1
|
Semionova VV, Pozdnyakov IP, Grivin VP, Eltsov IV, Vasilchenko DB, Polyakova EV, Melnikov AA, Chekalin SV, Wang L, Glebov EM. Primary processes in photophysics and photochemistry of a potential light-activated anti-cancer dirhodium complex. Photochem Photobiol Sci 2024; 23:153-162. [PMID: 38066379 DOI: 10.1007/s43630-023-00509-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/09/2023] [Indexed: 02/02/2024]
Abstract
Photophysics and photochemistry of a potential light-activated cytotoxic dirhodium complex [Rh2(µ-O2CCH3)2(bpy)(dppz)](O2CCH3)2, where bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine (Complex 1 or Rh2) in aqueous solutions was studied by means of stationary photolysis and time-resolved methods in time range from hundreds of femtoseconds to microseconds. According to the literature, Complex 1 demonstrates both oxygen-dependent (due to singlet oxygen formation) and oxygen-independent cytotoxicity. Photoexchange of an acetate ligand to a water molecule was the only observed photochemical reaction, which rate was increased by oxygen removal from solutions. Photoexcitation of Complex 1 results in the formation of the lowest triplet electronic excited state, which lifetime is less than 10 ns. This time is too short for diffusion-controlled quenching of the triplet state by dissolved oxygen resulting in 1O2 formation. We proposed that singlet oxygen is produced by photoexcitation of weakly bound van der Waals complexes [Rh2…O2], which are formed in solutions. If this is true, no oxygen-independent light-induced cytotoxicity of Complex 1 exists. Residual cytotoxicity deaerated solutions are caused by the remaining [Rh2…O2] complexes.
Collapse
Affiliation(s)
- Veronica V Semionova
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Ivan P Pozdnyakov
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Vjacheslav P Grivin
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Ilia V Eltsov
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Danila B Vasilchenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Evgeniya V Polyakova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alexei A Melnikov
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russian Federation
- Department of Physics, High School of Economy, Moscow, Russian Federation
| | - Sergei V Chekalin
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russian Federation
| | - Lei Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Evgeni M Glebov
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.
- Novosibirsk State University, Novosibirsk, Russian Federation.
| |
Collapse
|
2
|
Kumar Tarai S, Mandal S, Bhaduri R, Pan A, Biswas P, Bhattacharjee A, Moi SC. Bioactivity, molecular docking and anticancer behavior of pyrrolidine based Pt(II) complexes: Their kinetics, DNA and BSA binding study by spectroscopic methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122059. [PMID: 36410178 DOI: 10.1016/j.saa.2022.122059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The complex [Pt(AEP)Cl2]; C-1 (where, AEP = 1-(2-Aminoethyl) pyrrolidine) and its hydrolyzed diaqua form cis-[Pt(AEP)(H2O)2]2+; C-2 were synthesized for their bioactivity and in vitro kinetic study with bioactive thiol group (-SH) containing ligands (like; L- cysteine and N-ac-L- cysteine) for their biological importance for 'drug reservoir' activity. The Thermal Gravimetric Analysis (TGA) was executed to confirm about the weight loss due to coordinated water molecules at high temperature range. At pH 4.0, the substitution behavior of C-2 with the thiols was studied in pseudo-first order reaction condition. The interaction mechanism of thiols with complex C-2 to their corresponding thiol substituted C-3 [Pt(AEP)(L-cys)] and C-4 [Pt(AEP)(N-ac-L-cys)] (where L-cys = L-cysteine and N-ac-L-cys = N-ac-L- cysteine) were proposed from their thermodynamical activation parameters (ΔH≠ and ΔS≠), which were obtained from Eyring equation. DNA and BSA binding activity of the complexes C-1 to C-4 were investigated by gel electrophoresis technique, spectroscopic titration and viscosity methods. The binding activity of the complexes with DNA and BSA was evaluated using a theoretical approach molecular docking study. The drug-like nature of the complexes is supported by the prediction of activity spectra for substance (PASS) from 2D structure of the Pt(II) complexes. Structural optimization, HOMO-LUMO energy calculation, Molecular electrostatic potential surface, NBO and TD-DFT calculation were executed by using density functional theory (DFT) with Gaussian 09 software package to pre-assessment of biological activity of the complexes. DFT-based descriptors were determined from the HOMO-LUMA energy to be related with the ability of binding affinity of Pt(II) complexes towards DNA and BSA to the formation of their corresponding adducts. The anticancer property of the design complexes were examined on HCT116 (colorectal carcinoma) cancer cell lines and as well as human normal cell NKE (Normal Kidney Epithelial) and compared with the recognised anticancer drug cisplatin. The Reactive Oxygen Species (ROS) production was assessed by DCFDA assay in presence of the Pt(II) complexes.
Collapse
Affiliation(s)
- Swarup Kumar Tarai
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Saikat Mandal
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Rituparna Bhaduri
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Angana Pan
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Pritam Biswas
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Sankar Ch Moi
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India.
| |
Collapse
|
3
|
Mandal S, Reddy B. VP, Mitra I, Mukherjee S, Tarai SK, Bhaduri R, Pan A, Bose K. JC, Ghosh GK, Moi SC. Anticancer activity and biomolecular interaction of Pt(II) complexes: Their synthesis, characterisation and DFT study. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Saikat Mandal
- Department of Chemistry National Institute of Technology Durgapur Durgapur India
| | - Venkata P. Reddy B.
