Collapse
Affiliation(s)
- Anne E V Gorden
- Glenn T. Seaborg Center, Chemical and Nuclear Sciences Divisions, Lawrence Berkeley, National Laboratory, and Department of Chemistry, University of California, Berkeley, CA 94720-1460, USA
| | | | | | | | | | | |
Collapse
|
39
|
Senegas JM, Bernardinelli G, Imbert D, Bünzli JCG, Morgantini PY, Weber J, Piguet C. Connecting terminal carboxylate groups in nine-coordinate lanthanide podates: consequences on the thermodynamic, structural, electronic, and photophysical properties. Inorg Chem 2003; 42:4680-95. [PMID: 12870960 DOI: 10.1021/ic034231t] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hydrolysis of terminal (t)butyl-ester groups provides the novel nonadentate podand tris[2-[N-methylcarbamoyl-(6-carboxypyridine-2)-ethyl]amine] (L13) which exists as a mixture of slowly interconverting conformers in solution. At pH = 8.0 in water, its deprotonated form [L13 - 3H](3-) reacts with Ln(ClO(4))(3) to give the poorly soluble and stable podates [Ln(L13 - 3H)] (log(beta(110)) = 6.7-7.0, Ln = La-Lu). The isolated complexes [Ln(L13 - 3H)](H(2)O)(7) (Ln = Eu, 8; Tb, 9; Lu, 10) are isostructural, and their crystal structures show Ln(III) to be nine-coordinate in a pseudotricapped trigonal prismatic site defined by the donor atoms of the three helically wrapped tridentate binding units of L13. The Ln-O(carboxamide) bonds are only marginally longer than the Ln-O(carboxylate) bonds in [Ln(L13 - 3H)], thus producing a regular triple helix around Ln(III) which reverses its screw direction within the covalent Me-TREN tripod. High-resolution emission spectroscopy demonstrates that (i) the replacement of terminal carboxamides with carboxylates induces only minor electronic changes for the metallic site, (ii) the solid-state structure is maintained in water, and (iii) the metal in the podate is efficiently protected from interactions with solvent molecules. The absolute quantum yields obtained for [Eu(L13 - 3H)] (Phi(Eu)(tot)= 1.8 x 10(-3)) and [Tb(L13 - 3H)] (Phi(Eu)(tot)= 8.9 x 10(-3)) in water remain modest and strongly contrast with that obtained for the lanthanide luminescence step (Phi(Eu) = 0.28). Detailed photophysical studies assign this discrepancy to the small energy gap between the ligand-centered singlet ((1)pi pi*) and triplet ((3)pi pi*) states which limits the efficiency of the intersystem crossing process. Theoretical TDDFT calculations suggest that the connection of a carboxylate group to the central pyridine ring prevents the sizable stabilization of the triplet state required for an efficient sensitization process. The thermodynamic and electronic origins of the advantages (stability, lanthanide quantum yield) and drawbacks (solubility, sensitization) brought by the "carboxylate effect" in lanthanide complexes are evaluated for programming predetermined properties in functional devices.
Collapse
Affiliation(s)
- Jean-Michel Senegas
- Department of Inorganic, Analytical and Applied Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|