1
|
Mondal D, Bhattacharya K. Synthesis and structural characterization of a hemiacetal and aldehyde bound diiron(III) complex with two different coordination numbers: A product by oxidative cleavage of carbon nitrogen single bond. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Bilyachenko AN, Levitsky MM, Yalymov AI, Korlyukov AA, Vologzhanina AV, Kozlov YN, Shul'pina LS, Nesterov DS, Pombeiro AJL, Lamaty F, Bantreil X, Fetre A, Liu D, Martinez J, Long J, Larionova J, Guari Y, Trigub AL, Zubavichus YV, Golub IE, Filippov OA, Shubina ES, Shul'pin GB. A heterometallic (Fe6Na8) cage-like silsesquioxane: synthesis, structure, spin glass behavior and high catalytic activity. RSC Adv 2016. [DOI: 10.1039/c6ra07081g] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The exotic “Asian Lantern” heterometallic cage silsesquioxane [(PhSiO1.5)20(FeO1.5)6(NaO0.5)8(n-BuOH)9.6(C7H8)] (I) was obtained and characterized by X-ray diffraction, EXAFS, topological analyses and DFT calculation.
Collapse
|
3
|
Zhu H, Sommerhalter M, Nguy AKL, Klinman JP. Solvent and Temperature Probes of the Long-Range Electron-Transfer Step in Tyramine β-Monooxygenase: Demonstration of a Long-Range Proton-Coupled Electron-Transfer Mechanism. J Am Chem Soc 2015; 137:5720-9. [PMID: 25919134 PMCID: PMC4970857 DOI: 10.1021/ja512388n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
Tyramine
β-monooxygenase (TβM) belongs to a family
of physiologically important dinuclear copper monooxygenases that
function with a solvent-exposed active site. To accomplish each enzymatic
turnover, an electron transfer (ET) must occur between two solvent-separated
copper centers. In wild-type TβM, this event is too fast to
be rate limiting. However, we have recently shown [Osborne, R. L.;
et al. Biochemistry2013, 52, 1179] that the Tyr216Ala variant of TβM leads to rate-limiting
ET. In this study, we present a pH–rate profile study of Tyr216Ala,
together with deuterium oxide solvent kinetic isotope effects (KIEs).
A solvent KIE of 2 on kcat is found in
a region where kcat is pH/pD independent.
As a control, the variant Tyr216Trp, for which ET is not rate determining,
displays a solvent KIE of unity. We conclude, therefore, that the
observed solvent KIE arises from the rate-limiting ET step in the
Tyr216Ala variant, and show
how small solvent KIEs (ca. 2) can be fully accommodated from equilibrium effects within the Marcus equation. To gain insight into the role of the enzyme in the long-range
ET step, a temperature dependence study was also pursued. The small
enthalpic barrier of ET (Ea = 3.6 kcal/mol)
implicates a significant entropic barrier, which is attributed to
the requirement for extensive rearrangement of the inter-copper environment
during PCET catalyzed by the Tyr216Ala variant. The data lead to the
proposal of a distinct inter-domain pathway for PCET in the dinuclear
copper monooxygenases.
Collapse
Affiliation(s)
| | - Monika Sommerhalter
- #Department of Chemistry and Biochemistry, California State University, East Bay, 25800 Carlos Bee Boulevard, Hayward, California 94542, United States
| | | | | |
Collapse
|
4
|
Barbieri A, De Gennaro M, Di Stefano S, Lanzalunga O, Lapi A, Mazzonna M, Olivo G, Ticconi B. Isotope effect profiles in the N-demethylation of N,N-dimethylanilines: a key to determine the pKa of nonheme Fe(iii)–OH complexes. Chem Commun (Camb) 2015; 51:5032-5. [DOI: 10.1039/c5cc00411j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
pKa of [(N4Py)FeIII–OH]2+ is obtained from the kinetic isotope effect profiles in the N-demethylation of N,N-dimethylanilines promoted by [(N4Py)FeIVO]2+.
