1
|
Queffélec C, Pati PB, Pellegrin Y. Fifty Shades of Phenanthroline: Synthesis Strategies to Functionalize 1,10-Phenanthroline in All Positions. Chem Rev 2024; 124:6700-6902. [PMID: 38747613 DOI: 10.1021/acs.chemrev.3c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
1,10-Phenanthroline (phen) is one of the most popular ligands ever used in coordination chemistry due to its strong affinity for a wide range of metals with various oxidation states. Its polyaromatic structure provides robustness and rigidity, leading to intriguing features in numerous fields (luminescent coordination scaffolds, catalysis, supramolecular chemistry, sensors, theranostics, etc.). Importantly, phen offers eight distinct positions for functional groups to be attached, showcasing remarkable versatility for such a simple ligand. As a result, phen has become a landmark molecule for coordination chemists, serving as a must-use ligand and a versatile platform for designing polyfunctional arrays. The extensive use of substituted phenanthroline ligands with different metal ions has resulted in a diverse array of complexes tailored for numerous applications. For instance, these complexes have been utilized as sensitizers in dye-sensitized solar cells, as luminescent probes modified with antibodies for biomaterials, and in the creation of elegant supramolecular architectures like rotaxanes and catenanes, exemplified by Sauvage's Nobel Prize-winning work in 2016. In summary, phen has found applications in almost every facet of chemistry. An intriguing aspect of phen is the specific reactivity of each pair of carbon atoms ([2,9], [3,8], [4,7], and [5,6]), enabling the functionalization of each pair with different groups and leading to polyfunctional arrays. Furthermore, it is possible to differentiate each position in these pairs, resulting in non-symmetrical systems with tremendous versatility. In this Review, the authors aim to compile and categorize existing synthetic strategies for the stepwise polyfunctionalization of phen in various positions. This comprehensive toolbox will aid coordination chemists in designing virtually any polyfunctional ligand. The survey will encompass seminal work from the 1950s to the present day. The scope of the Review will be limited to 1,10-phenanthroline, excluding ligands with more intracyclic heteroatoms or fused aromatic cycles. Overall, the primary goal of this Review is to highlight both old and recent synthetic strategies that find applicability in the mentioned applications. By doing so, the authors hope to establish a first reference for phenanthroline synthesis, covering all possible positions on the backbone, and hope to inspire all concerned chemists to devise new strategies that have not yet been explored.
Collapse
Affiliation(s)
| | | | - Yann Pellegrin
- Nantes Université, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
2
|
Gimeno L, Blart E, Rebilly JN, Coupeau M, Allain M, Roisnel T, Quarré de Verneuil A, Gourlaouen C, Daniel C, Pellegrin Y. Non-Symmetrical Sterically Challenged Phenanthroline Ligands and Their Homoleptic Copper(I) Complexes with Improved Excited-State Properties. Chemistry 2020; 26:11887-11899. [PMID: 32492221 DOI: 10.1002/chem.202001209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 01/25/2023]
Abstract
A strategy is presented to improve the excited state reactivity of homoleptic copper-bis(diimine) complexes CuL2 + by increasing the steric bulk around CuI whereas preserving their stability. Substituting the phenanthroline at the 2-position by a phenyl group allows the implementation of stabilizing intramolecular π stacking within the copper complex, whereas tethering a branched alkyl chain at the 9-position provides enough steric bulk to rise the excited state energy E00 . Two novel complexes are studied and compared to symmetrical models. The impact of breaking the symmetry of phenanthroline ligands on the photophysical properties of the complexes is analyzed and rationalized thanks to a combined theoretical and experimental study. The importance of fine-tuning the steric bulk of the N-N chelate in order to stabilize the coordination sphere is demonstrated. Importantly, the excited state reactivity of the newly developed complexes is improved as demonstrated in the frame of a reductive quenching step, evidencing the relevance of our strategy.