- Department of Chemistry National Institute of Technology Durgapur Durgapur India
| | - Ishani Mitra
- Department of Chemistry National Institute of Technology Durgapur Durgapur India
| | - Subhajit Mukherjee
- Department of Chemistry National Institute of Technology Durgapur Durgapur India
| | - Swarup Kumar Tarai
- Department of Chemistry National Institute of Technology Durgapur Durgapur India
| | - Rituparna Bhaduri
- Department of Chemistry National Institute of Technology Durgapur Durgapur India
| | - Angana Pan
- Department of Chemistry National Institute of Technology Durgapur Durgapur India
| | | | - Goutam Kr. Ghosh
- Department of Chemistry National Institute of Technology Durgapur Durgapur India
| | - Sankar Chandra Moi
- Department of Chemistry National Institute of Technology Durgapur Durgapur India
| |
Collapse
|
4
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
5
|
Smith CB, Days LC, Alajroush DR, Faye K, Khodour Y, Beebe SJ, Holder AA. Photodynamic Therapy of Inorganic Complexes for the Treatment of Cancer †. Photochem Photobiol 2021; 98:17-41. [PMID: 34121188 DOI: 10.1111/php.13467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/10/2021] [Indexed: 01/05/2023]
Abstract
Photodynamic therapy (PDT) is a medicinal tool that uses a photosensitizer and a light source to treat several conditions, including cancer. PDT uses reactive oxygen species such as cytotoxic singlet oxygen (1 O2 ) to induce cell death in cancer cells. Chemotherapy has historically utilized the cytotoxic effects of many metals, especially transition metal complexes. However, chemotherapy is a systemic treatment so all cells in a patient's body are exposed to the same cytotoxic effects. Transition metal complexes have also shown high cytotoxicity as PDT agents. PDT is a potential localized method for treating several cancer types by using inorganic complexes as photosensitizing agents. This review covers several in vitro and in vivo studies, as well as clinical trials that reported on the anticancer properties of inorganic pharmaceuticals used in PDT against different types of cancer.
Collapse
Affiliation(s)
- Chloe B Smith
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Lindsay C Days
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Duaa R Alajroush
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Khadija Faye
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Yara Khodour
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Stephen J Beebe
- Frank Reidy Research Centre for Bioelectrics, Old Dominion University, Norfolk, VA
| | - Alvin A Holder
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| |
Collapse
|
6
|
Lorraine SC, Lawrence MA, Celestine M, Holder AA. Electrochemical response of a Ru(II) benzothiazolyl-2-pyridinecarbothioamide pincer towards carbon dioxide and transfer hydrogenation of aryl ketones in air. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Smithen DA, Monro S, Pinto M, Roque J, Diaz-Rodriguez RM, Yin H, Cameron CG, Thompson A, McFarland SA. Bis[pyrrolyl Ru(ii)] triads: a new class of photosensitizers for metal-organic photodynamic therapy. Chem Sci 2020; 11:12047-12069. [PMID: 33738086 PMCID: PMC7953431 DOI: 10.1039/d0sc04500d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
A new family of ten dinuclear Ru(ii) complexes based on the bis[pyrrolyl Ru(ii)] triad scaffold, where two Ru(bpy)2 centers are separated by a variety of organic linkers, was prepared to evaluate the influence of the organic chromophore on the spectroscopic and in vitro photodynamic therapy (PDT) properties of the compounds. The bis[pyrrolyl Ru(ii)] triads absorbed strongly throughout the visible region, with several members having molar extinction coefficients (ε) ≥ 104 at 600-620 nm and longer. Phosphorescence quantum yields (Φ p) were generally less than 0.1% and in some cases undetectable. The singlet oxygen quantum yields (Φ Δ) ranged from 5% to 77% and generally correlated with their photocytotoxicities toward human leukemia (HL-60) cells regardless of the wavelength of light used. Dark cytotoxicities varied ten-fold, with EC50 values in the range of 10-100 μM and phototherapeutic indices (PIs) as large as 5400 and 260 with broadband visible (28 J cm-2, 7.8 mW cm-2) and 625 nm red (100 J cm-2, 42 mW cm-2) light, respectively. The bis[pyrrolyl Ru(ii)] triad with a pyrenyl linker (5h) was especially potent, with an EC50 value of 1 nM and PI > 27 000 with visible light and subnanomolar activity with 625 nm light (100 J cm-2, 28 mW cm-2). The lead compound 5h was also tested in a tumor spheroid assay using the HL60 cell line and exhibited greater photocytotoxicity in this more resistant model (EC50 = 60 nM and PI > 1200 with 625 nm light) despite a lower dark cytotoxicity. The in vitro PDT effects of 5h extended to bacteria, where submicromolar EC50 values and PIs >300 against S. mutans and S. aureus were obtained with visible light. This activity was attenuated with 625 nm red light, but PIs were still near 50. The ligand-localized 3ππ* state contributed by the pyrenyl linker of 5h likely plays a key role in its phototoxic effects toward cancer cells and bacteria.