Collapse
Affiliation(s)
- Alessia Barbieri
- Dipartimento di Chimica
- Sapienza Università di Roma and Istituto CNR di Metodologie Chimiche (IMC-CNR)
- Sezione Meccanismi di Reazione
- c/o Dipartimento di Chimica
- Sapienza Università di Roma
| | - Martina De Gennaro
- Dipartimento di Chimica
- Sapienza Università di Roma and Istituto CNR di Metodologie Chimiche (IMC-CNR)
- Sezione Meccanismi di Reazione
- c/o Dipartimento di Chimica
- Sapienza Università di Roma
| | - Stefano Di Stefano
- Dipartimento di Chimica
- Sapienza Università di Roma and Istituto CNR di Metodologie Chimiche (IMC-CNR)
- Sezione Meccanismi di Reazione
- c/o Dipartimento di Chimica
- Sapienza Università di Roma
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica
- Sapienza Università di Roma and Istituto CNR di Metodologie Chimiche (IMC-CNR)
- Sezione Meccanismi di Reazione
- c/o Dipartimento di Chimica
- Sapienza Università di Roma
| | - Andrea Lapi
- Dipartimento di Chimica
- Sapienza Università di Roma and Istituto CNR di Metodologie Chimiche (IMC-CNR)
- Sezione Meccanismi di Reazione
- c/o Dipartimento di Chimica
- Sapienza Università di Roma
| | - Marco Mazzonna
- Dipartimento di Chimica
- Sapienza Università di Roma and Istituto CNR di Metodologie Chimiche (IMC-CNR)
- Sezione Meccanismi di Reazione
- c/o Dipartimento di Chimica
- Sapienza Università di Roma
| | - Giorgio Olivo
- Dipartimento di Chimica
- Sapienza Università di Roma and Istituto CNR di Metodologie Chimiche (IMC-CNR)
- Sezione Meccanismi di Reazione
- c/o Dipartimento di Chimica
- Sapienza Università di Roma
| | - Barbara Ticconi
- Dipartimento di Chimica
- Sapienza Università di Roma and Istituto CNR di Metodologie Chimiche (IMC-CNR)
- Sezione Meccanismi di Reazione
- c/o Dipartimento di Chimica
- Sapienza Università di Roma
| |
Collapse
|
5
|
Frisch JR, McDonnell R, Rybak-Akimova EV, Que L. Factors affecting the carboxylate shift upon formation of nonheme diiron-O2 adducts. Inorg Chem 2013; 52:2627-36. [PMID: 23432330 DOI: 10.1021/ic302543n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several [Fe(II)2(N-EtHPTB)(μ-O2X)](2+) complexes (1·O2X) have been synthesized, where N-EtHPTB is the anion of N,N,N'N'-tetrakis(2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopropane and O2X is an oxyanion bridge. Crystal structures reveal five-coordinate (μ-alkoxo)diiron(II) cores. These diiron(II) complexes react with O2 at low temperatures in CH2Cl2 (-90 °C) to form blue-green O2 adducts that are best described as triply bridged (μ-η(1):η(1)-peroxo)diiron(III) species (2·O2X). With one exception, all 2·O2X intermediates convert irreversibly to doubly bridged, blue (μ-η(1):η(1)-peroxo)diiron(III) species (3·O2X). Where possible, 2·O2X and 3·O2X intermediates were characterized using resonance Raman spectroscopy, showing respective νO-O values of ∼850 and ∼900 cm(-1). How the steric and electronic properties of O2X affect conversion of 2·O2X to 3·O2X was examined. Stopped-flow analysis reveals that oxygenation kinetics of 1·O2X is unaffected by the nature of O2X, and for the first time, the benzoate analog of 2·O2X (2·O2CPh) is observed.
Collapse
Affiliation(s)
- Jonathan R Frisch
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. S.E., Minneapolis, Minnesota 55455, United States
| | | | | | | |
Collapse
|
6
|
Do LH, Lippard SJ. Evolution of strategies to prepare synthetic mimics of carboxylate-bridged diiron protein active sites. J Inorg Biochem 2011; 105:1774-85. [PMID: 22113107 PMCID: PMC3232320 DOI: 10.1016/j.jinorgbio.2011.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/08/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
We present a comprehensive review of research conducted in our laboratory in pursuit of the long-term goal of reproducing the structures and reactivity of carboxylate-bridged diiron centers used in biology to activate dioxygen for the conversion of hydrocarbons to alcohols and related products. This article describes the evolution of strategies devised to achieve these goals and illustrates the challenges in getting there. Particular emphasis is placed on controlling the geometry and coordination environment of the diiron core, preventing formation of polynuclear iron clusters, maintaining the structural integrity of model complexes during reactions with dioxygen, and tuning the ligand framework to stabilize desired oxygenated diiron species. Studies of the various model systems have improved our understanding of the electronic and physical characteristics of carboxylate-bridged diiron units and their reactivity toward molecular oxygen and organic moieties. The principles and lessons that have emerged from these investigations will guide future efforts to develop more sophisticated diiron protein model complexes.