Collapse
Affiliation(s)
- Lea Gimeno
- Université de Nantes, CNRS, CEISAM UMR6230, 44000, Nantes, France
| | - Errol Blart
- Université de Nantes, CNRS, CEISAM UMR6230, 44000, Nantes, France
| | | | - Marina Coupeau
- Université de Nantes, CNRS, CEISAM UMR6230, 44000, Nantes, France
| | - Magali Allain
- Laboratoire MOLTECH-Anjou, UMR CNRS 6200, Université Angers, SFR MATRIX, 2 Bd Lavoisier, 49045, Angers Cedex, France
| | - Thierry Roisnel
- Institut des Sciences Chimiques de Rennes, UMR6226, Université de Rennes CNRS, 35000, Rennes, France
| | | | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 4, Rue Blaise Pascal CS 90032, 67081, Strasbourg Cedex, France
| | - Chantal Daniel
- Laboratoire de Chimie Quantique, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 4, Rue Blaise Pascal CS 90032, 67081, Strasbourg Cedex, France
| | - Yann Pellegrin
- Université de Nantes, CNRS, CEISAM UMR6230, 44000, Nantes, France
| |
Collapse
|
3
|
Williams C, Ferreira M, Monflier E, Mapolie SF, Smith GS. Synthesis and hydroformylation evaluation of Fréchet-type organometallic dendrons with N,O-salicylaldimine Rh(i) complexes at the focal point. Dalton Trans 2018; 47:9418-9429. [PMID: 29953165 DOI: 10.1039/c8dt01874j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of organometallic dendrons containing N,O-salicylaldimine entities at the focal point were synthesised by reacting the N,O-salicylaldimine-functionalised Fréchet dendrons (G0, G1 and G2) with a [Rh(μ-Cl)(η2:η2-COD)]2 dimer to yield the corresponding Rh(COD) [COD = cyclooctadiene] complexes. These Rh(COD) complexes were exposed to an atmosphere of CO to yield a new class of rhodium carbonyl organometallic dendrons with Rh(CO)2 units at the focal point. All the compounds were characterised using standard spectroscopic and analytical techniques, these include nuclear magnetic resonance, infrared spectroscopy, mass spectrometry and single-crystal X-ray diffraction for compounds 1, 4 and 7. All of the complexes were evaluated in the hydroformylation of 1-octene, with excellent conversion and chemoselectivity towards aldehydes. The G0-(CO)2 catalyst precursor (7) was active in the hydroformylation of 1-octene, styrene, 7-tetradecene, methyl oleate, triolein, d-limonene and R-citronellal. The conversion and chemoselectivity towards aldehydes for 7-tetradecene, methyl oleate, triolein and d-limonene were promising. Across a particular dendron series, an increase in chemoselectivity was observed due to the dendritic effect. Mercury drop tests were performed for the G0-analogues and these confirm that the hydroformylation can be attributed to a combination of homogeneous and heterogeneous catalysis.
Collapse
Affiliation(s)
- Cody Williams
- Department of Chemistry, University of Cape Town, P. Bag X3, Rondebosch 7701, Cape Town, South Africa.
| | | | | | | | | |
Collapse
|
4
|
Bonaccorso C, Cesaretti A, Elisei F, Mencaroni L, Spalletti A, Fortuna CG. New Styryl Phenanthroline Derivatives as Model D-π-A-π-D Materials for Non-Linear Optics. Chemphyschem 2018; 19:1917-1929. [PMID: 29702737 DOI: 10.1002/cphc.201800391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 11/06/2022]
Abstract
Four novel push-pull systems combining a central phenanthroline acceptor moiety and two substituted benzene rings, as a part of the conjugated π-system between the donor and the acceptor moieties, have been synthetized through a straightforward and efficient one-step procedure. The chromophores display high fluorescence and a peculiar fluorosolvatochromic behaviour. Ultrafast investigation by means of state-of-the-art femtosecond-resolved transient absorption and fluorescence up-conversion spectroscopies allowed the role of intramolecular charge transfer (ICT) states to be evidenced, also revealing the crucial role played by both, the polarity and proticity of the medium on the excited state dynamics of the chromophores. The ICT processes, responsible for the solvatochromism, also lead to interesting non-linear optical (NLO) properties: namely great two photon absorption cross-sections (hundreds of GM), investigated by the Two Photon Excited Fluorescence (TPEF) technique, and large second order hyperpolarizability coefficients, estimated through a convenient solvatochromic method.