Collapse
Affiliation(s)
- Deborah A Smithen
- Department of Chemistry , Dalhousie University , P. O. Box 15000 , Halifax , NS B3H 4R2 , Canada .
| | - Susan Monro
- Department of Chemistry , Acadia University , Wolfville , NS B4P 2R6 , Canada
| | - Mitch Pinto
- Department of Chemistry , Acadia University , Wolfville , NS B4P 2R6 , Canada
| | - John Roque
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , PO Box 26170 , Greensboro , NC 27402-6170 , USA
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , 700 Planetarium Pl , Arlington , TX 76019-0065 , USA .
| | - Roberto M Diaz-Rodriguez
- Department of Chemistry , Dalhousie University , P. O. Box 15000 , Halifax , NS B3H 4R2 , Canada .
| | - Huimin Yin
- Department of Chemistry , Acadia University , Wolfville , NS B4P 2R6 , Canada
| | - Colin G Cameron
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , 700 Planetarium Pl , Arlington , TX 76019-0065 , USA .
| | - Alison Thompson
- Department of Chemistry , Dalhousie University , P. O. Box 15000 , Halifax , NS B3H 4R2 , Canada .
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , 700 Planetarium Pl , Arlington , TX 76019-0065 , USA .
| |
Collapse
|
8
|
Oliveira VA, Terenzi H, Menezes LB, Chaves OA, Iglesias BA. Evaluation of DNA-binding and DNA-photocleavage ability of tetra-cationic porphyrins containing peripheral [Ru(bpy)2Cl]+ complexes: Insights for photodynamic therapy agents. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 211:111991. [DOI: 10.1016/j.jphotobiol.2020.111991] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/02/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
|
9
|
Liu XW, Liu NY, Deng YQ, Wang S, Liu T, Tang YC, Chen YD, Lu JL. DNA photocleavage, topoisomerase I inhibition, and cytotoxicities of two ruthenium complexes containing asymmetry ligand. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1738033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xue-Wen Liu
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ning-Yi Liu
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, China
| | - Yuan-Qing Deng
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, China
| | - Shan Wang
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, China
| | - Ting Liu
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, China
| | - Yu-Cai Tang
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yuan-Dao Chen
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, China
| | - Ji-Lin Lu
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Beebe SJ, Celestine MJ, Bullock JL, Sandhaus S, Arca JF, Cropek DM, Ludvig TA, Foster SR, Clark JS, Beckford FA, Tano CM, Tonsel-White EA, Gurung RK, Stankavich CE, Tse-Dinh YC, Jarrett WL, Holder AA. Synthesis, characterization, DNA binding, topoisomerase inhibition, and apoptosis induction studies of a novel cobalt(III) complex with a thiosemicarbazone ligand. J Inorg Biochem 2020; 203:110907. [PMID: 31715377 PMCID: PMC7053658 DOI: 10.1016/j.jinorgbio.2019.110907] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 01/09/2023]
Abstract
In this study, 9-anthraldehyde-N(4)-methylthiosemicarbazone (MeATSC) 1 and [Co(phen)2(O2CO)]Cl·6H2O 2 (where phen = 1,10-phenanthroline) were synthesized. [Co(phen)2(O2CO)]Cl·6H2O 2 was used to produce anhydrous [Co(phen)2(H2O)2](NO3)33. Subsequently, anhydrous [Co(phen)2(H2O)2](NO3)33 was reacted with MeATSC 1 to produce [Co(phen)2(MeATSC)](NO3)3·1.5H2O·C2H5OH 4. The ligand, MeATSC 1 and all complexes were characterized by elemental analysis, FT IR, UV-visible, and multinuclear NMR (1H, 13C, and 59Co) spectroscopy, along with HRMS, and conductivity measurements, where appropriate. Interactions of MeATSC 1 and complex 4 with calf thymus DNA (ctDNA) were investigated by carrying out UV-visible spectrophotometric studies. UV-visible spectrophotometric studies revealed weak interactions between ctDNA and the analytes, MeATSC 1 and complex 4 (Kb = 8.1 × 105 and 1.6 × 104 M-1, respectively). Topoisomerase inhibition assays and cleavage studies proved that complex 4 was an efficient catalytic inhibitor of human topoisomerases I and IIα. Based upon the results obtained from the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay on 4T1-luc metastatic mammary breast cancer cells (IC50 = 34.4 ± 5.2 μM when compared to IC50 = 13.75 ± 1.08 μM for the control, cisplatin), further investigations into the molecular events initiated by exposure to complex 4 were investigated. Studies have shown that complex 4 activated both the apoptotic and autophagic signaling pathways in addition to causing dissipation of the mitochondrial membrane potential (ΔΨm). Furthermore, activation of cysteine-aspartic proteases3 (caspase 3) in a time- and concentration-dependent manner coupled with the ΔΨm, studies implicated the intrinsic apoptotic pathway as the major regulator of cell death mechanism.
Collapse
Affiliation(s)
- Stephen J Beebe
- The Frank Reidy Center for Bioelectrics, 4211 Monarch Way, Suite 300, Norfolk, VA 23529, USA
| | - Michael J Celestine
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Jimmie L Bullock
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Shayna Sandhaus
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Jessa Faye Arca
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Donald M Cropek
- U.S. Army Corps of Engineers, Construction Engineering Research Laboratory, Champaign, IL 61822, USA
| | - Tekettay A Ludvig
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Sydney R Foster
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Jasmine S Clark
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Floyd A Beckford
- The University of Virginia's College at Wise, 1 College Avenue, Wise, VA 24293, USA
| | - Criszcele M Tano
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Elizabeth A Tonsel-White
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Raj K Gurung
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Courtney E Stankavich
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - William L Jarrett
- School of Polymers and High-Performance Materials, The University of Southern Mississippi, 118 College Drive, #5050, Hattiesburg, MS 39406, USA
| | - Alvin A Holder
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA.