Collapse
Affiliation(s)
- Loi H. Do
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139. U.S.A
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139. U.S.A
| |
Collapse
|
7
|
Xue G, Pokutsa A, Que L. Substrate-triggered activation of a synthetic [Fe2(μ-O)2] diamond core for C-H bond cleavage. J Am Chem Soc 2011; 133:16657-67. [PMID: 21899336 DOI: 10.1021/ja207131g] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An [Fe(IV)(2)(μ-O)(2)] diamond core structure has been postulated for intermediate Q of soluble methane monooxygenase (sMMO-Q), the oxidant responsible for cleaving the strong C-H bond of methane and its hydroxylation. By extension, analogous species may be involved in the mechanisms of related diiron hydroxylases and desaturases. Because of the paucity of well-defined synthetic examples, there are few, if any, mechanistic studies on the oxidation of hydrocarbon substrates by complexes with high-valent [Fe(2)(μ-O)(2)] cores. We report here that water or alcohol substrates can activate synthetic [Fe(III)Fe(IV)(μ-O)(2)] complexes supported by tetradentate tris(pyridyl-2-methyl)amine ligands (1 and 2) by several orders of magnitude for C-H bond oxidation. On the basis of detailed kinetic studies, it is postulated that the activation results from Lewis base attack on the [Fe(III)Fe(IV)(μ-O)(2)] core, resulting in the formation of a more reactive species with a [X-Fe(III)-O-Fe(IV)═O] ring-opened structure (1-X, 2-X, X = OH(-) or OR(-)). Treatment of 2 with methoxide at -80 °C forms the 2-methoxide adduct in high yield, which is characterized by an S = 1/2 EPR signal indicative of an antiferromagnetically coupled [S = 5/2 Fe(III)/S = 2 Fe(IV)] pair. Even at this low temperature, the complex undergoes facile intramolecular C-H bond cleavage to generate formaldehyde, showing that the terminal high-spin Fe(IV)═O unit is capable of oxidizing a C-H bond as strong as 96 kcal mol(-1). This intramolecular oxidation of the methoxide ligand can in fact be competitive with intermolecular oxidation of triphenylmethane, which has a much weaker C-H bond (D(C-H) 81 kcal mol(-1)). The activation of the [Fe(III)Fe(IV)(μ-O)(2)] core is dramatically illustrated by the oxidation of 9,10-dihydroanthracene by 2-methoxide, which has a second-order rate constant that is 3.6 × 10(7)-fold larger than that for the parent diamond core complex 2. These observations provide strong support for the DFT-based notion that an S = 2 Fe(IV)═O unit is much more reactive at H-atom abstraction than its S = 1 counterpart and suggest that core isomerization could be a viable strategy for the [Fe(IV)(2)(μ-O)(2)] diamond core of sMMO-Q to selectively attack the strong C-H bond of methane in the presence of weaker C-H bonds of amino acid residues that define the diiron active site pocket.
Collapse
Affiliation(s)
- Genqiang Xue
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
8
|
Friedle S, Reisner E, Lippard SJ. Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes. Chem Soc Rev 2010; 39:2768-79. [PMID: 20485834 DOI: 10.1039/c003079c] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This tutorial review describes recent progress in modeling the active sites of carboxylate-rich non-heme diiron enzymes that activate dioxygen to carry out several key reactions in Nature. The chemistry of soluble methane monooxygenase, which catalyzes the selective oxidation of methane to methanol, is of particular interest for (bio)technological applications. Novel synthetic diiron complexes that mimic structural, and, to a lesser extent, functional features of these diiron enzymes are discussed. The chemistry of the enzymes is also briefly summarized. A particular focus of this review is on models that mimic characteristics of the diiron systems that were previously not emphasized, including systems that contain (i) aqua ligands, (ii) different substrates tethered to the ligand framework, (iii) dendrimers attached to carboxylates to mimic the protein environment, (iv) two N-donors in a syn-orientation with respect to the iron-iron vector, and (v) a N-rich ligand environment capable of accessing oxygenated high-valent diiron intermediates.