Collapse
Affiliation(s)
- Carmela Bonaccorso
- Department of Chemical Sciences, University of Catania, viale Andrea Doria 6, 95125, Catania, Italy
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Fausto Elisei
- Department of Chemistry, Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Letizia Mencaroni
- Department of Chemistry, Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Anna Spalletti
- Department of Chemistry, Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Cosimo G Fortuna
- Department of Chemical Sciences, University of Catania, viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
5
|
Kaeser A, Mohankumar M, Mohanraj J, Monti F, Holler M, Cid JJ, Moudam O, Nierengarten I, Karmazin-Brelot L, Duhayon C, Delavaux-Nicot B, Armaroli N, Nierengarten JF. Heteroleptic copper(I) complexes prepared from phenanthroline and bis-phosphine ligands. Inorg Chem 2013; 52:12140-51. [PMID: 24083360 DOI: 10.1021/ic4020042] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Preparation of [Cu(NN)(PP)](+) derivatives has been systematically investigated starting from two libraries of phenanthroline (NN) derivatives and bis-phosphine (PP) ligands, namely, (A) 1,10-phenanthroline (phen), neocuproine (2,9-dimethyl-1,10-phenanthroline, dmp), bathophenanthroline (4,7-diphenyl-1,10-phenanthroline, Bphen), 2,9-diphenethyl-1,10-phenanthroline (dpep), and 2,9-diphenyl-1,10-phenanthroline (dpp); (B) bis(diphenylphosphino)methane (dppm), 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), 1,2-bis(diphenylphosphino)benzene (dppb), 1,1'-bis(diphenylphosphino)ferrocene (dppFc), and bis[(2-diphenylphosphino)phenyl] ether (POP). Whatever the bis-phosphine ligand, stable heteroleptic [Cu(NN)(PP)](+) complexes are obtained from the 2,9-unsubstituted-1,10-phenanthroline ligands (phen and Bphen). By contrast, heteroleptic complexes obtained from dmp and dpep are stable in the solid state, but a dynamic ligand exchange reaction is systematically observed in solution, and the homoleptic/heteroleptic ratio is highly dependent on the bis-phosphine ligand. Detailed analysis revealed that the dynamic equilibrium resulting from ligand exchange reactions is mainly influenced by the relative thermodynamic stability of the different possible complexes. Finally, in the case of dpp, only homoleptic complexes were obtained whatever the bis-phosphine ligand. Obviously, steric effects resulting from the presence of the bulky phenyl rings on the dpp ligand destabilize the heteroleptic [Cu(NN)(PP)](+) complexes. In addition to the remarkable thermodynamic stability of [Cu(dpp)2]BF4, this negative steric effect drives the dynamic complexation scenario toward almost exclusive formation of homoleptic [Cu(NN)2](+) and [Cu(PP)2](+) complexes. This work provides the definitive rationalization of the stability of [Cu(NN)(PP)](+) complexes, marking the way for future developments in this field.
Collapse
Affiliation(s)
- Adrien Kaeser
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509) , 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mohankumar M, Holler M, Nierengarten JF, Sauvage JP. Preparation of Copper(I) Pseudo-rotaxanes from Bis-phosphine Ligands. Chemistry 2012; 18:12192-5. [DOI: 10.1002/chem.201202170] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Indexed: 11/10/2022]
|
7
|
Bencini A, Lippolis V. 1,10-Phenanthroline: A versatile building block for the construction of ligands for various purposes. Coord Chem Rev 2010. [DOI: 10.1016/j.ccr.2010.04.008] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Lemus L, Guerrero J, Costamagna J, Estiu G, Ferraudi G, Lappin AG, Oliver A, Noll BC. Unfolding of the [Cu2(1,3-bis(9-methyl-1,10-phenanthrolin-2-yl)propane)2]2+ Helicate. Coupling of the Chlorocarbon Dehalogenation to the Unfolding Process. Inorg Chem 2010; 49:4023-35. [DOI: 10.1021/ic9018986] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- L. Lemus
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo ÓHiggins 3363, Estación Central, Santiago, Chile
| | - J. Guerrero
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo ÓHiggins 3363, Estación Central, Santiago, Chile
| | - J. Costamagna
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo ÓHiggins 3363, Estación Central, Santiago, Chile
| | - G. Estiu
- Department of Chemistry and Biochemistry
| | | | | | - A. Oliver
- Department of Chemistry and Biochemistry
| | - B. C. Noll
- Department of Chemistry and Biochemistry
| |
Collapse
|
9
|
Accorsi G, Armaroli N, Duhayon C, Saquet A, Delavaux‐Nicot B, Welter R, Moudam O, Holler M, Nierengarten J. Synthesis and Photophysical Properties of Copper(I) Complexes Obtained from 1,10-Phenanthroline Ligands with Increasingly Bulky 2,9-Substituents. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200900954] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gianluca Accorsi
- Molecular Photoscience Group, Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Gobetti 101, 40129 Bologna, Italy
| | - Nicola Armaroli
- Molecular Photoscience Group, Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Gobetti 101, 40129 Bologna, Italy