| |
Collapse
|
11
|
Influence of steric and electronic effect of carrier ligand on kinetics & mechanism of Pt(II) complexes with l-cysteine and its substituted derivatives: Their experimental and DFT-based theoretical study. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Felder PS, Keller S, Gasser G. Polymetallic Complexes for Applications as Photosensitisers in Anticancer Photodynamic Therapy. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Patrick S. Felder
- Chimie ParisTechPSL UniversityCNRSInstitute of Chemistry for Life and Health SciencesLaboratory for Inorganic Chemical BiologyF‐75005 Paris France
| | - Sarah Keller
- Chimie ParisTechPSL UniversityCNRSInstitute of Chemistry for Life and Health SciencesLaboratory for Inorganic Chemical BiologyF‐75005 Paris France
| | - Gilles Gasser
- Chimie ParisTechPSL UniversityCNRSInstitute of Chemistry for Life and Health SciencesLaboratory for Inorganic Chemical BiologyF‐75005 Paris France
| |
Collapse
|
13
|
Kuncewicz J, Dąbrowski JM, Kyzioł A, Brindell M, Łabuz P, Mazuryk O, Macyk W, Stochel G. Perspectives of molecular and nanostructured systems with d- and f-block metals in photogeneration of reactive oxygen species for medical strategies. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Type I photodynamic therapy by organic–inorganic hybrid materials: From strategies to applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.05.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Monro S, Colón KL, Yin H, Roque J, Konda P, Gujar S, Thummel RP, Lilge L, Cameron CG, McFarland SA. Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433. Chem Rev 2019; 119:797-828. [PMID: 30295467 PMCID: PMC6453754 DOI: 10.1021/acs.chemrev.8b00211] [Citation(s) in RCA: 854] [Impact Index Per Article: 142.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transition metal complexes are of increasing interest as photosensitizers in photodynamic therapy (PDT) and, more recently, for photochemotherapy (PCT). In recent years, Ru(II) polypyridyl complexes have emerged as promising systems for both PDT and PCT. Their rich photochemical and photophysical properties derive from a variety of excited-state electronic configurations accessible with visible and near-infrared light, and these properties can be exploited for both energy- and electron-transfer processes that can yield highly potent oxygen-dependent and/or oxygen-independent photobiological activity. Selected examples highlight the use of rational design in coordination chemistry to control the lowest-energy triplet excited-state configurations for eliciting a particular type of photoreactivity for PDT and/or PCT effects. These principles are also discussed in the context of the development of TLD1433, the first Ru(II)-based photosensitizer for PDT to enter a human clinical trial. The design of TLD1433 arose from a tumor-centered approach, as part of a complete PDT package that includes the light component and the protocol for treating non-muscle invasive bladder cancer. Briefly, this review summarizes the challenges to bringing PDT into mainstream cancer therapy. It considers the chemical and photophysical solutions that transition metal complexes offer, and it puts into context the multidisciplinary effort needed to bring a new drug to clinical trial.
Collapse
Affiliation(s)
- Susan Monro
- Department of Chemistry, Acadia University, Wolfville, Nova
Scotia B4P 2R6, Canada
| | - Katsuya L. Colón
- Department of Chemistry and Biochemistry, The University of
North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Huimin Yin
- Department of Chemistry, Acadia University, Wolfville, Nova
Scotia B4P 2R6, Canada
| | - John Roque
- Department of Chemistry and Biochemistry, The University of
North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie
University Halifax, Nova Scotia, Canada B3H 1X5
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie
University Halifax, Nova Scotia, Canada B3H 1X5
- Department of Pathology, Dalhousie University, Halifax,
Nova Scotia, Canada B3H 1X5
- Department of Biology, Dalhousie University, Halifax, Nova
Scotia, Canada B3H 1X5
- Centre for Innovative and Collaborative Health Services
Research, IWK Health Centre, Halifax, Nova Scotia, Canada B3K 6R8
| | - Randolph P. Thummel
- Department of Chemistry, University of Houston, Houston,
Texas 77204-5003, United States
| | - Lothar Lilge
- Princess Margaret Cancer Centre, University Health Network,
101 College Street, Toronto, Ontario, Canada M6R1Z7
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of
North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Sherri A. McFarland
- Department of Chemistry, Acadia University, Wolfville, Nova
Scotia B4P 2R6, Canada
- Department of Chemistry and Biochemistry, The University of
North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
- Department of Pathology, Dalhousie University, Halifax,
Nova Scotia, Canada B3H 1X5
| |
Collapse
|
16
|
Mahata S, Mukherjee S, Tarai SK, Pan A, Mitra I, Pal S, Maitra S, Moi SC. Synthesis and characterization of Pt(ii)-based potent anticancer agents with minimum normal cell toxicity: their bio-activity and DNA-binding properties. NEW J CHEM 2019. [DOI: 10.1039/c9nj03108a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Cis-Pt(ii)-dichloro complex and its different intercellular derivates show good DNA-binding, comparable anticancer properties and less normal cell toxicity than cisplatin, and initiates cell death through apoptosis.