Collapse
Affiliation(s)
- Simone Friedle
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
9
|
Affiliation(s)
- Ahmet Gunay
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| | - Klaus H. Theopold
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
10
|
Frisch JR, Vu VV, Martinho M, Münck E, Que L. Characterization of two distinct adducts in the reaction of a nonheme diiron(II) complex with O2. Inorg Chem 2009; 48:8325-36. [PMID: 19610611 DOI: 10.1021/ic900961k] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two [Fe(II)(2)(N-EtHPTB)(mu-O(2)X)](2+) complexes, where N-EtHPTB is the anion of N,N,N'N'-tetrakis(2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopropane and O(2)X is O(2)PPh(2) (1 x O(2)PPh(2)) or O(2)AsMe(2) (1 x O(2)AsMe(2)), have been synthesized. Their crystal structures both show interiron distances of 3.54 A that arise from a (mu-alkoxo)diiron(II) core supported by an O(2)X bridge. These diiron(II) complexes react with O(2) at low temperatures in MeCN (-40 degrees C) and CH(2)Cl(2) (-60 degrees C) to form long-lived O(2) adducts that are best described as (mu-eta(1):eta(1)-peroxo)diiron(III) species (2 x O(2)X) with nu(O-O) approximately 850 cm(-1). Upon warming to -30 degrees C, 2 x O(2)PPh(2) converts irreversibly to a second (mu-eta(1):eta(1)-peroxo)diiron(III) intermediate (3 x O(2)PPh(2)) with nu(O-O) approximately 900 cm(-1), a value which matches that reported for [Fe(2)(N-EtHPTB)(O(2))(O(2)CPh)](2+) (3 x O(2)CPh) (Dong et al. J. Am. Chem. Soc. 1993, 115, 1851-1859). Mossbauer spectra of 2 x O(2)PPh(2) and 3 x O(2)PPh(2) indicate that the iron centers within each species are antiferromagnetically coupled with J approximately 60 cm(-1), while extended X-ray absorption fine structure analysis reveals interiron distances of 3.25 and 3.47 A for 2 x O(2)PPh(2) and 3 x O(2)PPh(2), respectively. A similarly short interiron distance (3.27 A) is found for 2 x O(2)AsMe(2). The shorter interiron distance associated with 2 x O(2)PPh(2) and 2 x O(2)AsMe(2) is proposed to derive from a triply bridged diiron(III) species with alkoxo (from N-EtHPTB), 1,2-peroxo, and 1,3-O(2)X bridges, while the longer distance associated with 3 x O(2)PPh(2) results from the shift of the O(2)PPh(2) bridge to a terminal position on one iron. The differences in nu(O-O) are also consistent with the different interiron distances. It is suggested that the O...O bite distance of the O(2)X moiety affects the thermal stability of 2 x O(2)X, with the O(2)X having the largest bite distance (O(2)AsMe(2)) favoring the 2 x O(2)X adduct and the O(2)X having the smallest bite distance (O(2)CPh) favoring the 3 x O(2)X adduct. Interestingly, neither 3 x O(2)AsMe(2) nor the benzoate analog of 2 x O(2)X (2 x O(2)Bz) are observed.
