Battistin F, Vidal A, Cavigli P, Balducci G, Iengo E, Alessio E. Orthogonal Coordination Chemistry of PTA toward Ru(II) and Zn(II) (PTA = 1,3,5-Triaza-7-phosphaadamantane) for the Construction of 1D and 2D Metal-Mediated Porphyrin Networks.
Inorg Chem 2020;
59:4068-4079. [PMID:
32100542 PMCID:
PMC7997375 DOI:
10.1021/acs.inorgchem.0c00080]
[Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
This work demonstrates
that PTA (1,3,5-triaza-7-phosphaadamantane) behaves as an orthogonal
ligand between Ru(II) and Zn(II), since it selectively binds through
the P atom to ruthenium and through one or more of the N atoms to
zinc. This property of PTA was exploited for preparing the two monomeric
porphyrin adducts with axially bound PTA, [Ru(TPP)(PTA-κP)2] (1, TPP = meso-tetraphenylporphyrin) and [Zn(TPP)(PTA-κN)] (3). Next, we prepared a number of heterobimetallic
Ru/Zn porphyrin polymeric networks—and two discrete molecular
systems—mediated by P,N-bridging PTA in which
either both metals reside inside a porphyrin core, or one metal belongs
to a porphyrin, either Ru(TPP) or Zn(TPP), and the other to a complex
or salt of the complementary metal (i.e., cis,cis,trans-[RuCl2(CO)2(PTA-κP)2] (5), trans-[RuCl2(PTA-κP)4] (7), Zn(CH3COO)2, and ZnCl2). The molecular compounds 1, 3, trans-[{RuCl2(PTA-κ2P,N)4}{Zn(TPP)}4] (8), and [{Ru(TPP)(PTA-κP)(PTA-κ2P,N)}{ZnCl2(OH2)}] (11), as well as the polymeric species [{Ru(TPP)(PTA-κ2P,N)2}{Zn(TPP)}]∞ (4), cis,cis,trans-[{RuCl2(CO)2(PTA-κ2P,N)2}{Zn(TPP)}]∞ (6), trans-[{RuCl2(PTA-κ2P,N)4}{Zn(TPP)}2]∞ (9), and [{Ru(TPP)(PTA-κ3P,2N)2}{Zn9(CH3COO)16(CH3OH)2(OH)2}]∞ (10), were structurally characterized by single crystal X-ray diffraction.
Compounds 4, 6, 9, and 10 are the first examples of solid-state porphyrin networks
mediated by PTA. In 4, 6, 8, 9, and 11 the bridging PTA has the κ2P,N binding mode, whereas in the 2D polymeric
layers of 10 it has the triple-bridging mode κ3P,2N. The large number of
compounds with the six-coordinate Zn(TPP) (the three polymeric networks
of 4, 6 and 9, out of five
compounds) strongly suggests that the stereoelectronic features of
PTA are particularly well-suited for this relatively rare type of
coordination. Interestingly, the similar 1D polymeric chains 4 and 6 have different shapes (zigzag in 4 vs “Greek frame” in 6) because
the {trans-Ru(PTA-κ2P,N)2} fragment bridges two Zn(TPP) units with anti geometry in 4 and with syn geometry
in 6. Orthogonal “Greek frame” 1D chains
make the polymeric network of 9. Having firmly established
the binding preferences of PTA toward Ru(II) and Zn(II), we are confident
that in the future a variety of Ru/Zn solid-state networks can be
produced by changing the nature of the partners. In particular, there
are several inert Ru(II) compounds that feature two or more P-bonded
PTA ligands that might be exploited as connectors of well-defined
geometry for the rational design of solid-state networks with Zn–porphyrins
(or other Zn compounds).
This work demonstrates,
through the X-ray structural characterization of several polymeric
Ru/Zn networks, that PTA (1,3,5-triaza-7-phosphaadamantane) behaves
as an orthogonal ligand between Ru(II) and Zn(II). In fact, PTA selectively
binds through the P atom to ruthenium and through one or more of the
N atoms to zinc.
Collapse