Collapse
Affiliation(s)
- Sujay Mahata
- Department of Chemistry
- National Institute of Technology Durgapur
- Durgapur-713209
- India
| | - Subhajit Mukherjee
- Department of Chemistry
- National Institute of Technology Durgapur
- Durgapur-713209
- India
| | - Swarup Kumar Tarai
- Department of Chemistry
- National Institute of Technology Durgapur
- Durgapur-713209
- India
| | - Angana Pan
- Department of Chemistry
- National Institute of Technology Durgapur
- Durgapur-713209
- India
| | - Ishani Mitra
- Department of Chemistry
- National Institute of Technology Durgapur
- Durgapur-713209
- India
| | - Soumojit Pal
- Department of Zoology
- Visva-Bharati University
- Santinikatan
- India
| | - Sudipta Maitra
- Department of Zoology
- Visva-Bharati University
- Santinikatan
- India
| | - Sankar Ch. Moi
- Department of Chemistry
- National Institute of Technology Durgapur
- Durgapur-713209
- India
| |
Collapse
|
17
|
Rodríguez-Corrales JÁ, Wang J, Winkel BSJ, Brewer KJ. Mechanistic Investigation into DNA Modification by a Ru II ,Rh III Bimetallic Complex. Chembiochem 2018; 19:2216-2224. [PMID: 30088850 DOI: 10.1002/cbic.201800369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Indexed: 11/09/2022]
Abstract
Despite significant progress in the treatment of cancer, there remains an urgent need for more effective therapies that also have less impact on patient wellbeing. Photodynamic therapy employs targeted light activation of a photosensitizer in selected tissues, thereby reducing off-target toxicity. Our group previously reported a RuII ,RhIII bimetallic architecture that displays multifunctional covalent photomodification of DNA in the therapeutic window in an oxygen-independent manner, features that are essential for treating deep and hypoxic tumors. Herein, we explore the mechanism by which a new analogue, [(phen)2 Ru(dpp)Rh(phen)Cl2 ]3+ , or RuII -RhIII , interacts with DNA. We established that RuII -RhIII exhibits "light switch" behavior in the presence of DNA, undergoing strong electrostatic interactions that might involve groove binding. Furthermore, these noncovalent interactions play a major role in the covalent photobinding and photocleavage of DNA, which occur according to an oxygen-independent mechanism. Polymerase chain reaction (PCR) revealed that covalent modification of DNA by RuII -RhIII , especially photobinding, is critical to inhibiting amplification, thus suggesting that the complex could exert its toxic activity by interfering with DNA replication in cells. This new structural motif, with phenanthroline at all three terminal ligand positions, has a number of properties that are promising for the continued refinement of photodynamic-therapy strategies.
Collapse
Affiliation(s)
| | - Jing Wang
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061-0212, USA
| | - Brenda S J Winkel
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0212, USA
| | - Karen J Brewer
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061-0212, USA
| |
Collapse
|
18
|
Mitra I, Mukherjee S, Reddy B. VP, Chatterjee SK, Mukherjee S, Ghosh S, Chatterji U, Moi SC. DNA/protein interactions, cell cycle arrest and apoptosis study of potent cytotoxic Pt(II) complexes with reduced side-effects. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Mukherjee S, Mitra I, Reddy B. VP, Fouzder C, Mukherjee S, Ghosh S, Chatterji U, Moi SC. Effect of Pt(II) complexes on cancer and normal cells compared to clinically used anticancer drugs: Cell cycle analysis, apoptosis and DNA/BSA binding study. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Floris B, Donzello MP, Ercolani C, Viola E. The chameleon-like coordinating ability of 2,3-di(pyridyl)pyrazine-type ligands. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Manbeck GF, Fujita E, Brewer KJ. Tetra- and Heptametallic Ru(II),Rh(III) Supramolecular Hydrogen Production Photocatalysts. J Am Chem Soc 2017; 139:7843-7854. [DOI: 10.1021/jacs.7b02142] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Gerald F. Manbeck
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Etsuko Fujita
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Karen J. Brewer
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
22
|
Amarante D, Cherian C, Megehee EG. Synthesis and electronic characterization of mixed diimine ligand rhodium(III) complexes using a versatile triflate precursor. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Samanta A, Mitra I, Reddy B. VP, Mukherjee S, Mahata S, Linert W, Misini B, Bhattacharjee A, Dhabal S, Ghosh GK, Moi SC. Kinetics and mechanism of interaction of Pt(II) complex with bio-active ligands and in vitro Pt(II)-sulfur adduct formation in aqueous medium: bio-activity and computational study. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1283025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Avradeep Samanta
- Department of Chemistry, National Institute of Technology, Durgapur, India
| | - Ishani Mitra
- Department of Chemistry, National Institute of Technology, Durgapur, India
| | | | - Subhajit Mukherjee
- Department of Chemistry, National Institute of Technology, Durgapur, India
| | - Sujay Mahata
- Department of Chemistry, National Institute of Technology, Durgapur, India
| | - Wolfgang Linert
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
| | - Bashkim Misini
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
| | | | - Sukhamoy Dhabal
- Department of Bio-Technology, National Institute of Technology, Durgapur, India
| | - Goutam Kr. Ghosh
- Department of Chemistry, National Institute of Technology, Durgapur, India
| | - Sankar Ch. Moi
- Department of Chemistry, National Institute of Technology, Durgapur, India
| |
Collapse
|
24
|
Visible light-induced cytotoxicity of Ru,Os–polyazine complexes towards rat malignant glioma. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.05.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Abbas Z, Dasari S, Patra AK. Ternary Eu(iii) and Tb(iii) β-diketonate complexes containing chalcones: photophysical studies and biological outlook. RSC Adv 2017. [DOI: 10.1039/c7ra08543e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ternary Eu(iii) and Tb(iii) β-diketonate complexes containing chalcones were studied for their structures, photophysical properties, interactions with DNA and serum protein, and photo-induced DNA cleavage activity.