| | - Carine Duhayon
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Alix Saquet
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Béatrice Delavaux‐Nicot
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Richard Welter
- Laboratoire DECOMET, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Omar Moudam
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Michel Holler
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Jean‐François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| |
Collapse
|
10
|
LAVIECAMBOT A, CANTUEL M, LEYDET Y, JONUSAUSKAS G, BASSANI D, MCCLENAGHAN N. Improving the photophysical properties of copper(I) bis(phenanthroline) complexes. Coord Chem Rev 2008. [DOI: 10.1016/j.ccr.2008.03.013] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Synthesis, spectroscopic and electrochemical characterization of copper(I) complexes with functionalized pyrazino[2,3-f]-1,10-phenanthroline. Polyhedron 2008. [DOI: 10.1016/j.poly.2007.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Constable EC, Chaurin V, Housecroft CE, Neuburger M, Schaffner S. The aryl–phen and phen–phen embraces—new supramolecular motifs. CrystEngComm 2008. [DOI: 10.1039/b801019f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Stephan H, Juran S, Born K, Comba P, Geipel G, Hahn U, Werner N, Vögtle F. Hydrophilic oxybathophenanthroline ligands: synthesis and copper(ii) complexation. NEW J CHEM 2008. [DOI: 10.1039/b805136d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Armaroli N, Accorsi G, Bergamini G, Ceroni P, Holler M, Moudam O, Duhayon C, Delavaux-Nicot B, Nierengarten JF. Heteroleptic Cu(I) complexes containing phenanthroline-type and 1,1′-bis(diphenylphosphino)ferrocene ligands: Structure and electronic properties. Inorganica Chim Acta 2007. [DOI: 10.1016/j.ica.2006.07.085] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Hahn U, Cardinali F, Nierengarten JF. Supramolecular chemistry for the self-assembly of fullerene-rich dendrimers. NEW J CHEM 2007. [DOI: 10.1039/b612873b] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Shen L, Shi M, Li F, Zhang D, Li X, Shi E, Yi T, Du Y, Huang C. Polyaryl Ether Dendrimer with a 4-Phenylacetyl-5-pyrazolone-based Terbium(III) Complex as Core: Synthesis and Photopysical Properties. Inorg Chem 2006; 45:6188-97. [PMID: 16878927 DOI: 10.1021/ic052148v] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of novel dendritic beta-diketone ligands, 1-phenyl-3-[G-n]-4-phenylacetyl-5-pyrazolone (n = 0-3, G stands for polyaryl ether), were synthesized by introducing Fréchet-type dendritic branches. The corresponding Tb3+-cored dendritic complexes were characterized by X-ray crystallography, elemental analysis, ESI mass spectra, and FT-IR spectra. These dendritic complexes, prepared from aqueous solution, exhibit high stability. Interestingly, the study of photophysical properties shows that the luminescence quantum yields of the dendritic Tb-complexes increase from 0.1 to 2.26% with an increase of the dendritic generation from 0 to 3. Importantly, an "energy-reservoir effect" was observed in the dendritic system using the method based on the resonance energy transfer from these complexes to rhodamine 6G. With the increase of the dendritic generation, the metal-centered luminescence quantum yield was almost the same, and the energy transfer (phi(transfer)) from the ligand to Tb(3+) increased. Further measurements of the triplet state and oxygen quenching of these dendritic complexes verify that this enhancement of the energy transfer (phi(transfer)) is attributed to both an "antenna effect" and a "shell effect".
Collapse
Affiliation(s)
- Li Shen
- Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Stephan H, Geipel G, Bernhard G, Comba P, Rajaraman G, Hahn U, Vögtle F. Synthesis and Binding Properties of Dendritic Oxybathophenanthroline Ligands towards Copper(II). Eur J Inorg Chem 2005. [DOI: 10.1002/ejic.200500176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Aakeröy CB, Schultheiss N, Desper J. Directed supramolecular assembly of infinite 1-D M(II)-containing chains (M = Cu, Co, Ni) using structurally bifunctional ligands. Inorg Chem 2005; 44:4983-91. [PMID: 15998026 DOI: 10.1021/ic048405y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The directed assembly of six different M(II) complexes (M = Cu, Co, and Ni) into infinite chains has been achieved by combining anionic chelating ligands (for controlling the coordination geometry) with bifunctional ligands containing a metal-coordinating pyridyl moiety and a self-complementary hydrogen-bonding moiety. Six crystal structures are presented, and in each case, the chelating acac ligand occupies the four equatorial coordination sites leaving room for the bifunctional ligand to coordinate in the axial positions. The supramolecular chemistry, which organizes the coordination complexes into the desired infinite 1-D chains, is driven by a combination of N-H...N and N-H...O hydrogen bonds.
Collapse
Affiliation(s)
- Christer B Aakeröy
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA.
| | | | | |
Collapse
|