Collapse
Affiliation(s)
- Jonathan R Frisch
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. S.E., Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
11
|
Friedle S, Lippard SJ. Synthesis, Characterization, and Oxygenation Studies of Carboxylate-Bridged Diiron(II) Complexes with Aromatic Substrates Tethered to Pyridine Ligands and the Formation of a Unique Trinuclear Complex. Eur J Inorg Chem 2009; 2009:5506-5515. [PMID: 20376288 DOI: 10.1002/ejic.200900821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study, diiron(II) complexes were synthesized as small molecule mimics of the reduced active sites in the hydroxylase components of bacterial multicomponent monooxygenases (BMMs). Tethered aromatic substrates were introduced in the form of 2-phenoxypyridines, incorporating hydroxy and methoxy functionalities into windmill-type diiron(II) compounds [Fe(2)(μ-O(2)CAr(R))(2)-(O(2)CAr(R))(2)(L)(2)] (1-4), where (-)O(2)CAr(R) is a sterically encumbering carboxylate, 2,6-di(4-fluorophenyl)- or 2,6-di(p-tolyl)benzoate (R = 4-FPh or Tol, respectively). The inability of 1-4 to hydroxylate the aromatic substrates was ascertained. Upon reaction with dioxygen, compounds 2 and 3 (L = 2-(m-MeOPhO)Py, 2-(p-MeOPhO)Py, respectively) decompose by a known bimolecular pathway to form mixed-valent diiron(II,III) species at low temperature. Use of 2-(pyridin-2-yloxy)phenol as the ligand L resulted in a doubly-bridged diiron complex (4) and an unprecedented phenoxide-bridged triiron(II) complex (5) under slightly modified reaction conditions.
Collapse
Affiliation(s)
- Simone Friedle
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | |
Collapse
|
12
|
Reisner E, Lippard SJ. Synthesis of Dicarboxylate “C-Clamp” 1,2-Diethynylarene Compounds as Potential Transition-Metal Ion Hosts. European J Org Chem 2008. [DOI: 10.1002/ejoc.200700816] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Korendovych IV, Kryatov SV, Rybak-Akimova EV. Dioxygen activation at non-heme iron: insights from rapid kinetic studies. Acc Chem Res 2007; 40:510-21. [PMID: 17521158 DOI: 10.1021/ar600041x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
One of the common biochemical pathways of binding and activation of dioxygen involves non-heme iron centers. The enzyme cycles usually start with an iron(II) or diiron(II) state and traverse via several intermediates (detected or postulated) such as (di)iron(III)-superoxo, (di)iron(III)-(hydro)peroxo, iron(III)iron(IV)-oxo, and (di)iron(IV)-oxo species, some of which are responsible for substrate oxidation. In this Account, we present results of kinetic and mechanistic studies of dioxygen binding and activation reactions of model inorganic iron compounds. The number of iron centers, their coordination number, and the steric and electronic properties of the ligands were varied in several series of well-characterized complexes that provided reactive manifolds modeling the function of native non-heme iron enzymes. Time-resolved cryogenic stopped-flow spectrophotometry permitted the identification of kinetically competent intermediates in these systems. Inner-sphere mechanisms dominated the chemistry of dioxygen binding, intermediate transformations, and substrate oxidation as most of these processes were controlled by the rates of ligand substitution at the iron centers.
Collapse
Affiliation(s)
- Ivan V Korendovych
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA
| | | | | |
Collapse
|
14
|
Nehru K, Seo MS, Kim J, Nam W. Oxidative N-Dealkylation Reactions by Oxoiron(IV) Complexes of Nonheme and Heme Ligands. Inorg Chem 2006; 46:293-8. [PMID: 17198439 DOI: 10.1021/ic0614014] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonheme and heme iron monooxygenases participate in oxidative N-dealkylation reactions in nature, and high-valent oxoiron(IV) species have been invoked as active oxidants that effect the oxygenation of organic substrates. The present study describes the first example of the oxidative N-dealkylation of N,N-dialkylamines by synthetic nonheme oxoiron(IV) complexes and the reactivity comparisons of nonheme and heme oxoiron(IV) complexes. Detailed mechanistic studies were performed with various N,N-dialkylaniline substrates such as para-substituted N,N-dimethylanilines, para-chloro-N-ethyl-N-methylaniline, para-chloro-N-cyclopropyl-N-isopropylaniline, and deuteriated N,N-dimethylanilines. The results of a linear free-energy correlation, inter- and intramolecular kinetic isotope effects, and product analysis studied with the mechanistic probes demonstrate that the oxidative N-dealkylation reactions by nonheme and heme oxoiron(IV) complexes occur via an electron transfer-proton transfer (ET-PT) mechanism.
Collapse
Affiliation(s)
- Kasi Nehru
- Department of Chemistry, Division of Nano Sciences, and Center for Biomimetic Systems, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | |
Collapse
|