Collapse
Affiliation(s)
- Zafar Abbas
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Srikanth Dasari
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Ashis K. Patra
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
26
|
Paitandi RP, Singh RS, Mukhopadhyay S, Sharma G, Koch B, Vishnoi P, Pandey DS. Synthesis, characterization, DNA binding and cytotoxicity of fluoro-dipyrrin based arene ruthenium(II) complexes. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Cytotoxic, DNA binding and drug reservoir property of Pt(II)–sulfur complexes: In-vitro kinetics, mechanism with bio-relevant molecules in aqueous medium and a theoretical approach. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Zhang Y, Zhou Q, Zheng Y, Li K, Jiang G, Hou Y, Zhang B, Wang X. DNA Photocleavage by Non-innocent Ligand-Based Ru(II) Complexes. Inorg Chem 2016; 55:4296-300. [DOI: 10.1021/acs.inorgchem.6b00028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yangyang Zhang
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qianxiong Zhou
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Yue Zheng
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ke Li
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Guoyu Jiang
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Yuanjun Hou
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Baowen Zhang
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Xuesong Wang
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| |
Collapse
|
29
|
Mitra I, Mukherjee S, Reddy B. VP, Dasgupta S, Bose K JC, Mukherjee S, Linert W, Moi SC. Benzimidazole based Pt(ii) complexes with better normal cell viability than cisplatin: synthesis, substitution behavior, cytotoxicity, DNA binding and DFT study. RSC Adv 2016. [DOI: 10.1039/c6ra17788c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Water soluble Pt(ii) complexes with higher viability towards normal cells and comparable cytotoxicity to cancer cells as compared to cisplatin.
Collapse
Affiliation(s)
- Ishani Mitra
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209
- India
| | - Subhajit Mukherjee
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209
- India
| | | | - Subrata Dasgupta
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209
- India
| | - Jagadeesh C. Bose K
- Department of Bio-Technology
- National Institute of Technology
- Durgapur-713209
- India
| | | | - Wolfgang Linert
- Institute of Applied Synthetic Chemistry
- Vienna University of Technology
- Austria
| | - Sankar Ch. Moi
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209
- India
| |
Collapse
|
30
|
Sainuddin T, McCain J, Pinto M, Yin H, Gibson J, Hetu M, McFarland SA. Organometallic Ru(II) Photosensitizers Derived from π-Expansive Cyclometalating Ligands: Surprising Theranostic PDT Effects. Inorg Chem 2015; 55:83-95. [DOI: 10.1021/acs.inorgchem.5b01838] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Tariq Sainuddin
- Department of Chemistry, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Julia McCain
- Department of Chemistry, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Mitch Pinto
- Department of Chemistry, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Huimin Yin
- Department of Chemistry, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Jordan Gibson
- Department of Chemistry, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Marc Hetu
- Department of Chemistry, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Sherri A. McFarland
- Department of Chemistry, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada
| |
Collapse
|
31
|
Nickel(II) and cobalt(II) complexes of lidocaine: Synthesis, structure and comparative in vitro evaluations of biological perspectives. Eur J Med Chem 2015; 103:516-29. [DOI: 10.1016/j.ejmech.2015.09.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/14/2015] [Accepted: 09/12/2015] [Indexed: 11/23/2022]
|
32
|
Sanchez O, González S, Fernández M, Higuera-Padilla AR, Leon Y, Coll D, Vidal A, Taylor P, Urdanibia I, Goite MC, Castro W. Novel silver(I)– and gold(I)–N-heterocyclic carbene complexes. Synthesis, characterization and evaluation of biological activity against tumor cells. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
33
|
Huo Y, Wang C, Lu J, Hu S, Li X, Zhang L. A novel trimeric Zn (II) complex based on 8-hydroxyquinoline with trifluoromethylbenzene group: Synthesis, crystal structure, photophysical properties and DNA binding. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Swavey S, DeBeer M, Li K. Photoinduced Interactions of Supramolecular Ruthenium(II) Complexes with Plasmid DNA: Synthesis and Spectroscopic, Electrochemical, and DNA Photocleavage Studies. Inorg Chem 2015; 54:3139-47. [DOI: 10.1021/ic502340p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Shawn Swavey
- SupraMolecular Applied Research
and Technology Center, Department of Chemistry, University of Dayton, 300 College Park, Dayton, Ohio 45469-2357, United States
| | - Madeleine DeBeer
- SupraMolecular Applied Research
and Technology Center, Department of Chemistry, University of Dayton, 300 College Park, Dayton, Ohio 45469-2357, United States
| | - Kaiyu Li
- SupraMolecular Applied Research
and Technology Center, Department of Chemistry, University of Dayton, 300 College Park, Dayton, Ohio 45469-2357, United States
| |
Collapse
|
35
|
Knoll JD, Turro C. Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy. Coord Chem Rev 2015; 282-283:110-126. [PMID: 25729089 PMCID: PMC4343038 DOI: 10.1016/j.ccr.2014.05.018] [Citation(s) in RCA: 320] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The use of visible light to produce highly selective and potent drugs through photodynamic therapy (PDT) holds much potential in the treatment of cancer. PDT agents can be designed to follow an O2-dependent mechanism by producing highly reactive species such as 1O2 and/or an O2 independent mechanism through processes such as excited state electron transfer, covalent binding to DNA or photoinduced drug delivery. Ru(II)-polypyridyl and Rh2(II,II) complexes represent an important class of compounds that can be tailored to exhibit desired photophysical properties and photochemical reactivity by judicious selection of the ligand set. Complexes with relatively long-lived excited states and planar, intercalating ligands localize on the DNA strand and photocleave DNA through 1O2 production or guanine oxidation by the excited state of the chromophore. Photoinduced ligand substitution occurs through the population of triplet metal centered (3MC) excited states and facilitates covalent binding of the metal complex to DNA in a mode similar to cisplatin. Ligand photodissociation also provides a route to selective drug delivery. The ability to construct metal complexes with desired light absorbing and excited state properties by ligand variation enables the design of PDT agents that can potentially provide combination therapy from a single metal complex.
Collapse
Affiliation(s)
- Jessica D. Knoll
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
36
|
Shi G, Monro S, Hennigar R, Colpitts J, Fong J, Kasimova K, Yin H, DeCoste R, Spencer C, Chamberlain L, Mandel A, Lilge L, McFarland SA. Ru(II) dyads derived from α-oligothiophenes: A new class of potent and versatile photosensitizers for PDT. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.04.012] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Zheng Y, Zhou Q, Lei W, Hou Y, Li K, Chen Y, Zhang B, Wang X. DNA photocleavage in anaerobic conditions by a Ru(ii) complex: a new mechanism. Chem Commun (Camb) 2015; 51:428-30. [DOI: 10.1039/c4cc06552b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Photoinduced homolytic cleavage of the Ru–O bond of a novel Ru(ii) complex leads to formation of ligand-based reactive radicals capable of breaking DNA in an oxygen-dependent manner and Ru fragments capable of binding DNA covalently.
Collapse
Affiliation(s)
- Yue Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Qianxiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Wanhua Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yuanjun Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Ke Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yongjie Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Baowen Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xuesong Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
38
|
Sorsche D, Pehlken C, Baur C, Rommel S, Kastner K, Streb C, Rau S. Novel phenanthroline–diaryldiazadiene ligands with heteroditopic coordination spheres. Dalton Trans 2015; 44:15404-7. [DOI: 10.1039/c5dt02383a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Twisted and colorful: the two first derivatives of the potential N4 bridging ligand scaffold 1,10-phenanthroline-5,6-diaryldiazadiene and a first, selectively phenanthroline coordinated iridium(iii) complex present themselves with distinct electronic and structural peculiarities.
Collapse
Affiliation(s)
- Dieter Sorsche
- Ulm University
- Institute of Inorganic Chemistry I
- 89081 Ulm
- Germany
| | | | - Christian Baur
- Ulm University
- Institute of Inorganic Chemistry I
- 89081 Ulm
- Germany
| | - Sebastian Rommel
- Ulm University
- Institute of Inorganic Chemistry I
- 89081 Ulm
- Germany
| | | | - Carsten Streb
- Ulm University
- Institute of Inorganic Chemistry I
- 89081 Ulm
- Germany
| | - Sven Rau
- Ulm University
- Institute of Inorganic Chemistry I
- 89081 Ulm
- Germany
| |
Collapse
|
39
|
Nakabayashi Y, Nakamura H, Kubota Y, Morimoto M, Kawasaki T, Nakai M, Yamauchi O. DNA interaction with dipolar ruthenium(II) ammine complexes containing 4,4′-bipyridinium as photochemotherapeutic agents. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.07.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Holder AA, Taylor P, Magnusen AR, Moffett ET, Meyer K, Hong Y, Ramsdale SE, Gordon M, Stubbs J, Seymour LA, Acharya D, Weber RT, Smith PF, Dismukes GC, Ji P, Menocal L, Bai F, Williams JL, Cropek DM, Jarrett WL. Preliminary anti-cancer photodynamic therapeutic in vitro studies with mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes. Dalton Trans 2013; 42:11881-99. [PMID: 23783642 PMCID: PMC3751419 DOI: 10.1039/c3dt50547b] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report the synthesis and characterisation of mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes, which were used as potential photodynamic therapeutic agents for melanoma cell growth inhibition. The novel complexes, [Ru(pbt)2(phen2DTT)](PF6)2·1.5H2O 1 (where phen2DTT = 1,4-bis(1,10-phenanthrolin-5-ylsulfanyl)butane-2,3-diol and pbt = 2-(2'-pyridyl)benzothiazole) and [Ru(pbt)2(tpphz)](PF6)2·3H2O 2 (where tpphz = tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine) were synthesised and characterised. Compound 1 was reacted with [VO(sal-L-tryp)(H2O)] (where sal-L-tryp = N-salicylidene-L-tryptophanate) to produce [Ru(pbt)2(phen2DTT)VO(sal-L-tryp)](PF6)2·5H2O 4; while [VO(sal-L-tryp)(H2O)] was reacted with compound 2 to produce [Ru(pbt)2(tpphz)VO(sal-L-tryp)](PF6)2·6H2O 3. All complexes were characterised by elemental analysis, HRMS, ESI MS, UV-visible absorption, ESR spectroscopy, and cyclic voltammetry, where appropriate. In vitro cell toxicity studies (with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay) via dark and light reaction conditions were carried out with sodium diaqua-4,4',4'',4''' tetrasulfophthalocyaninecobaltate(II) (Na4[Co(tspc)(H2O)2]), [VO(sal-L-tryp)(phen)]·H2O, and the chloride salts of complexes 3 and 4. Such studies involved A431, human epidermoid carcinoma cells; human amelanotic malignant melanoma cells; and HFF, non-cancerous human skin fibroblast cells. Both chloride salts of complexes 3 and 4 were found to be more toxic to melanoma cells than to non-cancerous fibroblast cells, and preferentially led to apoptosis of the melanoma cells over non-cancerous skin cells. The anti-cancer property of the chloride salts of complexes 3 and 4 was further enhanced when treated cells were exposed to light, while no such effect was observed on non-cancerous skin fibroblast cells. ESR and (51)V NMR spectroscopic studies were also used to assess the stability of the chloride salts of complexes 3 and 4 in aqueous media at pH 7.19. This research illustrates the potential for using mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes to fight skin cancer.
Collapse
Affiliation(s)
- Alvin A. Holder
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Patrick Taylor
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Anthony R. Magnusen
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Erick T. Moffett
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Kyle Meyer
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469-2320, U.S.A
| | - Yiling Hong
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469-2320, U.S.A
| | - Stuart E. Ramsdale
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Michelle Gordon
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Javelyn Stubbs
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Luke A. Seymour
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, # 5043, Hattiesburg, Mississippi 39406-0001, U.S.A. , telephone: 601-266-4767, and fax: 601-266-6075
| | - Dhiraj Acharya
- Department of Biological Sciences, The University of Southern Mississippi, MS 39406, U.S.A
| | - Ralph T. Weber
- EPR Division Bruker BioSpin, 44 Manning Road, Billerica, MA 01821, U.S.A
| | - Paul F. Smith
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, U.S.A
| | - G. Charles Dismukes
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, U.S.A
| | - Ping Ji
- Department of Medicine, Stony Brook University, HSC T-17 room 080, Stony Brook, NY 11794-8175, U.S.A
| | - Laura Menocal
- Department of Medicine, Stony Brook University, HSC T-17 room 080, Stony Brook, NY 11794-8175, U.S.A
| | - Fengwei Bai
- Department of Biological Sciences, The University of Southern Mississippi, MS 39406, U.S.A
| | - Jennie L. Williams
- Department of Medicine, Stony Brook University, HSC T-17 room 080, Stony Brook, NY 11794-8175, U.S.A
| | - Donald M. Cropek
- U.S. Army Corps of Engineers, Construction Engineering Research Laboratory, Champaign, IL 61822, U.S.A
| | - William L. Jarrett
- School of Polymers and High-Performance Materials, The University of Southern Mississippi, 118 College Drive, #5050, Hattiesburg, MS 39406-0076, U.S.A
| |
Collapse
|
41
|
Photoinitiated electron collection in polyazine chromophores coupled to water reduction catalysts for solar H2 production. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.10.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Ali BF, Zaghal MH, Mhaidat RM, Qaseer HA, El-Qisiari AK. Substitution reactions of cis-dichlorobis{2-(2′-pyridyl)quinoline}rhodium(III) chloride. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.02.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Wang J, Newman J, Higgins SLH, Brewer KM, Winkel BSJ, Brewer KJ. Red-Light-Induced Inhibition of DNA Replication and Amplification by PCR with an Os/Rh Supramolecule. Angew Chem Int Ed Engl 2012; 52:1262-5. [DOI: 10.1002/anie.201207083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Indexed: 01/18/2023]
|
44
|
Wang J, Newman J, Higgins SLH, Brewer KM, Winkel BSJ, Brewer KJ. Red-Light-Induced Inhibition of DNA Replication and Amplification by PCR with an Os/Rh Supramolecule. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201207083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Wang J, Zigler DF, Hurst N, Othee H, Winkel BS, Brewer KJ. A new, bioactive structural motif: Visible light induced DNA photobinding and oxygen independent photocleavage by RuII, RhIII bimetallics. J Inorg Biochem 2012; 116:135-9. [DOI: 10.1016/j.jinorgbio.2012.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 01/21/2023]
|
46
|
Burya SJ, Palmer AM, Gallucci JC, Turro C. Photoinduced Ligand Exchange and Covalent DNA Binding by Two New Dirhodium Bis-Amidato Complexes. Inorg Chem 2012; 51:11882-90. [DOI: 10.1021/ic3017886] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Scott J. Burya
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Alycia M. Palmer
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Judith C. Gallucci
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Claudia Turro
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United
States
| |
Collapse
|
47
|
Schulz M, Karnahl M, Schwalbe M, Vos JG. The role of the bridging ligand in photocatalytic supramolecular assemblies for the reduction of protons and carbon dioxide. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.02.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Hussain A, Gadadhar S, Goswami TK, Karande AA, Chakravarty AR. Photoactivated DNA cleavage and anticancer activity of pyrenyl-terpyridine lanthanide complexes. Eur J Med Chem 2012; 50:319-31. [DOI: 10.1016/j.ejmech.2012.02.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 01/02/2023]
|
49
|
Zhu MC, Dai L, Gao EJ, Lin L, Wang B, Liu L. Synthesis, characterization and cytotoxicity of a carboxylic ligand 2,2-bis(3-phenylpropyl) malonic acid and a corresponding Mn(ii) complex. Dalton Trans 2012; 41:13352-8. [DOI: 10.1039/c2dt31635h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Chakravarty AR, Roy M. Photoactivated DNA Cleavage and Anticancer Activity of 3d Metal Complexes. PROGRESS IN INORGANIC CHEMISTRY 2011. [DOI: 10.1002/9781118148235.ch3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|